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lRotation in image planeFigure 1: Image sequence of \walking", �ve part track-ing including self-occlusion and three sets of �ve signals(out of 40) recovered during the activity (torso (black),thigh (yellow), calf (red), foot (green) and arm (blue))An observed activity can be viewed as a vector ofmeasurements over the temporal axis. The objectiveof this paper is to develop a method for modeling andrecognition of these temporal measurements while ac-counting for some of the above variances in activityexecution.Consider as an example Figure 1, which shows bothselected frames from an image sequence of a personwalking in front of a camera and the model-basedtracking of �ve body parts (i.e., arm, torso, thigh, calfand foot).In the remainder of this paper we show that a re-duced dimensionalitymodel of activities such as \walk-ing" can be constructed using principal componentanalysis (PCA, or an eigenspace representation) of
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Figure 2: The parameterized modeling and recognitionof signalsexample signals (\exemplars"). Recognition of suchactivities is then posed as matching between princi-pal component representation of the observed activ-ity (\observation") to these learned models that maybe subjected to \activity-preserving" transformations(e.g., change of execution duration, small change inviewpoint, change of performer, etc.).Figure 2 shows the framework for modeling andrecognition of activities. The right side of the �gureshows exemplar activities (i.e., instances 1::N of activ-ities) where each instance of an activity has a set ofsix vectors of temporal measurements. These activi-ties can be modeled using a PCA-based representationas a set of \activity bases" (see lower right part of the�gure). The left side of the �gure shows an observedactivity that is a translated and scaled version of aninstance of one of the modeled activities.2 Previous WorkApproaches that have been recently employed for mod-eling and recognizing activities can be divided intodata-�tting (e.g., neural networks [14], Dynamic TimeWarping (DTW) [7, 8], and regression [12]) featurelocalization (e.g., scale-space curve analysis [1, 13])and statistical approaches (e.g., Hidden Markov Mod-els (HMMs) [11, 15]). It is common in these approachesto develop a separate model for each activity, match anobserved activity to all models and choose the modelthat explains it best.Recognition of activities subject to \admissible"transformations (e.g., time scaling) enhances the per-formance of a recognition algorithm since it quanti-�es the relationship between an instance of an activityand previously encountered instances of that activity.While the above approaches are able to locally handle

temporal variability in the data stream of an observedactivity, they lack a global detailed model to capturethese variabilities. Consequently, it may be di�cultwith these approaches to explicitly recover and recog-nize a class of parameterized temporal transformationsof an observed activity in respect to a learned model.The approach we propose in this paper is continuousand global (on the time axis) and therefore is an ex-plicit representation of activities. This representationis amenable to matching by global transforms (suchas the a�ne transformation we consider). Also, thisglobal feature allows recognition based on partial orcorrupted data (including missing beginning and end-ing). The most closely related work to the work re-ported here is that of Bobick and Davis [6] and Ju etal. [9], both proposed using principal component anal-ysis to model parameters computed from activities butdid not demonstrate modeling and recognition of ac-tivities. Also, Li et al. [10] proposed a PCA-basedmodeling and recognition approach of whole image se-quences of speech.3 Modeling ActivitiesActivities will be represented using examples from var-ious activity classes (walking, running etc.). Each ex-ample consists of a set of signals. Initially we assumethat all exemplars are less than or equal to a constantduration and all examples from a given class are tem-porally alignedThe i�th exemplar from class j is a function from[0:::T] on Rn, ej i(t) : [0::T]! Rn where n is the num-ber of activity parameters (e.g., translation, rotationetc.) measured at frame t of the image sequence oflength T. So, eji(t) is a column vector of the n mea-surements associated with the j�th exemplar from ac-tivity class i at time t. Let �eji represent the nT columnvector obtained by simply concatenating the ej i(t) fort = 0; :::;T. The set of all j and i of �eji is used to createthe matrix A of dimensions nT� k where k being thenumber of instances of activities k << nT.Matrix A can be decomposed using Singular ValueDecomposition (SVD) asA = U�V T (1)where U is an orthogonal matrix of the same size asA representing the principal component directions inthe training set. � is a diagonal matrix with singu-lar values �1; �2; :::; �k sorted in decreasing order alongthe diagonal. The k � k matrix V T encodes the co-e�cients to be used in expanding each column of A interms of principal component directions. It is possi-ble to approximate an instance of activity �e using thelargest q singular values �1; �2; :::; �q, so that



�e� = qXl=1 clUl (2)where �e� is the vector approximation, cl are scalar val-ues that can be computed by taking the dot product of�e and the column Ul ; that is, by projecting the vector �eonto the subspace spanned by the q basis vectors. Theapproximation can be viewed as a parameterization ofthe vector �e in terms of the basis vectors Ul (l = 1::q),to be called the activity basis, where the parametersare the cl's.4 Activity RecognitionRecognition of activities involves matching an obser-vation against the exemplars, where the observationmay di�er from any of the exemplars due to variationsin imaging conditions and performance of activities asdiscussed earlier.We model variations in performanceof an activity by a class of transformation functions T .Most simply, T might model uniform temporal scalingand time shifting to align observations with exemplars.Let D(t) : [1::T]! Rn be an observed activity andlet [D] denote the nT column vector obtained by �rstconcatenating the n feature values measured at t, foreach D(t) and then concatinating D(t) for all t. Letalso [D]j denote the j-th (j = 1::nT) element of thevector [D]. By projecting this vector on the activitybasis we recover a vector of coe�cients, �c, that approx-imates the activity as a linear combination of activitybasis.Black and Jepson [3] recently pointed out that pro-jection gives a least squares �t which is not robust.Instead, they employed robust regression to minimizethe matching error in an eigenspace of intensity im-ages. Adopting robust regression to recovering the co-e�cients leads to an error minimization of the form:E(�c) = nTXj=1 �(([D]j � qXl=1 clUl;j); �) (3)where �(x; �) is a robust error norm over x and � is ascale parameter that controls the inuence of outliers.This robustness is e�ective in coping with random orstructured noise. Black and Jepson [3] also parame-terized the search to allow an a�ne transformation ofthe observation to be used to improve the matchingbetween images and principal images. In our context,a similar transformation allows an observation to bebetter matched to the exemplars. Let T (�a; t) denotea transformation with parameter vector �a that can beapplied to an observation D(t) as D(t+ T (�a; t)).Given an observed activityD(t), the error minimiza-tion of Equation (3) now becomesE(�c; �a) = nTXj=1 �([D(t+ T (�a; t))]j � qXl=1 clUl;j ; �): (4)

Equation (4) is solved using simultaneousminimizationover the coe�cient vector �c and the transformation pa-rameter vector �a. It should be noticed that a moregeneral transformation on D(t) is possible, speci�callyT (D(t)) instead of D(t + T (�a; t)). The latter trans-formation assumes \signal constancy" in terms of therange of values of D(t) and de�nes explicitly a \pointmotion" transformation that is controlled by the modelof T (�a; t).The transformedD(t+T (�a; t)) can be expanded us-ing a �rst order Taylor seriesD(t+ T (�a; t)) � D(t) +Dt(t)T (�a; t) (5)where Dt is the temporal derivative. Equation (4) canbe approximated asE(�c; �a) = nTXj=1 �([Dt(t)T (�a; t) +D(t))]j � qXl=1 clUl;j ; �)(6)Equation (6) can be minimized with respect to �a and�c using a gradient descent scheme with a continuationmethod that gradually lowers � (see [2]). Initial pro-jection of the observation on the eigenspace providesa set of coe�cients �c that are used to determine aninitial estimate of �a that is used to warp the obser-vation into the eigenspace. The algorithm alternatelyminimizes the errors of the eigenspace parameteriza-tion and the transformation parameterization. Due tothe di�erential term in Equation (6) it is possible tocarry out the minimization only over small values ofthe parameters. To deal with larger transformationsa coarse-to-�ne strategy can be used to compute thecoe�cients and transformation parameters at coarseresolution and project their values to �ner resolutionssimilar to what is described in [3]. This coarse-to-�nestrategy does not eliminate the need for approximatelocalization of the curves even at coarse levels.Upon recovery of the coe�cient vector, �c, the nor-malized distance between the coe�cients, ci, and coef-�cients of exemplar activities coe�cients, mi, is usedto recognize the observed activity. The Euclidean dis-tance, d, between the distance-normalized coe�cientsis given as d2 = qX1 (ci=jj�cjj �mi=jj �mjj)2 (7)where �m is vector of expansion coe�cients of an exem-plar activity. The exemplar activity coe�cients thatscore the smallest distance is considered the best matchto the observed activity.5 Experiments5.1 Modeling and Recognition of WalkingWe employ a recently proposed approach for track-ing humanmotion using parameterized optical ow [9].



This approach assumes that an initial segmentation ofthe body into parts is given and tracks the motion ofeach part using a chain-like model that exploits the at-tachments between parts to achieve tracking of bodyparts in the presence of non-rigid deformations of cloth-ing that cover the parts. The work reported empha-sized the low-level tracking component and suggesteda possible recognition strategy of the temporal param-eters subject to changes of viewpoint and imaging pa-rameters. In this subsection we employ our proposedapproach to demonstrate the recognition of activitiesunder varying viewpoints and imaging parameters. Weassume that a viewer-centered representation is usedfor modeling and recognition of several activities. LetD(t) be the n dimensional signals of an observed activ-ity. A total of �ve body parts (arm, torso, thigh, calfand foot) were tracked using 8 motion parameters foreach part (i.e., n=40). In [9] the observation that thefollowing transformation does not change the activityD(t) was made, S �D(�t+ L)This transformation captures the temporal translation,L, of the curve and the scaling, S, in the magnitude ofthe signal in addition to the speedup factor �. Themagnitude scaling, S, of the signal accounts for dif-ferent distances between the human and the camera(while the viewing angle is kept constant) and the an-thropometric variation across humans. The temporalscaling parameter � is: � > 1:0 leads to a linear speedup of the activity and � < 1:0 leads to its slow down.Recognition of activity D(t) as an instance of alearned activity requires minimizing the error:E(�;L; S) = nTXj=1 �([S �D(�t+L)]j� qXl=1 clUl;j ; �) (8)This equation can easily be rewritten and solved asin Equation (6), whereT (�;L; t) = (� � 1)t+ L (9)E(�c; �a)= nTXj=1�([S�(Dt(t)T (�;L; t)+D(t))]j� qXl=1clUl;j ; �)(10)Since the error minimization involves a non-linear termwe simplify the computation by observing that themultiplication by a constant S can be substituted bydividing the coe�cients ci by S, and therefore in ac-tuality the recovered coe�cients are correct up to ascaling factor (i.e., recovering ci=S). The matching ofcoe�cients is done as in Equation(7). Upon �nding thebest match the coe�cients ci=S are compared with thematching exemplar coe�cients to compute the scaling
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nFigure 3: Graphs of six cycles of \walking" (by di�er-ent people) showing the horizontal translation param-eter of the ow (out of 8) of each of the �ve patches.factor S. Since computing S is overconstrained (q equa-tions with one variable), the mean of S is taken as thescaling factor.The value of S is greater than 1:0 if (a) the activityis viewed at a closer distance than in training (there-fore the perception of \larger quantities" is a result ofthe projection), or, (b) actual faster execution of theactivity (which also leads to a temporal scaling for �).Figure 3 shows one temporal parameter (i.e., thehorizontal translation) of the �ve body parts of six dif-ferent walkers (out of 10 subjects viewed from the sameviewpoint) after the signals have been coarsely regis-tered. The missing cycle parts were �lled with \no-activity." Figure 4 shows the �rst two principal compo-nents of one parameter of the walking cycle (however,the forty parameters are modeled in the principal com-ponents). Also, the �gure shows the ratio of capturedvariation as a function of the number of principal com-ponents used in reconstruction (�ve components areneeded to capture 90% of the variation while the �rstcomponent alone captures about 70% of the variation).This suggests that a single component (i.e., the mean)can capture walking well if viewed from a single view-points.Figure 5 (left) shows �ve temporal curves of one pa-rameter of a test sequence of a new subject. In thisexperiment we show the recovery of transformation T
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gFigure 5: A test sequence used in recognition andevaluation Translation and time scale recovery for the\walking" input curve starting at frame 1015 up till1065 (i.e., translating) (right).of the \walking." We arti�cially start the recognitionat di�erent frames during the \walking" test sequence(speci�cally from frame 1015) and recover the transla-tion L and speed �. Notice that the tested activity be-gins about 35 frames into the \walking" model (Figure4). A translation of 35 frames will align the tested ac-tivity with the model. The graphs in Figure 5 show therecovered translation L and scaling (��1) parametersof the \walking" activity as a function of the startingframe. Notice that at frame 1015 a displacement ofabout 2 frames is needed to align the curve of Figure 5to the \walking"model described in Figure 4. This dis-placement is increased as the input curve is translatedin time. The scaling parameter indicates that the testactivity is about 6% faster than the mean \walking"activity. This experiment also shows the e�ectivenessof the robust norm since it facilitates recognition evenwhen some of the data is inaccurate (e.g., all parame-ters between frames 1015 and 1045 are zero).5.2 Multiple-view Modeling andRecognition of WalkingFigure 6 illustrates the experimental set-up for themulti-view walking experiments. The objective here isto demonstrate that a correct classi�cation of the direc-tion of walking of the subjects can be achieved. Sincethe change in motion trajectories with the change ofviewpoint is smooth (see [6]) we use four primary di-rections in the recognition tabulation.Figure 6 shows the cumulative captured variation ofthe principal components for a single person's walkingas viewed from ten di�erent viewing directions. Theangles include walking perpendicular to the camera(towards and away from it). In this case 6 principalcomponents are needed to capture 90% of the varia-tions in the motion trajectory of multi-viewpoint ob-servation of walking.A set of 44 sequences of people walking in di�erentdirections were used for testing. The model of multi-view walking was constructed from the walking pat-tern of one individual while the testing involved eightsubjects. The �rst six activity basis were used. Theconfusion matrix for the recognition of 44 instances of
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Activity # Training Seq. # Test Seq.Walking 7 15Line-Walking 7 28Marching 7 11Walking to Kick 7 12Table 2: List of activities and the number of occurrenceof each in training and recognitionActivity Walk Line-Walk Walk. to Kick MarchWalk 11 3 3Line-Walk 3 24 1Walk to Kick 12March 1 1 7Total 15 28 12 11Table 3: Confusion matrix for recognition resultsTable 2 shows the total number of activities used forboth modeling and recognition. The training instancesof activities were used to construct the activity basisfor the four activities. This activity basis is used inthe testing stage on new instances of these activitiesin which new performers and performances were em-ployed.The cumulative variability captured by the princi-pal components for 28 instances of four activities showsthat the �rst three principal components capture about60% of the variation while the fourth principal compo-nent captures only 4% of the variation. In the follow-ing recognition experiments we use 15 activity basis tocapture about 90% of the variations.Table 3 shows the confusion matrix for recognitionof a set of 66 test activities. These activities were per-formed by some of the same people who were used formodel construction as well as new performers. Varia-tions in performance were accounted for by the a�netransformation. Up to 30% speed-up or slow-down aswell as up to 15 frames of temporal shift were ac-counted for by the a�ne transformation used in thematching.5.4 Modeling and Recognition of SpeechIn this section we demonstrate the modeling and recog-nition of speech from visual information using opti-cal ow measurements computed over long image se-quences.The training set for this experiment consists of 130image sequences containing a single speaker who uttersthirteen letters ten times (Figure 8). The duration ofeach utterance is 25 frames. We computed the imagemotion for each sequence in the training set using arobust optical ow algorithm [2]. The robust methodis essential as it allows violations of the brightnessconstancy assumption that occur due to the appear-ance/disappearance of the teeth, tongue, and mouthcavity. We then randomly chose a subset of 793 ow�elds from the training set of 3120 ow �elds and de-
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Figure 8: A few frames from a speech sequenceFigure 9: First eight basis ow �elds computed byPCA. They account for 90% of the variance in the 3120training ow �elds.rived a low-dimensional representation using principalcomponent analysis (for a detailed description see [4]).Since the image motion of the mouth in our trainingsequence is constrained, much of the information in thetraining ow �elds is redundant and hence the singularvalues drop o� quickly. For the training data here, the�rst eight basis ow �elds account for over 90% of thevariance in the training set and are shown in Figure 9.Image motion is represented as a linear combinationof the basis ow templates: P8i=1miMi(x) (Mi is aow template de�ned over a �xed rectangular region).Using this model, we estimate the motion coe�cientsmi as described in [4]. We then use the eight motion co-e�cients computed between consecutive images to con-struct a joint temporal model for the letters. We con-sider each spoken letter to be an activity of 25 framesin duration where eight measurements are computed ateach time instant. The 130 image sequences are usedto construct a low-dimensional representation of the 13letters. These 130 sequences can be represented by asmall number of activity-basis as shown in Figure 10(bottom right). Fifteen activity basis capture 90% ofthe temporal variation in these sequences.Figure 10 shows the eight recovered parameters (i.e.,the motion-template expansion coe�cients) for eachletter throughout a single image sequence using a testsequence not in the training set. This �gure illustratesthe complexity of the modeling and recognition of thislarge data set.For the testing of recognition performance, we use 10new data sets of the same subject repeating the same13 utterances. A total of 130 sequences were processed.For each two consecutive frames in the test sequenceswe computed the linear combination of the motion-
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nLetter M Variation capturedFigure 10: The eight coe�cients of the motion-templates computed for each of 13 letters during a com-plete utterance. Cumulative variation captured by 130basis vectors of the 130 sequences (bottom left graph)templates that best describes the intensity variation(see [4]) and use these parameters in recognition.The confusion matrix for the test sequences is shownin Table 4. The columns indicate the recognized letterrelative to the correct one. Each column sums to 10,the number of each letter's utterances. The confusionmatrix indicates that 58.5% correct classi�cation wasachieved. When the recognition allowed the correct let-ter to be ranked second in the matching the success rateincreased to 69.3%. Recall that it is well establishedthat visual information is ambiguous for discriminatingbetween certain letters. In this set of experiments weobserve some of these confusions. Nevertheless, this ex-periment shows the e�ectiveness of the representationwe propose for modeling and recognition.
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