
Estimation of Composite Object and Camera Image MotionYaser Yacoob and Larry DavisComputer Vision LaboratoryUniversity of MarylandCollege Park, MD 20742AbstractAn approach for estimating composite indepen-dent object and camera image motions is proposed.The approach employs spatio-temporal ow mod-els learned through observing typical movements ofthe object, to decompose image motion into inde-pendent object and camera motions. The spatio-temporal ow models of the object motion are rep-resented as a set of orthogonal ow bases that arelearned using principal component analysis of in-stantaneous ow measurements from a stationarycamera. These models are then employed in sceneswith a moving camera to extract motion trajecto-ries relative to those learned. The performance ofthe algorithm is demonstrated on several image se-quences of rigid and articulated bodies in motion.1 IntroductionIn recent years there has been increased interest intracking and estimation of rigid and non-rigid objectmotion. Most approaches focused on tracking dynamicobjects viewed from a stationary camera. In this paperwe address the tracking and estimation of object mo-tion while the camera itself is also moving. We proposean approach that employs a model for the compositemotion of the object and camera to recover the originalmotion components.Although it may be possible, in principal, to com-pute camera rigid motion �rst and then factor it outduring object motion estimation (e.g., see a related ex-ample [10]), a recovery of the structure of both thescene and the object are necessary to decompose theow over the object region into the object and cameramotion components (this was not dealt with in [10]).This structure recovery is, itself, a very challengingproblem. Furthermore, there exists situations whererigidity of scene structure does not hold (such as opentextureless space, scene consisting entirely of multiplemotions). In these situations this approach cannot beemployed.Composite object and self motion can be resolvedby the human visual system equally well in textured

or textureless static environments (e.g., ball catchingindoors or in open-air while looking upward). This mo-tivates us to explore the estimation of composite mo-tion based only on the observed motion of the objectregion alone, and disregarding the (possibly unavail-able) motion �eld due to the static environment.We note that certain object or camera motions maylead to unresolvable ambiguities in composite motionestimates. For example, when one views a vehicle froma second moving vehicle (disregarding the static envi-ronment cues) it is ambiguous whether or not the ob-served vehicle is moving and with what direction orspeed (i.e., the well known \train motion illusion").Our approach makes extensive use of 2D region-based parameterized ow models which have been em-ployed to recover rigid [3], deformable [4] and articu-lated [8, 12] object motions. We show how to extendthese models to estimate composite object and cameraimage motions.We make the following simplifying assumptions,1. The decomposition of camera-object motion will bepursued without exploiting peripheral scene infor-mation. Therefore, we analyze the image motionover the object region only.2. The moving object is observed \o�-line" from a sta-tionary camera while it performs its typical move-ments. This allows us to construct a view-based rep-resentation of these types of movements.3. A 2D image motion estimation framework is used todescribe both the object and the cameramotions. Asa result, the motion trajectory model of the object isview-point dependent. Therefore, only camera mo-tions that do not signi�cantly alter the appearanceof the independent object motion can be recovered.(e.g., if the object is free falling, the camera can-not rotate by 90 degrees so that the object appearsto move horizontally). We also assume that the ap-pearance of the object does not change dramaticallythrough the sequence due to the motion of the cam-era. For example, we assume that the camera motionis not so large as to make an initial frontal view of aperson's walk become a parallel view.



4. The image region corresponding to the indepen-dently moving object is identi�ed in the �rst frame ofthe image sequence, perhaps by an algorithm such as[7]. This region will be used for estimation of objectand camera motion.In summary, while these assumptions are somewhatrestrictive, we propose and demonstrate a �rst step inaddressing the estimation of composite motion. Wedemonstrate the performance of the approach on rigidand articulated bodies in motion.2 Modeling Composite MotionLet P = (X;Y; Z) be an object point and p = (x; y)be its projection on the image plane of the camera.Object motion leads to ow (uo; vo) at p. The motionof p is also a�ected by camera self motion. Let the owresulting from the camera motion be (uc; vc); For thecomposite motion we have a brightness constancyI(x; y; t) = I(x + uc + uo; y + vc + vo; t+ 1): (1)The estimation of uc; uo; vc and vo is underconstrained(one equation with four variables) and an in�nite num-ber of solutions exists unless constraints on object andcamera motions are given. Employing a neighborhood-region ow constancy, as is typically done, does not al-low us to separate the ow into its camera and objectcomponents.Let I(x; y; t); :::; I(x; y; t+ n) be a sequence of n + 1images. The brightness constancy assumption for anytime instant s; 1 � s � n, result inI(x; y; t) = I(x + sXj=1uo(j) + sXj=1 uc(j);y + sXj=1 vo(j) + sXj=1 vc(j); t+ s) 8s; s = 1; :::; n (2)where [Psj=1 uo(j);Psj=1 vo(j)],[Psj=1 uc(j);Psj=1 vc(j)] are the cumulative image mo-tion in the horizontal and vertical directions betweentime instant t and t + s for point p due to object andcamera motions, respectively. The two, 2n long vec-tors constructed by concatenating the horizontal andvertical ows at each time instant 8j; j = 1; :::; n~O = [uo(j); vo(j)]nj=1 ; ~C = [uc(j); vc(j)]nj=1will be referred to as the motion temporal trajectoriesof point p due to object and camera motions, respec-tively. The vectors ~C and ~O de�ne two points in R2n.Consider the separability of the sum ~C + ~O with re-spect to the angle between the vectors as expressed bythe normalized scalar product cos() = ~C�~Ojj~Cjj�jj~Ojj :

� If cos() = 1 then the vectors are parallel and thereare in�nite decompositions of the sum into two vec-tors ~C and ~O. This occurs, for example, in the caseof the train motion illusion.� If cos() = 0 then the vectors are orthogonal andthus separable. If we have a model for the class fromwhich the vector ~C is constructed we can accuratelydivide the sum into its correct components.� If 0 < cos() < 1 then the vectors are separableonly in their orthogonal components. Speci�cally,the projection of ~C onto ~O and a hyperplane per-pendicular to ~O results in one component that isparallel to ~O that may not be recoverable, and asecond component that is orthogonal to ~O and canbe fully recovered if we know the model that ~C isdrawn from. It is worth noticing that if there exists astructural relationship between these two projectedcomponents (e.g., they are of equal length) then afull separation may again become possible. Further-more, if the majority of the points of the vector be-long to the perpendicular component then we willshow that we can recover the correct decomposition.In the rest of this section we will select the represen-tations used for ~C and ~O and discuss how these choicesimpact the estimation of the two motion components.We distinguish between two models of image motion:general models [1, 3, 11] and learned models [5, 12].The choices of models for use in composite motion es-timation are given in Table 1. Using general modelsfor both camera and object motions leads to an under-constrained problem as reected by Equation (1). Theuse of learned models of camera motion and generalmodels for object motion has potential only for rigidobjects moving in simple ways but the extension to de-formable, articulated objects or complex rigid motiontrajectories is challenging since these motions are di�-cult to represent analytically. The case of both learnedobject and camera motions is a simpli�cation, as willbe discussed later in this paper, of the general cameramotion and learned object motion models addressedbelow.2.1 Camera Motion ModelWe employ the standard conventions [9] for represent-ing the spatio-temporal variation of the optical ow asthe camera moves in a static scene. Assume a cameramoving in a static scene with instantaneous 3D trans-lational velocity (Tx; Ty; Tz) and rotational velocity(
x;
y;
z) relative to an external coordinate system�xed with respect to the camera. A textured element Pin the scene with instantaneous coordinates (X;Y; Z)will create an optical ow vector (uc; vc) where uc and



Learned Models of Object Motion General Models of Object MotionLearned Models of Camera Motion Future work Limited to simple object motionsGeneral Models of Camera Motion Developed in this paper UnderconstrainedTable 1: Estimation strategies for composite object and camera motions
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xxy �
y(1 + x2) + 
zy � (Tx � Tzx)=Zvc = 
x(1 + y2)� 
yxy � 
zx� (Ty � Tzy)=Z (3)Here, (x; y) are the image coordinates of (X;Y; Z) rel-ative to a coordinate system in which the positive Z isaligned with the line of sight of the camera (see Fig-ure 1). Consider an image region R that correspondsto a stationary object represented by a set of pointsPi; i = 1; :::;M and instantaneous optical ow vectors(uc; vc). Assume that the object points are approxi-mately at a constant distance from the camera, Z0. Inthis case it is well known that the ow measured overthe region R can be modeled by an eight parametermodel,uc(x; y) = a0 + a1x+ a2y + a6x2 + a7xyvc(x; y) = a3 + a4x+ a5y + a6xy + a7y2 (4)a0 = �
y � Tx=Z0 a1 = Tz=Z0a2 = 
z a3 = 
x � Ty=Z0a4 = �
z a5 = Tz=Z0a6 = �
y a7 = 
xThese eight parameters are estimated by pooling themotion of many points in R into an overconstrainedsystem that can be e�ectively solved.We allow general camera motion but do assume thatthe camera motion, and so the camera-induced ow, isconstant� over the temporal window of computation(i.e., s = 1; :::; n). This can be simply expressed asuc(s) = uc(1) vc(s) = vc(1) 8s; s = 1; :::; n:�A constant accelerationmodel can easily be substituted [11].

2.2 Learned Object Motion ModelsLet (uo(s); vo(s)) be the horizontal and vertical instan-taneous image velocity of the object point (x; y) be-tween frames (t+s�1) and (t+s). The temporal-owvector created by the concatenation [uo(s); vo(s)]ns=1includes 2n elements and is called a ow trajectory.Temporal-ow models can be constructed by apply-ing principal component analysis to exemplar ow tra-jectories. So, the values of [uo(s); vo(s)]ns=1 are ap-proximated by a linear combination of a temporal-owbasis-set of 1 � 2 � n vectors, Ul. The ow vector�e = [uo(s); vo(s)]ns=1 can be reconstructed using�e = qXl=1 clUl (5)where cl is the expansion coe�cient of the Ul-thtemporal-ow basis vector; q is the number of vectorsused as the basis set (see [12]).2.3 A Composite Motion ModelExpanding Equation (2) using a Taylor series approxi-mation (assuming smooth spatial and temporal inten-sity variations) and dropping terms results in0=Isx sXj=1(uo(j)+uc(j))+Isy sXj=1(vo(j)+vc(j))+sIst (6)where Is is the s-th frame (forward in time relative toI) of the sequence, and Isx; Isy and Ist are the spatialand temporal derivatives of image Is relative to I.Equation (6) is ordinarily solved using an error min-imization procedure with a robust error norm [3],�(x; �e) (�e is a scale parameter) of the ow over avery small neighborhood, R, of (x; y), We have n equa-tions of the form of Equation (6), one for each timeinstant. The time-generalized error is de�ned asED(u; v) = nXs=1 X(x;y)2R �(Isx sXj=1(uo(j) + uc(j)) +Isy sXj=1(vo(j) + vc(j)) + sIst; �e) (7)Using explicitly the camera and object motion modelsEquation (7) can now be rewritten as:ED(u; v) = nXs=1 X(x;y)2R �([Isx Isy][ sXj=1 qXm=1 cmUm;j+sXj=1 uc(j); n+sXj=n+1 qXm=1 cmUm;j+ sXj=1 vc(j)]T+sIst; �e) (8)



where [ ]T is the transpose of the temporal-ow vector.It should be noted that in the case of an active cam-era with known motion, it would be possible to com-pute a camera temporal-ow basis set and use it in-stead of the general camera model used here. In thiscase, as long as the camera and object basis vectors arelinearly independent we can unambiguously decomposethe two motion components. Ambiguity arises whenany of the camera bases is linearly dependent on theobject bases (or vice versa). In the remainder of thispaper we employ the general camera model.3 Parameterized Composite MotionRecall that the ow constraint given in Equation (7) as-sumes constant ow over a small neighborhood aroundthe point (x; y). Over larger neighborhoods, a moreaccurate model of the image ow is provided by low-order polynomials [1]. For example, the planar motionmodel is an approximation to the ow generated by aplane moving in 3-D under perspective projection,[UV ]T = XPT (9)X(x; y) = � 1 x y 0 0 0 x2 xy0 0 0 1 x y xy y2 � ;P = � a0 a1 a2 a3 a4 a5 a6 a7 �where ai's are constants and (U; V ) is the instanta-neous velocity vector. To exploit the economy of pa-rameterized models, we re-formulate the ow-basesmodels to learn the temporal evolution of the param-eters of the planar model instead of the ow values.Speci�cally, consider the parameters ai to be functionsof s, so that P(s) = [ai(s)]7i=0 (10)where P(s) are the imagemotion parameters computedbetween time instant s� 1 and s.Equation (8) can be rewritten asED(u; v) = nXs=1 X(x;y)2R �([IsxIsy](X[ sXj=1P(j)]T +[ sXj=1uc(j) sXj=1 vc(j)]T ) + sIst; �e) (11)where R denotes the region over which the planar mo-tion model is applied. Notice that the termPsj=1P(j)requires proper region registration between time in-stants. P(s), s = 1; :::; n, can be represented by alinear combination of basis vectors in a manner similarto the temporal-ow representation developed earlier.Each basis vector, Li is a vector of size 8 � n since itgenerates the eight parameters for each time instant s.We can write [P(s)]ns=1 as the following sum�e = [e(j)]j=1;:::;8�n = [ qXi=1 ciLi;j]j=1;:::;8�n (12)

where ci is the expansion coe�cient of the Li temporal-parameter basis vector. Equations (11) and (8) cannow be rewritten asED(u; v)= nXs=1 X(x;y)2R�([IsxIsy](X[ sXj=1 qXi=1 ciLi;j ; :::;7n+sXj=7n+1 qXi=1 ciLi;j ]T+[ sXj=1 uc(j) sXj=1 vc(j)]T )+sIst; �e) (13)4 Computation AlgorithmObject and camera motions can be uniquely decom-posed based on Equation (13) only when the spatio-temporal motion trajectories of the camera and objectare separable (i.e., the trajectories of the motionmodelsare linearly independent). First it is worth exploringhow well we can recover the coe�cients from the sumof the ows. Let us consider the simpli�ed case of asingle basis vector ~O that represents the object mo-tion (this is a 1 � 8 � n for the case of a single planarregion in motion). Let � ~O denote the actual ow ofthe region due to independent motion, and let ~C bethe unknown camera motion. Consider the problem ofestimating the coe�cient � that reects the amountof independent motion in the image sequence that hasa combined motion � ~O + ~C. Estimation of � can beposed as minimizing,E = jj�~O� (� ~O + ~C)jj2 (14)The solution to Equation (14) is given by� = � + jj~Cjj cos()jj~Ojj (15)where  is the angle between ~C and ~O. Recall that theeigenvectors ~O are orthonormal, therefore jj~Ojj = 1.Equation (15) simply states that we can recover �with an error equal to the projected component ofthe camera motion onto the object motion (the termjj~Cjj cos()). This may look discouraging since ~C and~O will typically not be orthogonal. However, the in-corporation of a robust error norm instead of leastsquares allows us to relax the orthogonality require-ment. Speci�cally, consider a robust formulation ofEquation (14) as followsE = 8�nXj=1 �(�~Oj � (� ~Oj + ~Cj); �e) (16)Furthermore, consider the two components of ~C, ~C?orthogonal to ~O and ~Ck parallel to ~O. Consider the�rst case in which the majority (in a robust estimation



sense) of points in the vector ~C belong to ~C?. In thiscase, the estimate of � is accurate since the majority ofthe points in ~C are orthogonal to ~O. As a by-product,the ~Ck can be determined from �. In the second casethe \majority" of points in the vector ~C belong to ~Ck;in this case the recovered � is the summation of two lin-early dependent motions and therefore the motions areinseparable. Since robust estimators are able to over-come about 35% of the points being outliers, we cantolerate linear-dependence of up to 35% of the pointsand expect accurate recovery.The computation procedure for Equation (13) isaccompanied by a spatial coarse-to-�ne strategy (formore information see [2]). Minimizing Equation (13)can either be done simultaneously for all parameters(i.e., c1; :::; cq and a0; :::; a7) or, alternatively, comput-ing c1; :::; cq �rst, then warping the image sequence ac-cordingly before computing a0; :::; a7. Since the cam-era model may be able, in some cases of planar objects,to account for object motion with the \assistance" ofthe robust error norm (e.g., a planar region movingwith low acceleration) we chose a modi�ed version ofthe latter alternative. Speci�cally, the minimizationis initially started at the coarsest level of the pyramidwithout a camera motion model so that a linear combi-nation of trajectories (in the multi-dimensional spaceof basis ow vectors) relative to the learned object mo-tion is recovered. Then, the residual image motion inthe sequence (after compensating for object motion byspatio-temporally warping the image regions through-out the sequence) is �t with the general camera modelby minimizing the residual error. At subsequently �nerlevels of the pyramid, a re�nement of these estimatesis carried out similarly, after spatio-temporal warpingbased on the estimates from the coarse level, by �rstaccounting for object motion and then camera-motion.The bias of the algorithm towards accounting forobject motion is motivated by our assumption thatthe object motion is more \constrained" than the cam-era motion and therefore it provides a better startingpoint for the minimization. The minimization stepsfor the object and camera motion parameters employthe Graduated-non-Convexity and a gradient descent(simultaneous-over-relaxation) algorithm as describedin [3, 6].5 Rigid Motion ExperimentWe demonstrate learning the ow trajectory model ofa book falling in an image sequence and the recoveryof object and camera motions of di�erent instances ofbook falling in new sequences. Learning the temporal-ow model is performed as follows:� The area corresponding to the book is manually seg-mented in the �rst frame of the sequence.
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oFigure 2: Four frames of a falling book tracked bya temporal-ow model (top rows), the horizontal andvertical velocities components of the learned basis-vector (left and center, bottom row) and the recov-ered expansion coe�cient, c0, through out the sequence(right, bottom row).� The image motion parameters of this area are esti-mated for 40 frames assuming a planar model (owestimation is carried out between consecutive imagesonly).� A basis set for the temporal-ow parameters is com-puted on the four non-overlapping groups of 10 con-secutive instantaneous ow vectors. The resultingow bases describe the ow trajectories for 10 framesat a time.In this experiment the �rst eigenvalue captured 99.9%of the information among the 4 data-sets, as one mightexpect for such a uniform motion. Therefore, a singleeigenvector is used in the motion estimation stage.The basis vector is used to compute the coe�cientusing Equation (13) for the whole sequence. The tem-poral computation window is 8 frames and could be asmuch as 10 frames using this ow basis set. Figure 2shows the results of tracking the book with a stationarycamera using the temporal-ow model. The graphs inthe left and middle show the value of a0(s) and a3(s)(for s = 1:::10) of the ow-vector used in estimation.While a0(s) is nearly zero (corresponding to little hor-izontal motion), the vertical motion component a3(s)is linear. The right side graph shows the estimated co-e�cient c0 throughout the long image sequence. Thiscoe�cient grows linearly, which is what one would ex-pect since the motion has constant acceleration.Figure 3 shows the results of composite motion esti-mation of a book fall while the camera is translating to
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BookFigure 3: Frames from an image sequence of a bookfalling while the camera is moving horizontally and thetracked book region (top and middle rows). The hor-izontal and vertical translations of the book and thecamera are shown in the bottom row (Red and Blackplots are for camera and book, respectively).the right. The bottom left graph shows the recoveredhorizontal velocities of the book and camera. As ex-pected the book falling leads to zero horizontal speed,while the camera moves at a constant speed of about1.4 pixels per frame. The bottom right graph showsthat the camera's vertical motion is very close to zerowhile the book's speed increases linearly due to grav-ity. Towards the end of the sequence the accumulationof errors decreases the accuracy of the estimates.Figure 4 shows the results for another book fall inwhich the camera is moving away from the book. Thegraphs in the third row show the recovered horizontaland vertical velocities of the book and camera. Thebook velocities are close to what is expected while thecamera has some horizontal velocity component. Thebottom row graphs are for the divergence and deforma-tion components. Clearly the book is shrinking in sizeat a linear rate (then accelerated rate) as the negativedivergence indicates. Moreover, since the falling bookis rotating slightly away from the camera, there is ameasureable deformation in the horizontal direction.6 Articulated Human MotionA set of samples of the spatio-temporal ow valuesof a human spanning one entire period of \walking"are modeled. The motion parameters of all the bodyparts are concatenated into one vector that capturesat once the motion of �ve continuously visible bodyparts. Applying this model to a new sequence of the
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CameraFigure 4: A few frames from a long image sequenceof a book falling while the camera is moving away indepth and the tracked book region (top and secondrows). The horizontal and vertical translations (thirdrow) and the deformation and divergence parametersof the book and the camera are shown in the bottomrow (Red and Black plots are for camera and book,respectively).articulated object motion requires temporally \regis-tering" the model to the observation at the initial timet0. In the experiments presented in this section, wetime-register sequences manually by starting the esti-mation at the beginning of a walking cycle.Similar to the rigid examples, we assume that:� The body is manually segmented into �ve parts inthe �rst frame.� People are moving at a similar viewing angle withrespect to the camera during the training and test-ing.� A single activity, such as \walking," is learned andtracked. The stage of the \walking" cycle of the �rstframe of the sequence is manually determined.� Walking speed is approximately the same duringlearning and execution.Learning the \walking" cycle temporal-ow model isperformed by �rst employing the algorithm of Ju et al.[8] to compute each region's motion parameters during



the observed cycle of the activity. Then, the motionparameters of the activity cycles of several people areused to derive the basis-set of temporal-ows of theactivity. It is worth noting that although the basis-vectors are computed for a whole cycle of \walking"the instantaneous motion recovery is conducted usinga small temporal window (typically 6-10 frames). The�ve parts are tracked using Equation (13); the bodyparts are treated as a single object with individual mo-tion parameters for each part.Figure 5 displays a few frames of a walking sequencefrom the training set of one subject with the �ve-partbody tracking as in [8]. Also, three illustrative owparameters are shown, namely the horizontal, verticaland image rotation of the �ve body parts. In learn-ing the model from ten people's gait, the �rst basisvector accounts for about 67% of the variations andreects very clearly the \walking" cycle. The next 4basis vectors capture about 23% of the variations andcapture individual variations and some di�erencies inimage acquisition conditions.Figure 6 shows the results of composite motion esti-mation for a new instance of walking of a subject usingonly the �rst basis-vector of the spatio-temporal owwhile the camera is translating vertically. The bottomrow shows the horizontal, vertical translations and thecurl of the �ve body parts and the camera. As re-covered, the camera has zero horizontal velocity andan initial downward vertical translation due to upwardcamera motion (frames 2045-2090) after which the op-posite occurs. No camera rotation was measured. No-tice the close similarity between the measurement ofthe �ve body parts relative to the graphs in Figure 5.Figure 7 shows the results of composite motion estima-tion for a new instance of walking of a subject whilethe camera is rotating clockwise around an axis o� itscenter. Since the rotation angles are small they are of-ten substituted by horizontal and vertical translations.Otherwise, the performance is similar to that shown inFigure 6. 7 SummaryThe approach for decomposing camera and object im-age motions advances current research on tracking andestimation of object motion. Image motion decomposi-tion is pursued in a direct manner without employingsecondary motion clues. Speci�cally, progressive so-lution by �rst estimating camera motion (e.g., as thedominant motion [10]) and then object motion is re-placed by direct association of image motion in theobject region to object typical-motion trajectories andcamera model.Pre-learned object-typical motions are used to sep-arate the sources of image motion. The problem istransformed into �nding the motion parameters in the

subspace of object motions and the motion parametersof the camera.The separability of camera and object motions ismost challenging when these motions are linearly de-pendent in a subspace Rw of R2n. Our robust formula-tion of the error minimization leads to the observationthat we can recover the correct components as long asthe orthogonal subspace (i.e., R2n�w) is the \major-ity" component (in a robust estimation sense). Thereason is that the orthogonal component can be recov-ered and will itself determine the linearly dependentcomponents by the implicit exploitation of their cou-plings through the basis vectors. In cases where thelinearly dependent subspace is too large, recovery isnot possible using our current formulation. It remainsopen whether other constraints can be employed in thiscase. References[1] Adiv G. Determining three-dimensional motionand structure from optical ow generated by sev-eral moving objects. PAMI, 7(4), 1985, 384-401.[2] J.R. Bergen, P. Anandan, K.J. Hanna and R. Hin-gorani. Hierarchical model-based motion estima-tion. ECCV-92, 1992, 237-252.[3] M. Black and P. Anandan. The robust estimationof multiple motions: Parametric and piecewise-smooth ow �elds. Computer Vision and ImageUnderstanding, 63(1), 1996, 75{104.[4] M. Black and Y. Yacoob. Tracking and recogniz-ing rigid and non-rigid facial motions using localparametric models of image motions. IJCV, 25(1),1997, 23-48.[5] M. Black, Y. Yacoob, A. Jepson and D. Fleet,Learning parameterized models of image motion.IEEE CVPR, 1997, 561-567.[6] A. Blake and A. Zisserman. Visual ReconstructionMIT Press, 1987.[7] C. Fermuller and Y. Aloimonos. Qualitative ego-motion. IJCV, 15, 1995, 7-29.[8] S. X. Ju, M. Black, and Y. Yacoob. Cardboardpeople: A parameterized model of articulated im-age motion. in Proc. Int. Conference on Face andGesture, Vermont, 1996, 561-567.[9] H.C. Longuet-Higgins and K. Prazdny, The inter-pretation of a moving retinal image. Proc. RoyalSociety of London, B, 208, 1980, 385-397.[10] T.Y. Tian and M. Shah. Recovering 3D motion ofmultiple objects using adaptive Hough transform.IEEE PAMI, Vol. 19(10), 1997, 1178-1183.[11] Authors, Temporal multi-scale models for owand acceleration. CVPR 97, 921-927.[12] Authors, Learned temporal models of image mo-tion. ICCV-98. Mumbai, India, 1998, 446-453.
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