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1 Introduction

In this paper we extend the work of Black and Yacoob [5]
on tracking and recognition of human facial expressions to
the problem of tracking and recognizing the articulated mo-
tion of human limbs. We make the assumption that a person
can be represented by a set of connected planar patches: the
cardboard person model illustrated in Figure 1. In the case
of faces, Black and Yacoob [5] showed that a planar model
could well approximate the motion of a human head and that
it provides a concise description of the optical flow within a
region. This motion can be estimated robustly and it can be
used for recognition.

To extend the approach in [5] to track articulated human
motion we approximate the limbs as planar regions and re-
cover the motions of these planes while constraining the mo-
tion of the connected patches to be the same at the points of
articulation. To recognize articulated motion we will need
to know the relative motion of each of the limbs. Given the
computed motions of the thigh and calf, for example, we can
solve for the relative motion of the calf with respect to the
thigh. We posit that this relative image motion of the limbs
is sufficient for recognition of human activity.

The tracking of human motion using these parameterized
flow models is more challenging than the previous work on
facial motion tracking. In the case of human limbs, the mo-
tion between frames can be very large with respect to the
size of the image region, the deformations of clothing as a
person moves make tracking difficult, and the human body
is frequently self-occluding and self-shadowing. Addition-
ally, facial motion recognition need only work over a rel-
atively narrow range of views while we should be able to
recognize human activities from a wider set of views (front,
back, side, etc.). These differences between facial motion
and general articulated human motion will require us to ex-
tend the previous methods in a number of ways. In this pa-
per we focus on the problem of tracking the limbs of a per-
son using articulated planar patches. At the end of the paper
we analyze the performance of the current approach, discuss
how it might be extended, and present some thoughts on the
future of the method.

Figure 1: The cardboard person model. The limbs of a per-
son are represented by planar patches.

2 Previous Research

Many approaches to tracking the movement of humans have
focused on detecting and tracking the edges of the figure
in the images. These methods typically attempt to match
the projection of a detailed articulated 3D body model to
the edge data [9, 10, 16]. A number of authors have ex-
tended active contour models to model articulated motion
[6, 12, 13, 20]. For example, Baumberg and Hogg [2] track
the outline of a moving body using a modal-based flexible
shape model which captures the considerable outline vari-
ations in the human silhouette during movement. Stick-
figure models of humans have also been matched to image
data [1, 14]. These methods are typically only applied to hu-
mans viewed from the side.

The above methods do not explicitly use image motion to
track and recognize activity. Pentland and Horowitz [15],
however, describe the fitting of a 3D physically-based ar-
ticulated model to optical flow data. Parts of a person are
described as superquadrics with constraints on the articu-
lated motion of the parts. In contrast, Wang et al. [19] use
a 3D articulated model of a human leg to constrain the opti-
cal flow and they recover the motion of the articulated parts
directly from changing image brightness without first com-
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Figure 2: Divergence (a1+a5), deformation (a1�a5), curl
(�a2 + a4), image yaw (a6) and image pitch (a7).

puting flow.
The approaches above typically require 3D models of

the body. Furthermore, edges often play the central role in
tracking and motion estimation. In this paper, we propose
a parametrized motion model for tracking body parts. This
model shifts the focus of tracking from edges to the intensity
pattern created by each body part in the image plane. The
tracking employs a 2D model-based approach for enforcing
inter-part motion consistency for recovery thus simplifying
the tracking and reducing the computations. We further de-
velop an approach for viewer-based motion recognition of
human activity and provide preliminary results.

3 Motion Estimation of a Rigid Object
The image motion of a rigid planar patch of the scene can
be described by the following eight-parameter model:u(x; y) = a0 + a1x+ a2y + a6x2 + a7xy; (1)v(x; y) = a3 + a4x+ a5y + a6xy + a7y2; (2)

where a = [a0; a1; a2; a3; a4; a5; a6; a7] denotes the
vector of parameters to be estimated, and u(x; a) =[u(x; y); v(x; y)]T are the horizontal and vertical compo-
nents of the flow at image pointx = (x; y). The coordinates(x; y) are defined with respect to a particular point. Here
this is taken to be the center of the patch but could be taken
to be at a point of articulation.

The assumption of brightness constancy for a given patch
and the planar motion model gives rise to the optical flow
constraint equationrI �u(x; as) + It = 0; 8x 2 Rs (3)

where as denotes the planar model for patch s, Rs denotes
the points in patch s, I is the image brightness function andt represents time. rI = [Ix; Iy], and the subscripts indi-
cates partial derivatives of image brightness with respect to
the spatial dimensions and time at the point x.

We use this constraint equation in the next section to
solve for the motions of the patches. These parameters will
be used to interpret the motion within each region. Vari-
ous, low-level, interpretations of the motion parameters are
shown in Figure 2.

4 Estimating Articulated Motion
For an articulated object, we assume that each patch is con-
nected to only one preceding patch and one followingpatch,
that is, the patches construct a chain structure (see Figure 3).
For example, a “thigh” patch may be connected to a preced-
ing “torso” patch and a following “calf” patch. Each patch
is represented by its four corners. Our approach is to simul-
taneously estimate the motions, as, of all the patches. We
minimize the total energy of the following equation to esti-
mate the motions of each patch (from 0 to n)E = nXs=0Es = nXs=0 Xx2Rs �(rI � u(x; as) + It; �) (4)

where we take � to be an error norm with a redescending
influence function.

Equation 4 may be ill-conditioned due to the lack of suf-
ficient brightness variation within the patch. The articulated
nature of the patches provides an additional constraint on the
solution. This articulation constraint is added to Equation
4 as followsE = nXs=0( 1jRsjEs + � Xx2As ku(x; as) � u(x; a0)k2); (5)

where jRsj is the number of pixels in patch s, � controls rel-
ative importance of the two terms,As is the set of articulated
points for patch s, a0 is the planar motion of the patch which
is connected to patch s at the articulated point x, and k � k
stands for the norm function. The use of a quadratic func-
tion for the spatial coherence term indicates that no outlier
is allowed.

Instead of using a constraint on the image velocity at the
articulation points, we can make use of the distance between
a pair of points. Assuming x0 is the corresponding image
point of the articulated point x, and x0 belongs to the patch
connected to patch s at point x (see Figure 3), Equation 5
can be modified asE = nXs=0( 1jRsjEs+� Xx2As kx+u(x; as)�x0�u(x0; a0)k2)

(6)
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Figure 3: The “chain” structure of a three-segment articu-
lated object.

This formulation has the advantage that the pair of artic-
ulated points, x and x0, will always be close to each other at
any time. The second energy term (the “smoothness” term)
in Equation 6 can also be considered as a spring force energy
term between two points (Figure 3).

We minimize Equation 6 using the simple gradient de-
scent scheme with a continuation method [4, 7]. This in-
volves in taking derivatives of the equation with respect to
each of the planar motion parameters. At each step, we
take into account both the optical flow constraints within the
patch and the motion parameters of the connected patches.

For the experiments in this paper we take � to be�(x; �) = x2�2 + x2 ; (7)

which is the robust error norm used in [4]. As the magni-
tudes of residuals rI � u(x; as) + It grow beyond a point,
their influence on the solution begins to decrease and the
value of �(�) approaches a constant.

The value� is a scale parameter, which effects the point at
which the influence of outliers begins to decrease. In order
to automatically estimate the value of �, we assume that the
residuals can be modeled by a mixture of two Gaussian dis-
tributions: one is to model the object, the other is to model
the outliers. Since �1:4826 is the median value of the abso-
lute values of a one-dimensional normal distribution [17],
the robust estimation of � from residuals can be defined as:�est = 1:4826medianxjrI �u(x; as) + Itj (8)

Equation 6 is minimized using continuation method that
begins with a large � and lowers it gradually [4, 7]. We de-
fine �t = �est, that is, the � at iteration t is equal to �est

which is computed from Equation 8 given current motion
estimate as. This �t is adjusted so that�t 2 brf�t�1; rs�t�1c \ b�min; �maxc;
where rf and rs are the fastest and the slowest annealing rate
respectively, and ��1 = �max. The effect of this procedure
is that initially almost no data are rejected as outliers then
gradually the influence of outliers is reduced. The value of�max is 10p3, and �min is 2p3. The annealing rate rs is
0.97, and rf is 0.9. These parameters remain fixed for the
experiments in this paper.

To cope with large motions, a coarse-to-fine strategy is
used in which the motion is estimated at a coarse level then,
at the next finer lever, the image at time t+ 1 is warped to-
wards the image at time t using the current motion estimate.
The motion parameters are refined at this level and the pro-
cess continues until the finest level.

4.1 Computing the relative motions
The planar motions estimated from the Equation 6 are abso-
lute motions. In order to recognize articulated motion, we
need to recover the motions of limbs which are relative to
their preceding (parent) patches. We defineu(x+ u(x; as�1); ars) = u(x; as)� u(x; as�1); (9)

where ars is the relative motion of patch s, u(x; as) �u(x; as�1) is the relative displacement at point x, and x +u(x; as�1) is the new location of point x under motionas�1. A planar motion has eight parameters, therefore four
different points of patch s are sufficient to solve ars given
the linear equations 9. In our experiments, we use the four
corners of the patches.

4.2 Tracking the articulated object
In the first frame, we interactively define each patch by its
four corners. For each patch, the first two corners are de-
fined as the articulated points, whose corresponding points
are the last two corners of its preceding patch. This defini-
tion of articulated points shows that two connected patches
share one common “edge”. Once the “chain” structure is de-
fined, the object is automatically tracked thereafter. Track-
ing is achieved by using the articulated motion between
two frames to predict the location of each patch in the next
frame. We update the location of each of the four corners of
each patch by applying its estimated planar motion to it.

5 Experimental Results
In this section we illustrate the performance of the track-
ing algorithm on several image sequences of lower body hu-
man movement. We focus on “walking” (on a treadmill, for
simplicity) and provide the recovered motion parameters for
two leg parts during this cyclic activity. Notice that during



“walking” the upper body plays only a minor role in recog-
nition (it can, however, be appreciated that the movement
of the torso and the arms can be used in determining head-
ing, speed of “walking” and clues regarding the positions of
lower body parts). To facilitate the use of our gradient-based
flow estimation approach, we use a 99Hz video-camera to
capture a few cycles of “walking”

Each sequence contains 500 to 800 frames. All the pa-
rameters used in the motion estimation algorithm were ex-
actly the same in all the experiments. In particular, for each
pair of images, 30 iterations of gradient descent were used
at each level, and 3 levels were used in the coarse-to-fine
strategy. The value of � is 0.005.

Figures 4, 6, and 8 demonstrate three “walking” se-
quences taken from different view-points. The left column
in each figure shows three input images some frames apart,
the right column shows the tracking of two parts (the “thigh”
and “calf”). Various motion parameters for these sequences
are shown in Figures 5, 7, and 9. The first row in Fig-
ures 5 and 7 shows the horizontal and vertical translation
(left most graph, dashed line is the vertical translation) and
“curl” (right graph) for the “thigh”. The second row shows
the graphs for the “calf.” In Figure 9 the “curl” graphs are
replaced by the “deformation” and “divergence” and “im-
age pitch”. These graphs are only meant to provide an idea
about the effectiveness of our tracking model and its ability
to capture meaningful parameters of the body movement.

In Figures 5 and 7 it is clear that the horizontal transla-
tion and “curl” parameters capture quite well the cyclic mo-
tion of the two parts of the leg. The translation of the “calf”
is relative to that of the “thigh” and therefore it is signifi-
cantly smaller. On the other hand, the rotation (i.e., “curl”)
is more significant at the “calf”. Notice that Figures 5 and 7
are qualitatively quite similar despite the difference in view-
point. In Figure 9 the translations are smaller than before
but still disclose a cyclic pattern. The “deformation,” “di-
vergence,” and pitch capture the cyclic motion of the “walk-
ing away” on the treadmill. Notice that the pitch measured
at the two parts is always reversed since when the “thigh”
rotates in one direction the “calf” is bound to be viewed to
be rotating in a opposite way.

In summary, the reported experiments show that the im-
age motion models are capable of tracking articulated mo-
tion quite accurately over long sequences and recovering a
meaningful set of parameters that can feed into a recognition
system. For related work see [8].

6 Recognition of Movement
The goal of recognition of human movement encompasses
answering: When does the activity begin and end? What
class does the observed activity most closely resemble?
What is the period (if cyclical) of the activity?

Seitz and Dyer [18] proposed an approach for determin-

Figure 4: Walking parallel to the imaging plane. Three
frames shown twenty frames apart.

ing whether an observed motion is periodic and computing
its period. Their approach is based on the observation that
the 3D points of an object performing affine-invariant mo-
tion are related by an affine transformation in their 2D mo-
tion projections. Once a period is detected, a matching of a
single cycle of the motion to known motions can, in princi-
pal, provide for the recognition of the activity.

Our approach to recognition takes advantage of the econ-
omy of the parameterized motion models in capturing the
range of motions and deformations of each body part. In the
absence of shape cues, we employ a viewer-centered repre-
sentation for recognition. Let Cvij (t) denote the temporal
curve created by the motion parameter aj of patch i viewed
at angle v (where j 2 a0; :::; a7). We make the observation
that the following transformation does not change the nature
of the activity represented by Cvij (t)Dvij (t) = Si �Cvij (t + Ti) (10)

where Dvij (t) is the transformed curve. This transforma-
tion captures the translation, Ti, of the curve and the scal-
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Figure 9: Tracking results for Figure 8
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Figure 5: Motion parameters for walking parallel to the
imaging plane (Figure 4).

ing, Si, in the magnitude of the image-motion measured
for parameter aj. The scaling of the curve allows account-
ing for different distances between the human and the cam-
era (while the viewing angle is kept constant) and accounts
for the physiological variation across humans. Notice that
this transformation does not scale the curve in the tempo-
ral dimension since the nature of the activity changes due
to temporal scaling (e.g., different speeds of “walking” can
be captured by this scaling). This temporal scaling can be
expressed as an affine transformationDvij (t) = Si �Cvij (�it+ Ti) (11)

where �i > 1:0 leads to a linear speed up of the activity and�i < 1:0 leads to its slow down.

The recognition of an activity can be posed as a match-
ing problem between the curve created by parameter aj over
time and a set of known curves (corresponding to known
activities) that can be subject to the above transformation.
Recognition of an activity for some viewpoint v requires
that a single affine transformation should apply to all param-
eters aj, this can be posed as a minimization of the error (un-
der some error norm)E(v) = Xj20::7�[Dvij (t)� (Si �Cvij (�it+ Ti)); �] (12)

Recognition over different viewpoints requires finding
the minimum error between all views v, which can be ex-
pressed asE = minv Xj20::7�[Dvij (t)� (Si �Cvij (�it+Ti)); �] (13)

Recognition over multiple body parts uses the inter-part hi-
erarchy relationships to progressively find the best match.
As demonstrated and discussed in Section 5, the motion pa-
rameters are stable over a wide range of viewpoints of the
activity, so that they could be represented by a few princi-
pal directions.

Our formulation requires computing a characteristic
curve Cvij for each activity and body part viewed at anglev. Constructing this characteristic curve can be achieved by
tracking the patch motions over several subjects and em-
ploying Principal Component Analysis (PCA) to capture
the dominant curve components. Given an observed activ-
ity captured by Dij (t) (notice that the v is dropped since
it is unknown), our algorithm determines the characteristic
curve that minimizes the error function given in Equation 13



Figure 6: Walking 45 degress relative to the imaging plane.

by employing the recently proposed eigentracking approach
[3] on the curves.

We are currently constructing these characteristic curves
for several human activities. Davis [8] has independently
proposed a somewhat similar model for learning and recog-
nition of motion curves from multiple-views.

7 Discussion
The approach described here extends previous work on
facial motion to articulated motion and shows promise
for tracking and recognition of human activities. There
are, however, a number of issues that still need to be ad-
dressed. First, the motion of human limbs in NTSC video
(30 frames/sec) can be very large. For example, human
limbs often move distances greater than their width between
frames. This causes problems for a hierarchical gradient-
based motion scheme such as the one presented here. To
cope with large motions of small regions we will need to de-
velop better methods for long-range motion estimation.

Unlike the human face, people wear clothing over their
limbs which deforms as they move. The “motion” of the
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Figure 7: Motion parameters for walking 45 degress relative
to the imaging plane (Figure 6).

deforming clothing between frames is often significant and,
where there is little texture on the clothing, may actually be
the dominant motion within a region. A purely flow-based
tracker such as the one here has no “memory” of what is be-
ing tracked. So if it is deceived by the motion of the clothing
in some frame there is a risk that tracking will be lost. We
are exploring ways of adding a template-style form of mem-
ory to improve the robustness of the tracking.

Self occlusion is another problem typically not present
with facial motion tracking. Currently we have not ad-
dressed this issue, preferring to first explore the efficacy of
the parameterized tracking and recognition scheme in the
non-occlusion case. In extending this work to cope with oc-
clusion, the template-style methods mentioned above may
be applicable.

8 Conclusion
We have presented a method for tracking articulated motion
in an image sequence using parameterized models of opti-
cal flow. The method extends previous work on facial mo-
tion tracking [5] to more general animate motion. Unlike
previous work on recovering human motion, this method as-
sumes that the activity can be described by a the motion of
a set of planar patches with constraints between the patches
to enforce articulated motion. No 3D model of the person is
required, features such as edges are not used, and the opti-
cal flow is estimated directly using the parameterized model.
An advantage of the 2D parameterized flow models is that
recovered flow parameters can be interprated and used for
recognition as described in [5]. Previous methods for recog-
nition need to be extended to cope with the cyclical mo-
tion of human activities and we have proposed a method
for performing view-based recognition of human activities
from the optical flow parameters. Our current work is fo-
cused on the automatic segmentation of articulated motion



Figure 8: Walking perpendicular to the imaging plane.

into parts and the development of robust view-based recog-
nition schemes for articulate motion.
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