I am an associate professor in the University of Maryland Computer Science Department (tenure home), Institute of Advanced Computer Studies, iSchool, and Language Science Center. Previously, I was an assistant professor at Colorado's Department of Computer Science (tenure granted in 2017). I was a graduate student at Princeton with David Blei.

My research focuses on making machine learning more useful, more interpretable, and able to learn and interact from humans. This helps users sift through decades of documents; discover when individuals lie, reframe, or change the topic in a conversation; or to compete against humans in games that are based in natural language.

Sign up for an appointment

Recent Publications

  • Chen Zhao, Chenyan Xiong, Hal Daumé III, and Jordan Boyd-Graber. Multi-Step Reasoning Over Unstructured Text with Beam Dense Retrieval. North American Association of Computational Linguistics, 2021. [Bibtex]
  • Julian Martin Eisenschlos, Bhuwan Dhingra, Jannis Bulian, Benjamin Börschinger, and Jordan Boyd-Graber. Fool Me Twice: Entailment from Wikipedia Gamification. North American Association of Computational Linguistics, 2021. [Preprint] [Research Talk] [Code and Data] [Play] [Bibtex]
  • Pedro Rodriguez, Joe Barrow, Alexander Hoyle, John P. Lalor, and Robin Jia. Evaluation Examples Are Not Equally Informative: How Should That Change NLP Leaderboards?. Association of Computational Linguistics, 2021. [Bibtex]
  • Benjamin Börschinger, Jordan Boyd-Graber, Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Michelle Chen Huebscher, Wojciech Gajewski, Yannic Kilcher, Rodrigo Nogueira, and Lierni Sestorain Saralegu. Meta Answering for Machine Reading. ArXiv, Preprint. [Preprint] [Bibtex]
  • Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and Jordan Boyd-Graber. Quizbowl: The Case for Incremental Question Answering. ArXiv, Preprint. [Webpage] [Bibtex]
Jordan Boyd-Graber