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Abstract

An approach for estimating composite indepen-
dent object and camera image motions is proposed.
The approach employs spatio-temporal flow mod-
els learned through observing typical movements of
the object, to decompose itmage motion into inde-
pendent object and camera motions. The spatio-
temporal flow models of the object motion are rep-
resented as a set of orthogonal flow bases that are
learned using principal component analysis of in-
stantaneous flow measurements from a stationary
camera. These models are then employed in scenes
with a moving camera to extract motion trajecto-
ries relative to those learned. The performance of
the algorithm is demonstrated on several image se-
quences of rigid and articulated bodies in motion.

1 Introduction

In recent years there has been increased interest in
tracking and estimation of rigid and non-rigid object
motion. Most approaches focused on tracking dynamic
objects viewed from a stationary camera. In this paper
we address the tracking and estimation of object mo-
tion while the camera itself is also moving. We propose
an approach that employs a model for the composite
motion of the object and camera to recover the original
motion components.

Although it may be possible, in principal, to com-
pute camera rigid motion first and then factor it out
during object motion estimation (e.g., see a related ex-
ample [10]), a recovery of the structure of both the
scene and the object are necessary to decompose the
flow over the object region into the object and camera
motion components (this was not dealt with in [10]).
This structure recovery is, itself, a very challenging
problem. Furthermore, there exists situations where
rigidity of scene structure does not hold (such as open
textureless space, scene consisting entirely of multiple
motions). In these situations this approach cannot be
employed.

Composite object and self motion can be resolved
by the human visual system equally well in textured

or textureless static environments (e.g., ball catching
indoors or in open-air while looking upward). This mo-
tivates us to explore the estimation of composite mo-
tion based only on the observed motion of the object
region alone, and disregarding the (possibly unavail-
able) motion field due to the static environment.

We note that certain object or camera motions may
lead to unresolvable ambiguities in composite motion
estimates. For example, when one views a vehicle from
a second moving vehicle (disregarding the static envi-
ronment cues) it is ambiguous whether or not the ob-
served vehicle is moving and with what direction or
speed (i.e., the well known “train motion illusion”).

Our approach makes extensive use of 2D region-
based parameterized flow models which have been em-
ployed to recover rigid [3], deformable [4] and articu-
lated [8, 12] object motions. We show how to extend
these models to estimate composite object and camera
image motions.

We make the following simplifying assumptions,

1. The decomposition of camera-object motion will be

pursued without exploiting peripheral scene infor-
mation. Therefore, we analyze the image motion
over the object region only.

2. The moving object is observed “off-line” from a sta-

tionary camera while 1t performs its typical move-
ments. This allows us to construct a view-based rep-
resentation of these types of movements.

3. A 2D image motion estimation framework is used to

describe both the object and the camera motions. As
a result, the motion trajectory model of the object is
view-point dependent. Therefore, only camera mo-
tions that do not significantly alter the appearance
of the independent object motion can be recovered.
(e.g., if the object is free falling, the camera can-
not rotate by 90 degrees so that the object appears
to move horizontally). We also assume that the ap-
pearance of the object does not change dramatically
through the sequence due to the motion of the cam-
era. For example, we assume that the camera motion
is not so large as to make an initial frontal view of a
person’s walk become a parallel view.



4. The image region corresponding to the indepen-
dently moving object is identified in the first frame of
the image sequence, perhaps by an algorithm such as
[7]. This region will be used for estimation of object
and camera motion.

In summary, while these assumptions are somewhat
restrictive, we propose and demonstrate a first step in
addressing the estimation of composite motion. We
demonstrate the performance of the approach on rigid
and articulated bodies in motion.

2 Modeling Composite Motion
Let P = (X,Y,Z) be an object point and p = (z,y)
be its projection on the image plane of the camera.
Object motion leads to flow (u°, v°) at p. The motion
of p1s also affected by camera self motion. Let the flow
resulting from the camera motion be (u°, v¢); For the
composite motion we have a brightness constancy

Iz, y,t) = Iz +u’+u’ y+o°+0°, 0+ 1). (1)

The estimation of u., u,, v. and v, is underconstrained
(one equation with four variables) and an infinite num-
ber of solutions exists unless constraints on object and
camera motions are given. Employing a neighborhood-
region flow constancy, as is typically done, does not al-
low us to separate the flow into its camera and object
components.

Let I(z,y,t),...,I(x,y,t +n) be a sequence of n 4 1
images. The brightness constancy assumption for any
time instant s,1 < s < n, result in

I(x,y,t) :I(x—i—Zuo(j)—i—Zuc
Z +Z ).t + s)

ji=1

Vs,s=1,..,n (2)

where (5= u(d), =1 v ()],
[ijl u(j), Z;Il v®(j)] are the cumulative image mo-
tion in the horizontal and vertical directions between
time instant ¢ and ¢ + s for point p due to object and
camera motions, respectively. The two, 2n long vec-
tors constructed by concatenating the horizontal and

vertical flows at each time instant Vj,j =1,...,n
O =[w(5),v"()f=1 o O=[u (), v (=

will be referred to as the motion temporal trajectories
of point p due to object and camera motions, respec-
tively. The vectors C and O define two _points in R,
Consider the separability of the sum C + O with re-
spect to the angle between the vectors as eX‘pI:essed by
é.o

the normalized scalar product cos(y) = TR

e If cos(y) = 1 then the vectors are parallel and there
are infinite decompositions of the sum into two vec-
tors C' and O. This occurs, for example, in the case
of the train motion illusion.

o If cos(y) = 0 then the vectors are orthogonal and
thus separable. If we have a model for the class from
which the vector C is constructed we can accurately
divide the sum into its correct components.

o If 0 < cos(y) < 1 then the vectors are separable
only in their orthogonal components. Specifically,
the projection of C onto O and a hyperplane per-
pendicular to O results in one component that is
parallel to O that may not be recoverable, and a
second component that is orthogonal to O and can
be fully recovered if we know the model that C is
drawn from. It is worth noticing that if there exists a
structural relationship between these two projected
components (e.g., they are of equal length) then a
full separation may again become possible. Further-
more, if the majority of the points of the vector be-
long to the perpendicular component then we will
show that we can recover the correct decomposition.

In the rest of this section we will select the represen-
tations used for C and O and discuss how these choices
impact the estimation of the two motion components.
We distinguish between two models of image motion:
general models [1, 3, 11] and learned models [5, 12].
The choices of models for use in composite motion es-
timation are given in Table 1. Using general models
for both camera and object motions leads to an under-
constrained problem as reflected by Equation (1). The
use of learned models of camera motion and general
models for object motion has potential only for rigid
objects moving in simple ways but the extension to de-
formable, articulated objects or complex rigid motion
trajectories 1s challenging since these motions are diffi-
cult to represent analytically. The case of both learned
object and camera motions is a simplification, as will
be discussed later in this paper, of the general camera
motion and learned object motion models addressed
below.

2.1 Camera Motion Model

We employ the standard conventions [9] for represent-
ing the spatio-temporal variation of the optical flow as
the camera moves in a static scene. Assume a camera
moving in a static scene with instantaneous 3D trans-
lational velocity (T,T,,7.) and rotational velocity
(Qg, 8y, 8,) relative to an external coordinate system
fixed with respect to the camera. A textured element P
in the scene with instantaneous coordinates (X,Y, 7)
will create an optical flow vector (u°, v®) where u® and



|| | Learned Models of Object Motion | General Models of Object Motion ||

Learned Models of Camera Motion | Future work

Limited to simple object motions

General Models of Camera Motion

Developed in this paper

Underconstrained

Table 1: Estimation strategies for composite object and camera motions

Figure 1: The motion and geometry of the camera.

v® are the horizontal and vertical instantaneous veloc-
itles

u’ = Quaey — Q1+ xz) +Qy— Ty —Tyx)/Z

v¢ = Qu(1+y*) — Qay — Qz— (T, — T.y)/Z  (3)

Here, (#,y) are the image coordinates of (X,Y, 7) rel-
ative to a coordinate system in which the positive 7 is
aligned with the line of sight of the camera (see Fig-
ure 1). Consider an image region R that corresponds
to a stationary object represented by a set of points
P;,i = 1,...,M and instantaneous optical flow vectors
(u®,v®). Assume that the object points are approxi-
mately at a constant distance from the camera, Zy. In
this case it is well known that the flow measured over
the region R can be modeled by an eight parameter
model,

u(z,y) = ag+arx—+ ay+ agx? + arxy
vi(x,y) = az+ asx + asy+ agry +ary’  (4)
0o=—-8Qy —T,/Zy a1 =T, /Z
as =, a3:Qx—Ty/Z0
ag = —£2, as = 1%/ Zo
ag = —€y a7 =8,

These eight parameters are estimated by pooling the
motion of many points in R into an overconstrained
system that can be effectively solved.

We allow general camera motion but do assume that
the camera motion, and so the camera-induced flow, 1s
constant™ over the temporal window of computation
(i.., s = 1,...,n). This can be simply expressed as

u(s) = u(l) o°(s)=v°(1) Vs,s=1,...n

*A constant acceleration model can easily be substituted [11].

2.2 Learned Object Motion Models

Let (u°(s),v°(s)) be the horizontal and vertical instan-
taneous image velocity of the object point (x,y) be-
tween frames (1 +s—1) and (¢ +s). The temporal-flow
vector created by the concatenation [u°(s),v°(s)]?-,
includes 2n elements and 1s called a flow trajectory.
Temporal-flow models can be constructed by apply-
ing principal component analysis to exemplar flow tra-
jectories. So, the values of [u(s),v°(s)]?_, are ap-
proximated by a linear combination of a temporal-flow
basis-set of 1 x 2 x n vectors, U;. The flow vector
€ = [u°(s),v%(s)]7=; can be reconstructed using

6—ZCIUI (5)

where ¢; 1s the expansmn coefficient of the U;-th
temporal-flow basis vector; ¢ is the number of vectors
used as the basis set (see [12]).

2.3 A Composite Motion Model

Expanding Equation (2) using a Taylor series approxi-
mation (assuming smooth spatial and temporal inten-
sity Varsiations) and dropping terms results in

0=I",> (u’(j)+u(j)+1* yZ () +sI*: (6)

ji=1

where I° is the s-th frame (forward in time relative to
I) of the sequence, and I°;, I*, and I*; are the spatial
and temporal derivatives of image I° relative to .

Equation (6) is ordinarily solved using an error min-
imization procedure with a robust error norm [3],
p(x,0.) (0. is a scale parameter) of the flow over a
very small neighborhood, R, of (#, y), We have n equa-
tions of the form of Equation (6), one for each time
instant. The time-genemlized error 1is defined as

Z Yoo Z °() +u(j)) +

s= 1(xy)ER j=1

yZ

Using explicitly the camera and object motion models
Equation (7),can now be rewritten as:

Ep(u,v) =

‘@) +sl o) (7)

q

Ep(u,v) = Z Z [IPe 1%y chm m,j+
s=1 (¢,y)ER j=1lm=1
n+s q

+SI 15 Ue)

S Y Y mz+Z

j=1 j=n+1lm=1

(8)



where []7 is the transpose of the temporal-flow vector.

It should be noted that in the case of an active cam-
era with known motion, it would be possible to com-
pute a camera temporal-flow basis set and use 1t in-
stead of the general camera model used here. In this
case, as long as the camera and object basis vectors are
linearly independent we can unambiguously decompose
the two motion components. Ambiguity arises when
any of the camera bases is linearly dependent on the
object bases (or vice versa). In the remainder of this
paper we employ the general camera model.

3 Parameterized Composite Motion

Recall that the flow constraint given in Equation (7) as-
sumes constant flow over a small neighborhood around
the point (x,y). Over larger neighborhoods, a more
accurate model of the image flow is provided by low-
order polynomials [1]. For example, the planar motion
model is an approximation to the flow generated by a
plane moving in 3-D under perspective projection,

v’ = xp” 9)
. 1 2z y 0 0 0 2z zxy
X(l‘,y) - 0 0 0 1 =z Yy xy yZ )
P = [ ag @1 as das a4 ds GAg Qg ]

where a;’s are constants and (U, V) is the instanta-
neous velocity vector. To exploit the economy of pa-
rameterized models, we re-formulate the flow-bases
models to learn the temporal evolution of the param-
eters of the planar model instead of the flow values.
Specifically, consider the parameters a; to be functions
of s sothal  p(s) = ai(s)]q (10)
where P(s) are the image motion parameters computed
between time instant s — 1 and s.
Equation (8) can be rewritten as

- Yo

5

([ 1 )X PONT +

s=1 (x y)ER j:l
[Zu Zvc Y+ sl 0.)  (11)
ji=1 ji=1

where R denotes the region over which the planar mo-
tion model is applied. Notice that the term 2;21 P(j)
requires proper region registration between time in-
stants. P(s), s = 1,...,n, can be represented by a
linear combination of basis vectors in a manner similar
to the temporal-flow representation developed earlier.
Each basis vector, L; is a vector of size 8 * n since it
generates the eight parameters for each time instant s.
We can write [P(s)]7_, as the following sum
q

e=T[e(i)]j=1,. 8+n = [Z ¢iLijli=1,. sen (12)

i=1

Ep(u,v)=Y" 32 plll' 171X

where ¢; 1s the expansion coefficient of the L; temporal-
parameter basis vector. Equations (11) and (8) can

s 4
[ZZCiLi’j’ ceny

now be rewritten as
n

s=1 (z,y)ER j=1l4i=1
Tn+s q s s
S YL ) S )l o) (13)
j=7"n+1i=1 ji=1 ji=1

4 Computation Algorithm

Object and camera motions can be uniquely decom-
posed based on Equation (13) only when the spatio-
temporal motion trajectories of the camera and object
are separable (i.e., the trajectories of the motion models
are linearly independent). First it is worth exploring
how well we can recover the coefficients from the sum
of the flows. Let us consider the simplified case of a
single basis vector O that represents the object mo-
tion (this is a 1 x 8 n for the case of a single planar
region in motion). Let 66 denote the actual flow of
the region due to independent motion, and let C be
the unknown camera motion. Consider the problem of
estimating the coefficient « that reflects the amount
of independent motion in the image sequence that has
a combined motion 66 + C. Estimation of a can be
posed as minimizing,

E = |la0 — (30 + C)|” (14)

The solution to Equation (14) is given by

€] cos()

a=p+ =
o]

(15)

where 7 1s the angle between C and O. Recall that the
eigenvectors O are orthonormal, therefore [|0]| = 1.
Equation (15) simply states that we can recover «
with an error equal to the projected component of
the camera motion onto the object motion (the term
Iteil cos(y)). This may look discouraging since C and
O will typically not be orthogonal. However, the in-
corporation of a robust error norm instead of least
squares allows us to relax the orthogonality require-
ment. Specifically, consider a robust formulation of
Equation (14) as follows

o]

*1N

E =Y pal; — (80, + C;),00) (16)

.
1
-

Furthermore, consider the two components of C_", cL
orthogonal to O and CIl parallel to O. Consider the
first case in which the majority (in a robust estimation



sense) of points in the vector c belong to C. In this
case, the estimate of « is accurate since the majority of
the points in C are orthogonal to 0. Asa by-product,
the Cll can be determined from a. In the second case
the “majority” of points in the vector C belong to C_"”;
in this case the recovered « is the summation of two lin-
early dependent motions and therefore the motions are
wnseparable. Since robust estimators are able to over-
come about 35% of the points being outliers, we can
tolerate linear-dependence of up to 35% of the points
and expect accurate recovery.

The computation procedure for Equation (13) is
accompanied by a spatial coarse-to-fine strategy (for
more information see [2]). Minimizing Equation (13)
can either be done simultaneously for all parameters

(ie., €1,...,¢q and ag, ..., a7) or, alternatively, comput-
ing ci, ..., ¢q first, then warping the image sequence ac-
cordingly before computing ag, ..., a7. Since the cam-

era model may be able, in some cases of planar objects,
to account for object motion with the “assistance” of
the robust error norm (e.g., a planar region moving
with low acceleration) we chose a modified version of
the latter alternative. Specifically, the minimization
is initially started at the coarsest level of the pyramid
without a camera motion model so that a linear combi-
nation of trajectories (in the multi-dimensional space
of basis flow vectors) relative to the learned object mo-
tion is recovered. Then, the residual image motion in
the sequence (after compensating for object motion by
spatio-temporally warping the image regions through-
out the sequence) is fit with the general camera model
by minimizing the residual error. At subsequently finer
levels of the pyramid, a refinement of these estimates
is carried out similarly, after spatio-temporal warping
based on the estimates from the coarse level, by first
accounting for object motion and then camera-motion.

The bias of the algorithm towards accounting for
object motion is motivated by our assumption that
the object motion is more “constrained” than the cam-
era motion and therefore it provides a better starting
point for the minimization. The minimization steps
for the object and camera motion parameters employ
the Graduated-non-Convexity and a gradient descent
(simultaneous-over-relaxation) algorithm as described

in [3, 6].

5 Rigid Motion Experiment

We demonstrate learning the flow trajectory model of

a book falling in an 1mage sequence and the recovery

of object and camera motions of different instances of

book falling in new sequences. Learning the temporal-

flow model is performed as follows:

e The area corresponding to the book is manually seg-
mented in the first frame of the sequence.

ama nunber Fram N O

Figure 2: Four frames of a falling book tracked by
a temporal-flow model (top rows), the horizontal and
vertical velocities components of the learned basis-
vector (left and center, bottom row) and the recov-
ered expansion coefficient, ¢y, through out the sequence
(right, bottom row).

e The image motion parameters of this area are esti-
mated for 40 frames assuming a planar model (flow
estimation is carried out between consecutive images
only).

e A basis set for the temporal-flow parameters 1s com-
puted on the four non-overlapping groups of 10 con-
secutive instantaneous flow vectors. The resulting
flow bases describe the flow trajectories for 10 frames
at a time.

In this experiment the first eigenvalue captured 99.9%

of the information among the 4 data-sets, as one might

expect for such a uniform motion. Therefore, a single
eigenvector is used in the motion estimation stage.
The basis vector is used to compute the coefficient
using Equation (13) for the whole sequence. The tem-
poral computation window is 8 frames and could be as

much as 10 frames using this flow basis set. Figure 2

shows the results of tracking the book with a stationary

camera using the temporal-flow model. The graphs in
the left and middle show the value of ag(s) and as(s)

(for s = 1...10) of the flow-vector used in estimation.

While ap(s) is nearly zero (corresponding to little hor-

izontal motion), the vertical motion component as(s)

is linear. The right side graph shows the estimated co-
efficient ¢y throughout the long image sequence. This
coefficient grows linearly, which is what one would ex-
pect since the motion has constant acceleration.
Figure 3 shows the results of composite motion esti-
mation of a book fall while the camera is translating to
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Figure 3: Frames from an image sequence of a book
falling while the camera is moving horizontally and the
tracked book region (top and middle rows). The hor-
izontal and vertical translations of the book and the
camera are shown in the bottom row (Red and Black
plots are for camera and book, respectively).

the right. The bottom left graph shows the recovered
horizontal velocities of the book and camera. As ex-
pected the book falling leads to zero horizontal speed,
while the camera moves at a constant speed of about
1.4 pixels per frame. The bottom right graph shows
that the camera’s vertical motion is very close to zero
while the book’s speed increases linearly due to grav-
ity. Towards the end of the sequence the accumulation
of errors decreases the accuracy of the estimates.
Figure 4 shows the results for another book fall in
which the camera is moving eway from the book. The
graphs in the third row show the recovered horizontal
and vertical velocities of the book and camera. The
book velocities are close to what 1s expected while the
camera has some horizontal velocity component. The
bottom row graphs are for the divergence and deforma-
tion components. Clearly the book 1s shrinking in size
at a linear rate (then accelerated rate) as the negative
divergence indicates. Moreover, since the falling book
is rotating slightly away from the camera, there 1s a
measureable deformation in the horizontal direction.

6 Articulated Human Motion

A set of samples of the spatio-temporal flow values
of a human spanning one entire period of “walking”
are modeled. The motion parameters of all the body
parts are concatenated into one vector that captures
at once the motion of five continuously visible body
parts. Applying this model to a new sequence of the

2110 2140 2170 2200

2230

& oo

Figure 4: A few frames from a long image sequence
of a book falling while the camera is moving away in
depth and the tracked book region (top and second
rows). The horizontal and vertical translations (third
row) and the deformation and divergence parameters
of the book and the camera are shown in the bottom
row (Red and Black plots are for camera and book,
respectively).

articulated object motion requires temporally “regis-

tering” the model to the observation at the initial time

to. In the experiments presented in this section, we
time-register sequences manually by starting the esti-
mation at the beginning of a walking cycle.

Similar to the rigid examples, we assume that:

e The body is manually segmented into five parts in
the first frame.

e People are moving at a similar viewing angle with
respect to the camera during the training and test-
ing.

e A single activity, such as “walking,” is learned and
tracked. The stage of the “walking” cycle of the first
frame of the sequence is manually determined.

e Walking speed is approximately the same during
learning and execution.

Learning the “walking” cycle temporal-flow model is
performed by first employing the algorithm of Ju et al.
[8] to compute each region’s motion parameters during



the observed cycle of the activity. Then, the motion
parameters of the activity cycles of several people are
used to derive the basis-set of temporal-flows of the
activity. It is worth noting that although the basis-
vectors are computed for a whole cycle of “walking”
the instantaneous motion recovery is conducted using
a small temporal window (typically 6-10 frames). The
five parts are tracked using Equation (13); the body
parts are treated as a single object with individual mo-
tion parameters for each part.

Figure 5 displays a few frames of a walking sequence
from the training set of one subject with the five-part
body tracking as in [8]. Also, three illustrative flow
parameters are shown, namely the horizontal, vertical
and image rotation of the five body parts. In learn-
ing the model from ten people’s gait, the first basis
vector accounts for about 67% of the variations and
reflects very clearly the “walking” cycle. The next 4
basis vectors capture about 23% of the variations and
capture individual variations and some differencies in
image acquisition conditions.

Figure 6 shows the results of composite motion esti-
mation for a new instance of walking of a subject using
only the first basis-vector of the spatio-temporal flow
while the camera is translating vertically. The bottom
row shows the horizontal, vertical translations and the
curl of the five body parts and the camera. As re-
covered, the camera has zero horizontal velocity and
an initial downward vertical translation due to upward
camera motion (frames 2045-2090) after which the op-
posite occurs. No camera rotation was measured. No-
tice the close similarity between the measurement of
the five body parts relative to the graphs in Figure 5.
Figure 7 shows the results of composite motion estima-
tion for a new instance of walking of a subject while
the camera is rotating clockwise around an axis off its
center. Since the rotation angles are small they are of-
ten substituted by horizontal and vertical translations.
Otherwise, the performance is similar to that shown in

Figure 6. 7 Summary

The approach for decomposing camera and object im-
age motions advances current research on tracking and
estimation of object motion. Image motion decomposi-
tion is pursued in a direct manner without employing
secondary motion clues. Specifically, progressive so-
lution by first estimating camera motion (e.g., as the
dominant motion [10]) and then object motion is re-
placed by direct association of image motion in the
object region to object typical-motion trajectories and
camera model.

Pre-learned object-typical motions are used to sep-
arate the sources of image motion. The problem is
transformed into finding the motion parameters in the

subspace of object motions and the motion parameters
of the camera.

The separability of camera and object motions is
most challenging when these motions are linearly de-
pendent in a subspace R™ of R?. Qur robust formula-
tion of the error minimization leads to the observation
that we can recover the correct components as long as
the orthogonal subspace (i.e., R?"™") is the “major-
ity” component (in a robust estimation sense). The
reason 1s that the orthogonal component can be recov-
ered and will itself determine the linearly dependent
components by the implicit exploitation of their cou-
plings through the basis vectors. In cases where the
linearly dependent subspace is too large, recovery is
not possible using our current formulation. It remains
open whether other constraints can be employed in this
case.

, References . , ,
[1] Adiv G. Determining three-dimensional motion

and structure from optical flow generated by sev-
eral moving objects. PAMI, 7(4), 1985, 384-401.

[2] J.R. Bergen, P. Anandan, K.J. Hanna and R. Hin-
gorani. Hierarchical model-based motion estima-
tion. ECCV-92, 1992, 237-252.

[3] M. Black and P. Anandan. The robust estimation
of multiple motions: Parametric and piecewise-
smooth flow fields. Computer Vision and Image
Understanding, 63(1), 1996, 75-104.

[4] M. Black and Y. Yacoob. Tracking and recogniz-
ing rigid and non-rigid facial motions using local
parametric models of image motions. IJCV, 25(1),
1997, 23-48.

[6] M. Black, Y. Yacoob, A. Jepson and D. Fleet,
Learning parameterized models of image motion.
IEEE CVPR, 1997, 561-567.

[6] A.Blake and A. Zisserman. Visual Reconstruction
MIT Press, 1987.

[7] C. Fermuller and Y. Aloimonos. Qualitative ego-
motion. IJCV, 15, 1995, 7-29.

[8] S. X. Ju, M. Black, and Y. Yacoob. Cardboard
people: A parameterized model of articulated im-
age motion. in Proc. Int. Conference on Face and
Gesture, Vermont, 1996, 561-567.

[9] H.C. Longuet-Higgins and K. Prazdny, The inter-
pretation of a moving retinal image. Proc. Royal
Society of London, B, 208, 1980, 385-397.

[10] T.Y. Tian and M. Shah. Recovering 3D motion of
multiple objects using adaptive Hough transform.
IEEE PAMI, Vol. 19(10), 1997, 1178-1183.

[11] Authors, Temporal multi-scale models for flow
and acceleration. CVPR 97, 921-927.

[12] Authors, Learned temporal models of image mo-

tion. ICC'V-98. Mumbai, India, 1998, 446-453.



T mn  mew  mm  am  mm am  @e amn T wmm e aww o mm am ze amo ™o w0 mw  mm  am e He am;
ame number .

rame b "

Figure 5: Tracking subject walking using the cardboard tracking [8]. The computed horizontal, vertical and image
rotation of the five body parts, (torso (magenta), thigh (black), calf (red), foot (green) and arm (blue)).
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Figure 6: Tracking subjecgmgixlfalking with vertical camera translation, recovered horizontal, vertical and image
rotation of the five body parts (colors as above4camera (in cayan).
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Figure 7: Tracking subject walking with camera rotation.



