
To appear in CVPR 97Temporal Multi-scale Models for Flow and AccelerationYaser Yacoob and Larry S. DavisComputer Vision LaboratoryCenter for Automation ResearchUniversity of Maryland, College Park, MD 20742, USAAbstractA model for computing image ow in image se-quences containing a very wide range of instanta-neous ows is proposed. This model integrates thespatio-temporal image derivatives from multipletemporal scales to provide both reliable and accu-rate instantaneous ow estimates. The integrationemploys robust regression and automatic scaleweighting in a generalized brightness constancyframework. In addition to instantaneous ow es-timation the model supports recovery of dense es-timates of image acceleration and can be readilycombined with parameterized ow and accelera-tion models. A demonstration of performance onimage sequences of typical human actions takenwith a high frame-rate camera, is given.1 IntroductionImage motion estimation involves relating spatial andtemporal changes in image intensity to estimates of im-age ow. Articulated and deformable motions such asthose encountered in images of humans in motion giverise to image sequences having, instantaneously, a widerange of ow magnitudes ranging from very small sub-pixel motions, whose recovery is inhibited by typicalsignal to noise constraints, to very large multiple pixelmotions that can be recovered using expensive corre-lation methods or multi-resolution approaches. Here,we focus on the problem of estimating dense image owfor image sequences in which instantaneous ows rangefrom 2-4 pixels/frame down to 1=16�1=32 pixel/frame.The practical problem, of course, is that we do notknow a priori which parts of the image are moving withwhich speed. Our solution is a scale-space like solution[11] in which we estimate image ow over a wide rangeof temporal scales, and combine these estimates (usingThe support of the Defense Advanced Research ProjectsAgency (ARPA Order No. #C635), the O�ce of Naval Research(contract N000149510521) is gratefully acknowledged

Figure 1: Pendulum movement illustrating varying ve-locities along its motion pathboth spatial and temporal constraints) using a combi-nation of robust estimation and parametric modelingas in [5].To motivate both the problem and our proposed so-lution consider a pendulum arm moving in front ofa camera. The image ow will vary depending uponthe distance of the measured point from the hangingpoint (see Figure 1). As we move towards the pendu-lum hanging point the instantaneous ow becomes verysmall and will fall in the noise range of the imaging sys-tem. As a result, two frame estimation and subsequentintegration of these ow measurements over time willbe highly noisy. In the context of human motion, thecoincidence of lip motion with body and head motion,or the calf rotation around the knee create similar scalevariations in the ow �eld.The majority of published algorithms for estimationof image ow are based on two images (for a recentsurvey see [2]). Several approaches, however, considerthe incremental estimation of ow [4, 13]; then, tem-poral continuity of the ow applied over a few images(for example, assuming constant acceleration) can im-prove the accuracy of the ow estimate. These ap-proaches are based on computations between consecu-tive images. Other approaches use velocity-tuned �l-ters (i.e., frequency-based methods) [8, 10] to computethe ow, and can be extended to ow estimation fromseveral frames. The use of scale-space theory to com-pute optical ow was recently proposed by Lindeberg[12]. The proposed algorithm focused on scale selec-tion in the spatial dimension so that di�erent size im-



Figure 2: Eight images (each two frames apart) froma long sequence of a moving armage structures lead to di�erent selection of scales forow computation. The algorithm estimates ow fromtwo images and involves spatial multi-scales.2 A Motivating ExampleWe will use scale=1 to denote ow estimation betweentwo consecutive images (i.e., the �nest temporal res-olution available),scale =2 to denote ow estimationbetween images that are two frames apart, etc. Toillustrate the limitation of image ow estimates fromany single scale we employ an image sequence of anarm moving in front of a camera. The sequence wastaken with a high-frame-rate camera (500 frames persecond) which allows us to capture the natural rapidmotion of the arm. The arm (see Figure 2) is mov-ing in a pendulum-like motion (with the hand rotat-ing around the arm during the motion) in front of alightly textured background�. Notice that there is ashadow created by the hand, leading to non-zero owestimates of the shadow as well as the arm. The arm'sintensity pattern consists of two parts: the arm itself ishighly textured (allowing better ow estimation) whilethe hand is somewhat uniform in brightness. Figure2 shows eight images from the sequence (chosen twoframes apart). While the motion of the arm betweentwo frames is very small, it will become apparent whenthe ow estimates are shown.Figure 3 shows the image ow magnitudes for sixscales (falling on a geometric scale 1,2,4,8,16, and 32frames apart). The �nest scale provides detailed es-timates of the ow magnitude at the hand but quitenoisy estimates along the arm, while the coarsest scaleresults in accurate estimates along the arm but consid-erably blurred and inaccurate estimates on the hand.�The quadrants' boundary intensity variation of the back-ground is because the video-cameraconsists of four separateA/Dbanks. As a result, ow estimation at the quadrant boundariesis inaccurate. The problem could be overcome by local gaincompensation.

Scale=1 Scale 2 Scale 4Scale=8 Scale=16 Scale=32Figure 3: Enhanced ow display to show arm estima-tion at 1,2,4,8,16 and 32 scales.3 A Multi-scale Flow ModelLet I(x; y; t) be the image brightness at a point (x; y)at time t. The brightness constancy assumption atscale s is given byI(x; y; t) = I(x + su�t; y + sv�t; t + s�t) (1)where (u; v) is the horizontal and vertical image ve-locity at (x; y), �t is small. We assume, for now,that the instantaneous velocity (u; v) remains constantduring the time span s�t (leading to a displacement(su�t; sv�t)). This assumption is less likely to holdwith the increase of scale and can lead to violationsof brightness constancy. Let the range of scales overwhich ow is to be estimated be 1; ::; n. ExpandingEquation (1) using a Taylor Series approximation (as-suming locally constant ow) and dropping terms re-sults in0 = s(Isx(x; y; t)u+ Isy(x; y; t)v + Ist(x; y; t)) (2)where Is is the s-th frame (forward in time relative toI) of the sequence, and Isx; Isy and Ist are the spatialand temporal derivatives of image Is relative to I.Since Equation (2) is underconstrained for computa-tion of (u; v), it is ordinarily posed as a minimizationof a least squares error of the ow over a very smallneighborhood, R, of (x; y), leading toE(u; v; s) = X(x;y)2R(s(Isxu+ Isyv + Ist))2 (3)We have n equations of the form of Equation (3) onefor each scale. The scale-generalized error is de�ned asED(u; v) = nXs=1 X(x;y)2R(s(Isxu+ Isyv + Ist))2 (4)



Notice that Equation (4) biases the error term towardscoarser scales due to the multiplication term s. There-fore, we normalize the error terms so that the mini-mization is in the formyED(u; v) = nXs=1 X(x;y)2R(Isxu+ Isyv + Ist))2 (5)Equation (5) gives equal weight to the error valuesof all scales. Since it is expected that at each point(x; y) the accuracy of instantaneous motion estimationwill be scale-dependent, we introduce a weight func-tion W (u; v; s) designed (see below) to minimize theinuence of residuals of the relatively inaccurate scales.Equation (5) now becomesED(u; v) = nXs=1 X(x;y)2R(W (u; v; s)(Isxu+ Isyv + Ist))2(6)Instead of the least squares minimization in Equation(6) we choose a robust estimation approach as pro-posed in [4], resulting inED(u; v) = nXs=1 X(x;y)2R �(W (Isxu+ Isyv + Ist); �e)(7)where � is a robust error norm that is a functionof a scale parameter �e. Since the weight functionW (u; v; s) should also reect the degree of accuracyof the ow estimation we rede�ne it to include a scal-ing parameter �w, W (u; v; s; �w). The choice of theweighting function W should satisfy the following con-straints:� It should take on values in the range [0::c], c typicallychosen as 1:0 for computational convenience.� For a large �w, W should approach 1.0 regardless of(u; v) and s.� Given �w, larger estimated ow (u; v) at point (x; y)should lead to higher weights for the lower scales ofthe error term Isxu+ Isyv + Ist, while a small owshould lead to higher weights of the highest scales.Figure 4 reects qualitatively the desired shape of theweighting function for a �xed �w. It illustrates theweighting as a function of scale s and ow magnitudejj(u; v)jj at (x; y). The followingGaussian function sat-is�es the above requirementsW (u; v; s; �w) = e�(s� n(�jj(u;v)jj2+1:0) )2=2�w2 (8)yThe same e�ect could have been achieved by dividing theright side of Equation (2) by s for all scales prior to errorsummation.
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SFigure 4: The weighting function as a function of s andow magnitude jj(u; v)jjwhere jj(u; v)jj2 is the squared magnitude of the cur-rent ow estimate at (x; y), and � is a constant. Noticethat when jj(u; v)jj2 << 1:0 the maximalweight occursat the highest scale n, while higher values of jj(u; v)jj2lead to a maximal weight at lower scales; speci�callythe Gaussian is centered at n�jj(u;v)jj2+1:0 . The scale pa-rameter �w determines the width of the Gaussian, andthe constants � and 1:0 can be changed to further shiftthe maximal weight scale location. The application ofthe weighting function in the estimation is as follows:in the �rst iteration, all scales are given equal weight(1.0) by selecting a large �w. Afterwords, iteratively,the estimates are re�ned by decreasing �w.This temporal multi-scale procedure is accompaniedby a spatial coarse-to-�ne strategy [3] that constructsa pyramid of the spatially �ltered and sub-sampled im-ages (for more information see [4]) and computes theow initially at the coarsest level and then propagatesthe results to �ner levels. The computational aspectsof the multi-scale model follow, generally, the approachproposed by Black and Anandan [4, 5].4 Experimental ResultsIn the following �gures we show the results of imageow computation when �w = 20:0 and is decreased ata rate of 0:85 for �ve iterations, and �e = 100:0 and isdecreased also at a rate of 0:85 for 40 iterations. Thecomputation is performed over 16 scales.Figure 5 illustrates the weights at several scales dur-ing the computation of image ow (the brighter theintensity the higher the weight; weights across scaleswere normalized in these images to allow for compar-isons). At scale=1 only the hand area is given highweights while the arm and the background are givenvery low weights. As the scale increases the weightsare increased along the arm and the background whilea decrease on the hand gradually takes place. At thehighest scale (scale = 16) the hand's weight is verylow while the arm and the background receive a highweight. Figure 6 shows the e�ect of the iterative re-



Scale=1 Scale 4 Scale 7Scale=10 Scale=13 Scale=16Figure 5: The weighting function W as computed atthe scales 1,4,7,10,13 and 16 scales (top left to bottomright respectively) expressed as an intensity image.Weight Iter=1 Weight Iter=2 Weight Iter=3Weight Iter=4 Weight Iter=5Figure 6: The weighting function W at scale 1 (�nestscale) as evolved in �ve iterations�nement of the weighting functionW for scale=1 (the�nest scale) on the relative weights for di�erent regions.The values are normalized across the �ve images to al-low comparison. Notice that the �rst iteration giveshigh weights to the hand, and the weights given to thearm and the background are somewhat signi�cant. The�fth iteration also gives high weights to the hand whilethe arm and the background have the lowest weight,and they are much lower than after the �rst iteration.Figure 7 (top and middle rows) shows graphs of theindividual scale ow magnitudes computed along a linedrawn down the center of the arm (bottom right).These graphs correspond to the scale computationsshown in Figure 3. Since the arm is approximatelymov-ing like a pendulum with the hand simultaneously ro-tating around the wrist (see Figure 10), the ow should
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deFigure 7: The ow magnitude along a line (bottomright) computed using a single scale (s = 1; 2; 4; 8; 16and 32 scales; top and middle rows), the multi-scaleow magnitudes (bottom left), and the multi-scale owmagnitudes along the line (bottom center)increase slowly along the arm then jump considerablyon the hand. This is clearly visible in these graphs.The dip in these graphs (occurring between 125-145) isa result of the intensity discontinuity of the four quad-rants of the camera. Figure 7 also shows the multi-scale ow magnitude results (bottom left). The owboundary is quite sharp and the corresponding owmagnitude along the line is shown (bottom center); itmeasures a very smooth change in the ow along thearm and signi�cant increase at the hand (with maximalow at the �nger).In order to compare the performance of single scale(scale = 1) and multi-scale ow estimation, we gener-ated a sequence of images using a synthetic ow modelwhere we have ground-truth data. Figure 8 (top) showsan image of a person during a walking activity. Thesynthetic sequence is generated by warping the imagepatch of the \calf" foreward according to a multi-scaleparameterized motionmodel for several frames (assum-ing constant velocity). The estimated multi-scale (12scales) ow magnitudes are shown (top right). A quan-titative comparison along a line on the \calf" betweenthe original ow (bottom, solid line) the single scaleow (dotted line) and the multi-scale (dashed line).The multi-scale estimate is closer to the synthetic owthan the single scale estimation. Accurate recovery ofthe ow is actually limited by interpolation side e�ects
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de (d)Figure 8: A synthetic motion example that comparesow magnitudes on a real image of a calf. The image(see (b)) was warped and the ow magnitudes along aline (see (c)) are shown as a solid line (see (d)). Theestimates of ow magnitudes using 1 and 12 scales overthe same line are shown ((d), dotted and dashed lines,respectively).in generating the synthetic motion.5 Estimation of Image AccelerationThe scale-generalized brightness constancy assumptiongiven in Equation (1) assumes constant ow at allscales. This can be extended to include accelerationmodels. Let the image ow as a function of scale s be(u(s); v(s)). Then the brightness constancy assump-tion at scale s becomesI(x; y; t) = I(x+Xs u(s)ds; y +Xs v(s)ds; t+ s) (9)As a special case, if imagemotion is assumed to be sub-ject to a constant acceleration, the ow can be givenby u(s) = x0 + x1s (10)v(s) = x2 + x3s (11)where x1 and x3 are the horizontal and vertical accel-eration terms. Note that in the context of a long se-quence this model supports a piecewise constant accel-eration assumption. If acceleration uctuations withinthe scales involved in the estimation are small or fallwithin the performance range of the robust estimator

Scale=1 Scale=3 Scale=4 Scale=6Figure 9: The weights (upper row) at scales 1, 3, 4 and6, respectively (out of 6 scales), and the owmagnitudeand vertical and horizontal accelerations (bottom row,left to right, respectively) for a falling book.(about 35%-40% outliers) this model holds. This owmodel leads to a brightness constancy assumption ofthe formI(x; y; t) = I(x+ sXi=1(x0+x1i); y+ sXi=1(x2+x3i); t+ s)(12)Using a Taylor Series expansion and dropping terms(including scale normalization) we arrive at0 = Isx(x0+x1 s + 12 )+ Isy(x2+x3 s+ 12 )+ Ist (13)The new scale-generalized error function is given byED(u; v) = nXs=1 X(x;y)2R �(W (Isx(x0 + x1 s+ 12 ) + (14)Isy(x2 + x3 s + 12 )) + Ist); �e)Figure 9 shows the dense ow and acceleration esti-mated for a book-falling sequence (see also Figure 11).The top row shows the the weighting function's val-ues assigned for each scale (normalized to enhance thecontrast). At low scales the book's region is assignedhigh weight while the background is assigned very lowweight. This is reversed as scale is increased, so atthe top scale the motion of the book is so large thatlittle weight is given to the book area. The bottomrow shows the dense velocity magnitude (left) and thevertical and horizontal accelerations (center and right,respectively). Notice that the estimated horizontal ac-celeration is almost uniformly zero.6 Parameterized Flow ModelsDense ow computation generates large data sets thatmay not be easily used in higher level vision tasks. Re-cently, it has been demonstrated that parameterized



ow models can provide a powerful tool for reason-ing about imagemotion between successive images (see[6]). The multi-scale ow estimation algorithm can beextended in a straightforward way to parameterizedmodels of image ow. In this section we describe theextension of the muti-scale framework to a�ne and pla-nar parameterized image motion models.Recall that the ow constraint given in Equation(2) assumes constant ow over a small neighborhoodaround the point (x; y). Over larger neighborhoods,a more accurate model of the image ow is given bylow-order polynomials [1]. For example, a�ne motionis given by U (x; y) = a0 + a1x+ a2y (15)V (x; y) = a3 + a4x+ a5y (16)where ai's are constants and (U; V ) is the instanta-neous velocity vector. Equation (7) now becomesED(U; V )=nXs=1 X(x;y)2A=P�(W (U; V; s; �w)(IsxU+IsyV+Ist); �e)(17)where A=P denotes the region in which the ow isassumed to be a�ne (A) or planar (P ). The mini-mization of Equation (17) results in estimates for theparameters ai. The choice of the weighting functionW is somewhat more complex here than it was pre-viously. The weighting function can be designed us-ing the current ow estimates computed by the model(U; V ). This weighting leads to di�erent weights withinthe region according to the magnitude of the ow sothat at points where the ow estimate is low the coarserscales will be more dominant while the larger ow es-timates will determine the �ner scales. Alternatively,W can be designed using the parameters of the modelai (i.e., W (�a; s; �w) where �a is the set of model pa-rameters). The former leads to a computation basedon weighting of spatio-temporal derivatives while thelatter leads to weighting of parametric models. Oncea choice for the weighting function has been made thecomputation of the parameters of the model follows theapproach proposed in [4].In the examples in this chapter we adopt the weightof parametric models. Recall that the parameters ofthe a�ne and planar models capture several aspects ofthe region's motion (see [6]). Since the translation ofthe region is of most interest the parameters a0 and a3can be substituted as jj(a0; a3)jj for jj(u; v)jj in Equa-tion (8).Figure 10 shows the results of parameterized owestimation over the hand region of the moving armover a long sequence (about 540 frames). The param-eterized ow is used to automatically track the hand
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