I am a full professor in the University of Maryland Computer Science Department (tenure home), Institute of Advanced Computer Studies, INFO, and Language Science Center.

My research focuses on making machine learning more useful, more interpretable, and able to learn and interact from humans. This helps users sift through decades of documents; discover when individuals lie, reframe, or change the topic in a conversation; or to compete against humans in games that are based in natural language.

Book a meeting with me (collaborators and UMD students).

Recent Publications

  • Ishani Mondal, Meera Bharadwaj, Ayush Roy, Aparna Garimella, and Jordan Boyd-Graber. SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity. European Association for Computational Linguistics, 2026. [Bibtex]
  • Benjamin Börschinger, Jordan Boyd-Graber, Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Michelle Chen Huebscher, Wojciech Gajewski, Yannic Kilcher, Rodrigo Nogueira, and Lierni Sestorain Saralegu. Meta Answering for Machine Reading. ArXiv, 2020. [Preprint] [Bibtex]
  • Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and Jordan Boyd-Graber. Quizbowl: The Case for Incremental Question Answering. ArXiv, 2020. [Webpage] [Bibtex]
Jordan Boyd-Graber