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Abstract

Aframework for |earning parameterized model s of op-
tical flow from image sequences is presented. A class
of motionsis represented by a set of orthogonal basis
flow fields that are computed from a training set using
principal component analysis. Many complex image
motionscan be represented by a linear combination of
a small number of these basis flows. The learned mo-
tionmodel smay be used for optical flow estimationand
for model-based recognition. For optical flow estima-
tion we describe a robust, multi-resol ution scheme for
directly computing the parameters of the learned flow
models from image derivatives. As examples we con-
sider learning motion discontinuities, non-rigid mo-
tion of human mouths, and articulated human motion.

1 Introduction

Parameterized models of optical flow address the problems
of motion estimation and motion explanation. They aid
in estimation by enforcing strong constraints on the spatial
variation of the image motion within a region. Because
these methods pool hundreds or thousands of motion con-
gtraints in a region to estimate a much smaller number of
model parameters, they generally provide accurate and sta-
ble estimates of optical flow. Likewise, the small number
of parameters provides a concise description of the image
motion that can be used for explanation or recognition. For
example, parameterized flow model s have been used to rec-
ognize facial expressionsfrom motion[7].

There are two main problemswith parameterized motion
models. First, many image regions contain multiple im-
age motionsbecause of moving occlusion boundaries, trans-
parency, reflections, or independently moving objects. A
great deal of work has been devoted to extending parameter-
ized model sto cope with these situations. The second prob-
lem isthat parameterized models make strong assumptions
about the spatial variation of the image motion withinare-
gion. Common motion models based on low-order polyno-

mials(e.g. affine motion) have limited applicability to com-
plex natural scenes.

Examples of complex motions include motion disconti-
nuities, non-rigid motion, articulated motion, and motion
“texture”’. It may be impractical to devise and use explicit
mathematical models of the motion in these cases. There-
fore, herewe*“learn” models of optical flow from examples.
Given atraining set of flow fields (see 1), we use principal
component analysis (PCA) to learn a set of basisflow fields
that can be used to approximate the training data (Fig. 2).
Individual flow fields are then represented as alinear com-
bination of the basis flows (Fig. 3). In this paper we apply
this approach to motion boundaries, the motion of a human
mouth, and the motion of human legs while walking.

To compute optical flow with alearned model we directly
estimate the coefficients of the linear combination of ba-
sis flows from derivatives of image intensity. These coeffi-
cients are estimated using arobust, coarse-to-fine, gradient-
based a gorithm. Thisprovidesaflow field that isconsi stent
with thelearned model and is optimal under the assumption
of brightness constancy. In thisway one can estimate com-
plex optical flow fields more quickly and reliably than with
conventional techniques. Moreover, if the model provides
agood description of the spatiotemporal variation of image
intensity, then one can also use the estimated coefficients of
the model for subsequent recognition/interpretation of the
image motion.

2 Redated Work

Much of the recent work on learning parameterized mod-
els of image deformation has occurred in the face recogni-
tion literatureto model the deformations between the faces
of different people[3, 9, 11, 13, 18]. Correspondences be-
tween different faces were obtained either by hand or by an
optical flow method, and were then used to learn a lower-
dimensiona model. Insomecasesthisinvolvedlearningthe
parameters of a physically-based deformable object [13]. In
other cases a basis set of deformation vectors was obtained
(e.g., see the work of Hallinan [11] on learning “Eigen-
Warps'). These methods have not been applied to the mod-



eling of image motion in natural scenes.

Related work has focused on learning the deformation
of curves or parameterized curve models [2, 16]. Sclaroff
and Pentland [16] estimated modes of deformation for sillo-
hettes of non-rigid objects. They interpolated a sparse set of
correspondences between sillohette boundariesin consecu-
tive frames to produce a basis set of flows, much like those
learned in this paper. The basis was then used to warp the
origina imagesfor synthesisand view interpolation. Unlike
our approach, they did not learn the basi s flowsfrom optical
flow data, and did not use them to estimate image motion.

In addition to optical flow estimation, we are interested
inthe use of parameterized model s for motion-based recog-
nition. Black and Yacoob [7] modeled the motion of a hu-
man face and facial features using parameterized flow mod-
els(planar, affine, and affinet+curvature). They showed how
simple models could represent arich variety of image mo-
tions, and how the motion parameters could be used to rec-
ognize facial expressions. However, their motion models
were hand-coded. In this paper we show how appropriate
models of facial feature motion can be learned.

Another application examined below is the learning of
motion models for the detection of motion discontinuities.
This application is similar to modeling step edges in static
scenes by learning a parameterized model from examples
of edges [14]. It differs from previous attempts to detect
motion discontinuitiesthat applied edge detectorsto optical
flow, checked for bimodality inlocal flow estimates, or used
energy-based methods [4, 15, 17].

3 Learning Parameterized Flow Models

Learning aparameterized model for aparticular class of mo-
tions requires that we have a “training set” of flow fields
containing representative samples of the class. For rela
tively simple classes such as motion discontinuitieswe can
generate this training set synthetically. For more complex
motions of natural objectswe will need to estimate the im-
age motion for training sequences. Since training is done
off-line, we can afford to use a computationally expensive
robust optical flow algorithm [5].

In either case, the training set from which we learn a
model of image motionisaset of p optica flow fields. For
images with s = n x m pixes, each flow field contains 2s
guantities (i.e., horizontal and vertical elements of the flow
at each pixel). For each flow field we placethe2s valuesinto
avector of length 2s by scanning the horizontal el ements of
the flow, u(x, y) in standard lexicographic order, followed
by thevertical elements, v(z, y). Thisgivesusp vectorsthat
become the columns of a2s x p matrix F.

Principa Components Analysis (PCA) of F' can then be
used to compute a low-dimensional model for the spatia
structure of the flow fields. Toward this end, the Singular

L YTy

Figure 1: Discontinuity training set. Left: model for gener-
ating synthetic flow fields. Right: samplesfromthetraining
set. The horizontal component is shown above the vertical
component. Black denotes pixelsmoving left or up or « and
v respectively. White denotes motion right or down.
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Figure 2: (a) The fraction of the variance in the training set
accounted for by thefirst & principal components. (1-9) The
first nine basisflows depicted asin Fig. 1, along with corre-
sponding vector fields.

Vaue Decomposition (SVD) of F' can bewritten as
F=MxvT, (1)

where M = [y, M, ..., mp] iSa2s x p matrix. The
columns, 7, form an orthonormal basisfor therange of F,
Y isap x p diagonal matrix containing the singular values
A1, Az, ..., A, sorted in decreasing order along the diago-
nal, and V7 isap x p orthogonal matrix. We can approx-
imate a given flow field, f by alinear combination of the
first k basiselementsin M

k
fo = > aini;. )
i=1

where the a; are the parameters of the model to be esti-
mated. Let d@(Z;d) = (u(z,y),v(x,y)) denote the flow
field that correspondsto thelinear approximation, f;; , Where
F=(z,y)andd = (ar,as,...,ar).

The quality of the approximation provided by the first &
columnsof M iseasily characterized intermsof thefraction
of thevariance of thetraining set that isaccounted for by the
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Figure 3: A motion field discontinuity can be represented
and detected with a linear combination of a small number
of the basis motions (cf. [16]).

selected components. Thisfraction is given by

Q(k) = (Z A?) / (Z A?) . 3

If the singular values, A;, rapidly decrease to zero as i in-
creases then Q (k) rapidly increases towards 1, and a low-
dimensional linear model provides an accurate approxima-
tion of the flow.

3.1 Example: Motion Discontinuities

For illustration, we applied this approach to learn a param-
eterized model of motion discontinuities. First, a synthetic
training set of 200 flow fields was constructed. Each con-
tai ned a motion discontinuity through the center of a32 x 32
pixel region (see Fig. 1). The orientation, ¢, and the trans-
lational motions on either side of the boundary, w, and i,
were chosen randomly.

We then computed the SVD of thetraining set. The frac-
tion of the variance accounted for by thefirst & components,
namely Q(k), rapidly approaches 1 (see Fig. 2a). Despite
the variability of theinput flow fields, nine basis vectors ac-
count for 95% of the variance in the training set. These ba-
sisflowsare shown in Figure 2(1-9). Notethat the basis set
can also approximatetrang ational motion since the random
training data contains flow fieldsin which i iscloseto ;.
Note the similarity between the basis vectors for a motion
discontinuity and thoselearned for an intensity edgein[14].

4 Direct Estimation of Motion Parameters

Given a learned set of basis flows, we now consider the
problem of estimating the optical flow in an arbitrary im-
age region, R, using the parameterized model. Our goal is
to find the coefficients @ that produce aflow field satisfying
the brightness constancy assumption

I(F+a@(#ad),t+1) = I(F,t) VI€ R (4)

Equation (4) states that the image, 7, a framet¢ + 1 isa
warped version of theimage at timet.

To recover the parameters we formulate an objective
function to be minimized, namely

E(b;d) =Y p(I(F+i(F; d+b),t+1)—1(Z,1), 0). (5)
ZeR
Given an estimate, d, of the motion parameters (initally
zero), the goal isto estimate the update, b, that minimizes
(5). Here, o isascale parameter and p(-, o) is arobust er-
ror norm applied to the residual error r(Z,d@ + b) = I(Z +
a@;d),t+1) = I(Z,1).

Largeresidua errors, », may be caused by changesinim-
age appearance that are not accounted for by the learned
flow model. The influence of these “outliers’ can be re-
duced through the use of an appropriate robust error norm
p. For the experiments bel ow we take p to be

plro) = (e 417,
which was used successfully for flow estimationin [5].
_ Tominimize (5) wefirst linearize about the update vector
b to give the approximate objective function £(b; @) =
> pli(F;b) - VI(E + @(F;a@),t + 1) + r(#,d), 7), (6)
ZeR

where VI(Z + @(%;@),t + 1) = [I,,1,]" represents the
partial derivatives of theimage at time¢ + 1 warped by the
current motion estimate (Z; @).

The particular optimization scheme is a straightforward
extension of that used by Black and Anandan [5] for estimat-
ing optica flow with affine and planar motion models. This
involves a coarse-to-fine iteration strategy, where the mo-
tion parameters @; determined at a coarser scale are used in

theestimation of £(5; d;j+1) a thenext finer scale. Themo-
tion parameters, d;, from the coarse level are used in (6) to
warptheimageat timet+1 towardstheimageat timet. The
basis flows at a coarse scale are smply smoothed and sub-
sampled versions of the basis flows at the next finer scale.
These coarse-scale basis vectors may deviate dightly from
orthogonality but thisis not significant given our optimiza-
tion scheme,

At each scale a coordinate descent procedure is used to
minimize £(b; d;). To ded with the non-convexity of the
objective function, the robust scale parameter, o, isinitially
set to alarge value and then slowly reduced. For the exper-
iments below, o islower from 25+/2 to 151/2 by afactor of
0.95 at each iteration. Upon compl etion of afixed number of
descent steps (or when a convergence criterion is met), the
new estimate for the flow coefficientsistaken to be @; + b.

Atthefinest scale ;1 = d; + b isaccepted asthe solution
for theflow parameters, otherwise @, 1, = 2(d@; +b) ispro-
vided to the next finer scale astheinitial guess (thefactor of

2 reflects the doubling of the pixel resolution).
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Figure 4: Moving disk example. (&) Disk moves one pixel
down and to right over stationary background. (b) Esti-
mated image motion. (c) Motion-discontinuity orientation
can be computed from two orthogonal basis flows.

Notethat in (6) that the gradient term does not depend on
b. This avoids the need to rewarp the image and recompute
the image gradient at each descent step. In fact, the image
gradient in (6) can be pre-multiplied by thebasisflowssince
these quantitieswill not change during the minimization of
E(b; @;). Hager and Belhuemer [10] used thisfact for real-
time affine tracking.

5 Experimental Results

We now present experiments to illustrate the use of learned
models in two different applications. First, the models are
used to estimate dense optical flow. Second, learned motion
models are applied to a specific object in aknown location.
We consider examples of human mouthsand legswhereitis
assumed that regionsof interest have been found by tracking
of theface or torso (see[7, 12]).

5.1 Motion Discontinuities

The learned motion-discontinuity model isapplied to atex-
tured moving disk in Fig. 4. Nine basis vectors were used
and the motion coefficients were estimated in 32 x 32-pixe
regions centered on each pixel intheimage. The motion of
the center pixel in each region is used to produce the dense
flowfieldinFig. 4(b). The coefficients of theorthogonal ba-
sisflows can be used to compute the orientation of the mo-
tion boundary at every pixel. Theresult isillustrated by the
gray-scale encoding of orientationin Fig. 4(c). The images
at the bottom of the figure show the val ue of the coefficients
at each pixd.

Figure 5 shows the application of the motion discontinu-
ity model to anatural image sequence. The cameraistrans-
lating to the right, yielding a roughly translational vector
field. The learned model, with nine basis vectors, was ap-
plied at every fourth pixel in theimage. The estimated flow
vectorsfromthe4 x 4 pixel block inthe center of each patch
are used to produce a dense flow field with a motion esti-
mate at every pixel. The horizontal component of the flow
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Figure5: Flower-garden sequence. () Firstimage. (b) Esti-
mated horizontal flow (darker pixelsdenotegreater |eftward
motion). (c) Detected motion boundary (white=occlusion,
black=disocclusion). (d) Estimated flow field.

ag

isshown in Fig. 5(b) and the vector field is shown in Fig.
5(d).

The detection of motion discontinuitieshere was straight-
forward. To detect avertical occlusion/disocclusionbound-
ary, we generated a synthetic occlusion flow field and pro-
jected it ontothe basis set. The coefficients of thisprototype
occlusion boundary are then correlated with the coefficients
estimated in each image region. A high correlation indi-
cates the presence of avertical occlusion boundary (shown
as “white” in Fig. 5(c)) and a negative correlation indicates
adisocclusion boundary (“black” in Fig. 5(c)).

5.2 Non-Rigid Mation

Black and Yacoob [7] described a method for recognizing
human facial expressions from the coefficients of a param-
eterized model. They modeled the face as a plane and used
its motion to stabilize the image sequence. The motion of
the eyebrows and mouth were estimated relativeto this sta-
bilized face using a seven parameter model (affine plus a
vertical curvature term). Whilethishand-coded model cap-
tures sufficient information about feature deformation to al-
low recognition of facial expressions, it it does not capture
thevariability of human mouths observed in natural speech.

Here we learn a parameterized model of mouth motion
from examples. We collected four 150 image training se-
guences of a single speaker. The sequences contain natural
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Figure 8: Smile experiment. Coefficients a1, a-, as, and a4 are plotted over 80 frames for smile expressionsin onetraining
sequence and in thetest sequence. Selected images and the corresponding estimated flow field are shown. Numbers under the
images and flow fields correspond to frame numbers on the graphs.

Figure 6: Example frames from the 600 image training set.
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Figure 7: Basisflowsfor non-rigid mouth motion.

speech, smiling, and a test word which was repested three
times (see Fig. 6). Unlike the previous example, we did
not have ground-truth optical flow from which to learn a
model of mouth motion. Instead, we used the optical flow
method in [5] to estimate dense flow fields between con-
secutive pairs of frames. It should be noted that the esti-
mation of mouth mation is difficult since the lips are not
highly textured, they deform and move large distances be-
tween frames, and the appearance/disappearance of teeth,
tongue, and mouth cavity viol ates the brightness constancy
assumption (see [8]). We aso note that estimation of the

densetraining flow takes twiceas |ong to compute as thedi-
rect estimation using the learned models.

Since the image motion of the mouth is highly con-
strained, the optical flow structurein the 600 training flow
fields can be modeled by a small number of principa com-
ponent flow fields. In thiscase, 90% of the variance in the
training flow fieldsis accounted for by the first seven com-
ponents (shown in Fig. 7). In contrast the seven-parameter
mode in [7] only accounted for 62% of the variance.

We evaluate the learned model with a 150-image test se-
quence in which the subject smiles and spesks the word
fromthetrainingset. A sampleof theimagesfromthesmile
portion of the sequence are shown in Fig. 8. Below each
image is the estimated flow using the learned 7-parameter
model. The value of thefirst four coefficients of the model
at each frame are plotted above theimages. Noticethe sim-
ilarity between the training smile and thetest smile. Similar
plotswere used for recognitionin [7].

Figure 9 shows every second frame corresponding to the
test utterance. Speech, unlike expression, is characterized
by large, rapidly changing motions. Without a highly con-
strained model such as the one learned here, it can be dif-
ficult to estimate motionsof thiskind. The same word was
uttered threetimesin thetraining set and oncein thetest set.
If the moddl is accurately capturing the motion of the lips
then the estimated coefficients of each utterance should be
similar. The plots of selected coefficients (a1, a4, as, and
ag) areshown at thetop of Fig. 9. Whilethe plotsappear to
behighly correlated, further studieswith arange of speskers
are required to determine whether these motion coefficients
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Figure 9: Speech experiment. The plots shows four coefficients (a1, a4, as, Or as) against four seperate utterances of the
same word, three from the trai ning sequences (dotted curves) and one from the test sequence (solid curve). Below are sample

images from the test sequence with corresponding flow fields.

walk-3

walk-4

Figure 10: Articulated human motion. Top row: images
from training sequences. Bottom row: test sequences.

are useful for automated speech understanding.

5.3 Articulated Motion

Like mouths, the articul ated motion of human limbs can be
large, varied, and difficult tomodel. Weassume that the sub-
ject is viewed from the side (though the approach can be
extended to cope with other views) and that the image se-
guence has been stabilized with respect to the torso. Two
training and two test sequences (Fig. 10) of a subject walk-
ingon atreadmill wereacquired with slightly different light-
ing conditions, viewing position, and speed of activity.
SVD was performed on the 350-image training set. The
first nine basis vectors account for 90% of variance in
the training data and are used in our experiments (see
Fig. 11.) Note that the first component essentially encodes
the scissors-like expansion/contraction of the legs (cf. [2]).
Figure 12 shows results of motion estimation using a

Figure 11: Basisflow fields for the walking sequences.

nine-parameter learned model for a 200-image training se-
guence (Walk-2) and a 200-image test sequence (Walk-4).
Each sequence contains approximately seven complete cy-
cles of the motion. Note the similarity of the two plots for
thefirst coefficient («1). The magnitude of the parameter a,
varies between the two sequences but is consistent within
a sequence. Further experimentation with additiona sub-
jectswill be necessary to determinethefeasibility of activity
recognition based on these parameters.

6 Conclusion

We presented aframework for |earning parameterized mod-
els of image motion. Parameterized models provide strong
congtraints on the spatial variation of the flow within anim-
age region and provide a concise description of the motion
in terms of a small number of parameters. The framework
described here extends parameterized flow methodsto more
complex motions that can be approximated as alinear com-
bination of basis flow fields. It is important to note that
the coefficients of the motion models are estimated directly
fromtheimage derivativesand do not requirethe prior com-
putation of dense image motion.
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Figure 12: Plots of the first 2 motion coefficients for one
training and one test sequence. Below: images and esti-
mated flow for every 50th frame in the test sequence.

The methods can be used to learn generic flow models
that can be applied at every image location in the way that
current affine models are employed. In particular we are
exploring the representation and recognition of motion fea-
tures, such motion discontinuities and moving bars, and
thelir relationship to the detection of static image features
such as edges and line.

The approach can aso be used to learn object-specific
models (e.g. mouth motion) that are applied in specific im-
age regions, and which may be useful for motion-based
recognition. Alignment of these models with the image is
important and it may be possibleto refine thisalignment au-
tomatically (see[6]).

A number of other research issues remain unanswered.

Learned models are particularly useful in situations where
optical flow ishard to estimate, but in these situationsit is
difficult to compute reliable training data. This problem is
compounded by the sensitivity of PCA to outliers. PCA aso
gives more weight to large motions making it difficult to
learn compact model s of motionswithimportant structureat
multiplescales. Futurework will explorenon-linear models
of image motion, robust and incremental learning, and mod-
els of motion texture.
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