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FootnotesYaser YacoobComputer Vision LaboratoryUniversity of Maryland, College Park, MD 20742, USA� The quadrants' boundary intensity discontinuity a result of of the video-camera consisting of fourseparate A/D banks. As a result, ow estimation at the quadrant boundaries is inaccurate. Theproblem could be overcome by local gain compensation.� The dense ow algorithms of Black and Anandan [6] is used. The algorithm's parameters were changedto achieve best measurement results.� The same e�ect could have been achieved by dividing the right side of Equation (3) by s for all scalesprior to error summation.� The book is manually segmented in the �rst image and tracked automatically afterwords using ourmulti-scale parameterized ow model.
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Temporal Multi-scale Models for Flow and AccelerationYaser Yacoob and Larry S. DavisComputer Vision LaboratoryCenter for Automation ResearchUniversity of Maryland, College Park, MD 20742, USAABSTRACTA model for computing image ow in image sequences containing a very wide range of instanta-neous ows is proposed. This model integrates the spatio-temporal image derivatives from multipletemporal scales to provide both reliable and accurate instantaneous ow estimates. The integra-tion employs robust regression and automatic scale weighting in a generalized brightness constancyframework. In addition to instantaneous ow estimation the model supports recovery of dense esti-mates of image acceleration and can be readily combined with parameterized ow and accelerationmodels. A demonstration of performance on image sequences of typical human actions taken with ahigh frame-rate camera is given. 1 IntroductionImage motion estimation involves relating temporal changes in image intensity across the spatial dimen-sions. Articulated and deformable motions such as those encountered in images of humans in motiongive rise to image sequences having, instantaneously, a wide range of ow magnitudes ranging from verysmall sub-pixel motions, whose recovery is inhibited by typical signal to noise constraints, to very largemultiple pixel motions that can be recovered using expensive correlation methods or multi-resolutionapproaches. Table 1 shows the categories of image motion, typical motion values that can be recoveredThe support of the Defense Advanced Research Projects Agency (ARPA Order No. #C635), the O�ce of NavalResearch (contract N000149510521) is gratefully acknowledged4



Category Motion amount m Model/AlgorithmVery large > R CorrelationLarge 1:0 < m < R Pyramid+ Image Gradients, Correlation or Motion FiltersSmall � << m < 1:0 Image Gradients or CorrelationVery small � � m ?? Multi-frameTable 1: Categories of image motion, amount of motion m (pixels/frame) and potential algorithms. Ris the search radius around the point (e.g., in a correlation-based algorithms) and is equal to 2p (p is thenumber of levels in the case of pyramid-based methods) for di�erential methods. The noise level is � (astandard deviation in the case of Gaussian noise).and the computational algorithms currently available for their estimation. Di�erential methods performwell at estimating small motions, and in conjunction with a coarse-to-�ne strategy they can estimatelarge motions; but they fail when motions are very large. Correlation approaches are better suited tocompute very large motions but they are computationally expensive. Estimating very small motionsis challenging since su�cient (but unknown) time has to elapse before the motion can be reliably es-timated. Too small a temporal window makes motion estimation highly susceptible to noise while toolarge a temporal window might drive the estimation outside the domain of a di�erential algorithm.Here, we focus on the problem of estimating dense image ow for image sequences in which instanta-neous ows range from very small to large and these ows occur simultaneously at di�erent locations inthe image. The practical problem, of course, is that we do not know a priori which parts of the imageare moving with which speed. Our solution is a scale-space like solution [13] in which we estimate imageow over a range of temporal scales, and combine these estimates (employing both spatial and temporalconstraints) using a combination of robust estimation and parametric modeling.To motivate both the problem and our proposed solution consider a pendulum arm moving in front ofa camera. The image ow will vary depending upon the distance of the point from the hanging point (seeFigure 1, left). As we move towards the pendulum hanging point the instantaneous ow becomes verysmall and its measurement at small temporal scale su�ers from low signal to noise ratio. As a result, twoframe estimation and subsequent integration of these ow measurements over time will be inaccurate.5
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Figure 1: Left, pendulum movement illustrating varying velocities along its motion path. Right, a rampwith inclination tan(�) in 1D motionIn the context of human motion, the coincidence of lip motion with body and head motion, or the calfrotation around the knee create similar scale variations in the ow �eld.To appreciate, quantitatively, the di�culty of computing small motions, consider the simpler problemof estimating the motion of a 1D ramp (which is equivalent to estimating the ramp's inclination tan(�))as a function of time lapse �t and velocity v (see Figure 1, right). We make the simplifying assumptionthat all noise sources can be modeled by a normal distribution with zero mean and standard deviation,�1, (for a discussion of noise sources in ow estimation see [12, 16]). Under this assumption it can beeasily shown that the estimated inclination, tan(�), satis�es the following if the measurement errors areless than or equal to the standard deviation ��:tan(�)� 2�1v�t � tan(�) � tan(�) + 2�1v�t (1)Equation (1) indicates that as long as tan(�) >> 2�1v�t the estimation error (i.e., tan(�)� tan(�)) remainsvery small. However, this error increases if either tan(�) becomes very small or v�t becomes very small(e.g., due to a small v while �t is kept constant). The former case is, in fact, the aperture problemin 1D while the latter case has not been, so far, addressed in image motion research. This error is6



inversely proportional to the time lapse �t (assuming �1 and v are held constant). Clearly, to reduce theestimation error it is bene�cial to choose a �t >> 2�1v , which favors long time lapses. However, since thelinear ramp has only a �nite extent, l, the maximal �t has to be less than l divided by v (see discussionson sine wave motion in [2, 11, 12, 16]).It is worth noticing that since current image motion estimation techniques use two frames (�t = 1),the estimation error is high unless tan(�) >> 2�1v . Hence, no matter what the value of �1 is, there is avelocity, v, for which the estimation error is unacceptably high. Also, regardless of the algorithm usedto estimate tan(�), Equation (1) illustrates the theoretical bounds on accuracy. This 1D example canbe generalized to 2D surfaces in motion where the fundamental trade-o� between estimation accuracy,on the one hand and time lapse and spatial frequency, on the other hand, also holds.The majority of published algorithms for estimation of image ow are based on two images (for arecent survey see [3]). Several approaches, however, consider the incremental estimation of ow [5,15]; then, temporal continuity of the ow applied over a few images (for example, assuming constantacceleration) can improve the accuracy of the ow estimate. These approaches, however, are still based oncomputations between consecutive images. Other approaches use velocity-tuned �lters (i.e., frequency-based methods) [9, 11] to compute the ow, and can be extended to ow estimation from several frames,perhaps employing a multi-scale approach similar to what is described here. The use of scale-space theoryto compute optical ow was recently proposed by Lindeberg [14]. The proposed algorithm focused onscale selection in the spatial dimensions so that di�erent size image structures lead to di�erent selectionof scales for ow computation. The algorithm, however, estimates ow from two images and involvesonly the spatial multi-scales.We develop a method for computing optical ow taking into consideration the fact that motions maybe most accurately estimated at di�erent temporal scales. We assume that no a priori information onthe spatio-temporal distribution of ow values is available, thus allowing our method to be used with any7
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Instantaneous Flow Estimates for Image at t=0 Figure 2: A diagram of the multi-scale approachimage sequence. This method can also be viewed as a multi-frame ow estimation when the utility of allscales is not equal. We discuss how to extend the approach to estimation of image acceleration and tothe measurement of parameterized ow models; we provide demonstrations on several image sequences.Figure 2 illustrates the approach we propose for computing image ow from multiple frames. Givenan image at time t = 0 our objective is to compute image motion estimates based on subsequent imagest = 1; :::; n. We assume that brightness constancy holds and measure its satisfaction as a constraint onow estimation. The errors of all brightness constancy constraints are weighed according to a measureof accuracy and the minimum of sum of errors is considered the best estimate.The paper is organized as follows. Section 2 illustrates, using an image sequence, the inadequacy ofsingle scale ow estimation. In Section 3 we describe the motion model employed for estimating imageow from multiple scales. This is followed by experimental results in Section 4. Section 5 provides theextension of the model to compute image acceleration. In Section 6 we describe the estimation processwhen parameterized motion models are used. Finally, in section 7 a discussion and summary of ourapproach are provided. 8



2 A Motivating ExampleWe will use scale=1 to denote ow estimation between two consecutive images (i.e., the �nest temporalresolution available), scale=2 to denote ow estimation between images that are two frames apart, etc.To illustrate the limitation of image ow estimates from any single scale we employ an image sequence ofan arm moving in front of a camera. The sequence was taken with a high-frame-rate camera (500 framesper second) which allows us to capture the natural rapid motion of the arm. The arm (see Figure 3) isrotating in a pendulum-like motion with an additional rotation of the hand around the wrist during itsmotion in front of a lightly textured background�. Notice that there is a shadow created by the hand,leading to non-zero ow estimates of the shadow as well as the arm. Figure 3 shows eight images fromthe sequence (chosen two frames apart). While the motion of the arm between two frames is very small,it will become apparent when the ow estimates are shown. The correct instantaneous ow should showa spatially coherent ow in which the ow increases as we move from the upper part of the arm towardthe hand and then signi�cantly increases on the hand.Figure 4 shows the image owy magnitudes for six scales (falling on a geometric scale 1,2,4,8,16, and32 frames apart). The �nest scale provides detailed estimates of the ow magnitude at the hand butquite noisy estimates along the arm, while the coarsest scale results in better estimates along the armbut considerably blurred estimates on the hand.Figure 5 is a rescaled version of Figure 4 in which the small ow values along the arm can be moreeasily observed. The ow estimation along the arm at �ne scales is dominated by the noise of the imagingsystem. As scale increases, better estimates are computed along the arm at the cost of blurring the owof the hand. As a consequence, if motion segmentation into parts is sought, the �nest scale would result�The quadrants' boundary discontinuity a result of of the video-camera consisting of four separate A/D banks. As aresult, ow estimation at the quadrant boundaries is inaccurate. The problem could be overcome by local gain compensation.yThe dense ow algorithms of Black and Anandan [6] is used. The algorithm's parameters were changed to achieve bestmeasurement results. 9



Figure 3: Eight images (each two frames apart) from a long sequence of a moving armScale=1 Scale 2 Scale 4Scale=8 Scale=16 Scale=32Figure 4: Flow magnitudes at 1,2,4,8,16 and 32 scales (top left to bottom right respectively)in highly fragmented components, while the coarsest scale would lead to highly inaccurate boundariesfor the hand. 3 A Multi-scale Flow ModelLet I(x; y; t) be the image brightness at a point (x; y) at time t. The brightness constancy assumptionat scale s is given by I(x; y; t) = I(x+ su�t; y + sv�t; t+ s�t) (2)10



Scale=1 Scale 2 Scale 4Scale=8 Scale=16 Scale=32Figure 5: Enhanced ow display to show arm estimation at 1,2,4,8,16 and 32 scales (top left to bottomright respectively)where (u; v) is the horizontal and vertical image velocity at (x; y), �t is small. We assume, for now, thatthe instantaneous velocity (u; v) remains constant during the time span s�t (leading to a displacement(su�t; sv�t)). This assumption is less likely to hold with the increase of scale and can lead to violationsof brightness constancy. Let the range of scales over which ow is to be estimated be 1; ::; n. ExpandingEquation (2) using a Taylor Series approximation (assuming locally constant ow) and dropping termsresults in 0 = s(Isx(x; y; t)u+ Isy(x; y; t)v+ Ist(x; y; t)) (3)where Is is the s-th frame (forward in time relative to I) of the sequence, and Isx; Isy and Ist are thespatial and temporal derivatives of image Is relative to I .Since Equation (3) is underconstrained for recovery of (u; v), it is ordinarily posed as a minimizationof a robust error norm of the ow over a very small neighborhood, R, of (x; y), leading toE(u; v; s) = X(x;y)2R�(s(Isxu+ Isyv + Ist); �e) (4)11



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6: An illustration of the Lorentzian function � and its derivative �0where � is a robust error norm [10] that is a function of a scale parameter �e. In our implementation weuse the Lorentizian function and its derivative (see Figure 6),�(x; �e) = log(1 + 12( x�e )2) and �0(x; �e) = 2x2�e2 + x2 : (5)The parameter �e determines the point at which the inuence of a measurement begins to diminish.All points with absolute error greater that 2p2�e are considered outliers (more details can be found in[6, 10]).We have n equations of the form of Equation (4) one for each scale. The scale-generalized error isde�ned as ED(u; v) = nXs=1 X(x;y)2R�(s(Isxu+ Isyv + Ist); �e) (6)Notice that Equation (6) biases the error term towards coarser scales due to the multiplication term s.Therefore, we normalize the error terms so that the minimization is in the formzED(u; v) = nXs=1 X(x;y)2R�(Isxu+ Isyv + Ist; �e) (7)zThe same e�ect could have been achieved by dividing the right side of Equation (3) by s for all scales prior to errorsummation. 12



Equation (7) gives equal weight to the error values of all scales. Since it is expected that at eachpoint (x; y) the accuracy of instantaneous motion estimation will be scale-dependent, we introduce aweight function W (u; v; s) designed (see below) to minimize the inuence of error terms of the relativelyinaccurate scales. Equation (7) now becomesED(u; v) = nXs=1 X(x;y)2R�(W (u; v; s)(Isxu+ Isyv + Ist); �e): (8)Before discussing the design choices for the weighting functionW , it is worth considering quantitativelythe residual error values at each scale. Consider again the 1D ramp example discussed in Section 1, theinclination error assuming noise within �� is given byET = tan(�)� tan(�) � � 2�1v�t : (9)Therefore, given a Gaussian noise model, the estimation error will be Gaussian with standard deviation� 2�1v�t . At the same time, the physical extent of the ramp determines the maximal time over which accu-rate derivative estimates are computable. The best-case scenario occurs when the initial measurementoccurs at the beginning of the ramp. In this case, the maximal time delay is given as �t < l=v where l isthe projected length of the ramp (i.e., l = r cos(�) where r is the full length of the ramp). As the initialmeasurement approaches the end of the ramp there is diminishing time to obtain a second measurementon the same ramp.Figure 7 shows the error functions of Equation (9) for di�erent v's. The red, green and blue graphsshow the error, ET , for three speeds v = 0:5; 0:05; 0:025 pixels/frame and �1 = 3. The points markedt1 = 2l; t2 = 20l; t3 = 40l denote the maximal best-case lapse times due to the limited length of theramp (respectively to the speeds). The best-case scenario occurs only with probability 1=l (assuming a13
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t31t t2Figure 7: The two error functions values as as a function of time scale s. The red, green and bluegraphs show the error of the temporal function for three di�erent speeds v = 0:5; 0:05; 0:025 pixels/framefor �1 = 3. The points t1; t2; t3 designate the best-case temporal window delay for the three velocities,respectively.uniform distribution); therefore for an average initial sample at l=2, t1 = l; t2 = 10l; t3 = 20l. In practice,the extent of l is never known, therefore determining ti is hard to achieve. Instead, we use a temporalwindow over a region that is assumed to include ti.Figure 7 also suggests that assigning equal weights to all temporal scales does not lead to a minimalsum of errors in the case of small motions since the error is larger at the lower scales.The 1D ramp example forms the basis for designing the weighting function for the errors of di�erentscales. Since the weight function W (u; v; s) should also reect the width of the temporal window ofcomputation of the ow estimation we rede�ne it to include a scaling parameter �w, W (u; v; s; �w). Wweighs the residual error contributions with respect to the total error; therefore, we choose to normalizeits value so that W = 1 denotes full contribution and W = 0 denotes no contribution. The choice of theweighting function W should satisfy the following constraints:� It should take on values in the range [0::1].� The scaling parameter �w expresses the width of the temporal window over which ow estimates areintegrated. Initially, we have no knowledge of the locally optimal time-scale for measurement of ow14



and, therefore, the weighting function weighs all residual errors equally (i.e, the temporal window is aswide as the number of frames involved in the estimation). But, as the estimates are iteratively re�ned,the weighting function should concentrate the weights on the most appropriate scales and ignore theremaining scales by narrowing the width of the window. Therefore, by �rst choosing a large �w, weensure that W is uniformly 1:0 for all (u; v) and s.� Given �w , larger estimated ow (u; v) at point (x; y) should lead to higher weights for the lower scalesof the error term Isxu + Isyv + Ist, while a small ow should lead to higher weights of the highestscales.Figure 8 reects qualitatively the desired shape of the weighting function for a �xed �w. It illustratesthe weighting as a function of scale s and ow magnitude jj(u; v)jj at (x; y). We adopt the assumption ofnormal distribution of the sources of error, which naturally leads to Gaussian weighting functions. Thefollowing Gaussian function satis�es the above requirementsW (u; v; s; �w) = e�(s� n(�jj(u;v)jj+1:0) )2=2�w2 (10)where jj(u; v)jj is the magnitude of the current ow estimate at (x; y), and � is a constant. Notice thatwhen jj(u; v)jj<< 1:0 the maximal weight occurs at the highest scale n, while higher values of jj(u; v)jjlead to a maximal weight at lower scales; speci�cally the Gaussian is centered at n�jj(u;v)jj+1:0 . The scaleparameter �w determines the width of the Gaussian, and the constants � and 1:0 determine the maximalweight scale location. The application of the weighting function in the estimation is as follows: initiallyall scales are given equal weight (1.0) by selecting a large �w . Afterwords, iteratively, the estimates arere�ned by decreasing �w .This temporal multi-scale procedure is accompanied by a spatial coarse-to-�ne strategy [4] that con-structs a pyramid of the spatially �ltered and sub-sampled images and computes the ow initially at15
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To achieve a globally optimal solution the robust error norm � is started with a large enough scaleparameter �e to �nd a solution using the SOR technique. For each �e, the �w is started from a value thatallows several scales to contribute to the solution; then it is gradually narrowed down to focus on the bestscale. This process is iteratively repeated while decreasing �e and starting with the last estimate. Thechoice of a large enough �e guarantees convexity of the error function at the beginning of the process,which is followed by the use of the Graduated Non-Convexity method developed in [8]. The iterateddecrease in �e reduces the inuence of the outlier measurements and thereby re�nes the estimates whilethe reduction in �w improves the scale selection.4 Experimental Results4.1 A Synthetic ExampleIn the following �gures we show the results of image ow computation when �w = 5:0 and is decreasedat a rate of 0:6 for �ve iterations, and �e = 18:0 and is decreased at a rate of 0:4 for 5 iterations. Thecomputation is performed over 12 temporal scales.In order to compare the performance of single scale (scale = 1) and multi-scale ow estimation, wegenerated a sequence of images using a synthetic ow model where we have ground-truth data. Figure9 (top) shows an image of a person during a walking activity. The synthetic sequence is generated bywarping the image patch of part of the \thigh" and the whole \calf" foreward so that the thigh is rotatingslowly while the \calf" is rotating faster around the knee. The sequence simulates a common motionin sequences of human motion. Figure 9 (middle row) shows quantitative comparison along a line onthe \calf" (left to right) between the ground-truth ow (bottom, solid line) the single scale ow (dottedline) and the multi-scale (dashed line). The multi-scale estimate is closer to the synthetic ow than thesingle scale estimation especially at very small ow magnitudes. Accurate recovery of the ow is actuallylimited by interpolation side e�ects in generating the synthetic motion.Table 2 provides comparative results on the performance of single scale, multiple scale with equal17
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Figure 9: A synthetic motion example that compares ow magnitudes on a real image of a calf and thigh. The image (see (b)) was warped and the ow magnitudes along a line (see (c)) are shown as a solidline (see center row). The estimates of ow magnitudes using 1 scale and 12 scales over the same lineare shown (center row, dotted and dashed lines, respectively). The lower row shows the magnitude ofangular degree errors over the region for the 1 scale and 12 scale algorithms (left to right respectively).Notice that the slow-moving thigh is more error prone for the single scale algorithm.18



Algorithm Mean Angular Error Standard DeviationSingle scale 2.8 3.13Multi-scale W=1 4.95 7.81Multi-scale Gaussian 2.5 2.91Table 2: Comparative performance of algorithms by mean error and standard deviation of angular errorsin the ow Algorithm < 1� < 2� < 3� < 5� < 10�Single scale 28% 55% 68% 86% 99%Multi-scale W=1 20% 41% 57% 72% 89%Multi-scale Gaussian 41% 60% 70% 83% 97%Table 3: Comparative performance of algorithms by percentage of points below 1�; 2�; 3�; 5�; 10� angularerrorweights and multiple scales with Gaussian weighting with respect to the mean angular error and standarddeviation of angular error as proposed in [3]. As in [3], the image velocities are represented as a 3D vector,~v = 1pu2 + v2 + 1(u; v; 1)T :The error between the estimated ow, ve and the real ow vr is given by arccos(vr � ve). The multi-scaleGaussian algorithm is slightly better than the single scale and uniformly weighted multi-scale algorithms.It is illustrative to compare the percentage of points below speci�c angular errors. Table 3 shows theresults for angular errors of 1; 2; 3; 5 and 10. The multi-scale Gaussian results show improved accuracy.4.2 A Real SequenceIn the following �gures we show the results of image ow computation when �w = 20:0 and is decreasedat a rate of 0:5 for �ve iterations, and �e = 30:0 and is decreased also at a rate of 0:5 for 5 iterations.The computation is performed over 16 temporal scales.Figure 10 illustrates the weights at several scales during the computation of image ow (the brighterthe intensity the higher the weight; weights across scales were normalized in these images to allow forcomparisons). At scale=1 only the hand area is given high weights while the arm and the background are19



Scale=1 Scale 4 Scale 7Scale=10 Scale=13 Scale=16Figure 10: The weighting function W as computed at the scales 1,4,7,10,13 and 16 scales (top left tobottom right respectively) expressed as an intensity image.given very low weights. As the scale increases the weights are increased along the arm and the backgroundwhile a decrease on the hand gradually takes place. At the highest scale (scale = 16) the hand's weightis very low while the arm and the background receive a high weight. Figure 11 shows the e�ect of theiterative re�nement of the weighting function W for scale=1 (the �nest scale) on the relative weightsfor di�erent regions. The values are normalized across the �ve images to allow comparison. Notice thatthe �rst iteration gives high weights to the hand, and the weights given to the arm and the backgroundare somewhat signi�cant. The �fth iteration also gives high weights to the hand while the arm and thebackground have the lowest weight, and they are much lower than after the �rst iteration. This behavioris reversed when we consider the coarsest scale, scale = 16 (see Figure 12).Figure 13 (top and middle rows) shows graphs of the individual scale ow magnitudes computedalong a line drawn down the center of the arm (bottom right). These graphs correspond to the scalecomputations shown in Figure 4. Since the arm is approximately moving like a pendulum with the handsimultaneously rotating around the wrist (see Figure 18), the ow should increase slowly along the armthen jump considerably on the hand. This is clearly visible in the graphs. The dip in these graphs20



Weight Iter=1 Weight Iter=2 Weight Iter=3Weight Iter=4 Weight Iter=5Figure 11: The weighting function W at scale 1 (�nest scale) as evolved in �ve iterations
Weight Iter=1 Weight Iter=2 Weight Iter=3Weight Iter=4 Weight Iter=5Figure 12: The weighting function W at scale 16 (coarsest scale) as evolved in �ve iterations21
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Frame=1 Frame 5 Frame 10 Frame 15Figure 14: Images from a sequence of simultaneous arm and head motionow are shown (16 scales). Notice that the multi-frame ow computation is simply the case when W isset to one for all residuals (see top row in Figure 16). While these results are slightly better than thesingle-scale they still su�er from the inclusion of large residuals that the multi-scale algorithm recognizesand discards. 5 Estimation of Image AccelerationThe scale-generalized brightness constancy assumption given in Equation (2) assumes constant ow atall scales. This can be extended to include acceleration models. Let the image ow as a function of scales be (u(s); v(s)). This image ow describes the instantaneous velocity between frame s� 1 and s. Thenthe brightness constancy assumption at scale s becomesI(x; y; t) = I(x+ sXj=1 u(j); y+ sXj=1 v(j); t+ s) (14)As a special case, if image motion is assumed to be subject to a constant acceleration, the ow can begiven by u(s) = b0 + b1s (15)v(s) = b2 + b3s (16)23



Figure 15: Horizontal, vertical and magnitude of ow from two frames (left to right). For horizontal andvertical ow, brighter value indicates greater motion leftward and upward, respectively.

Figure 16: Top row, single-scale horizontal, vertical and magnitude of ow (left to right). Center row,multi-frame horizontal, vertical and magnitude of ow (left to right) (16 frames with the weight W = 1for all points at all times. Bottom row, multi-scale (s = 16) horizontal, vertical and magnitude of ow(left to right). For horizontal and vertical ow, brighter value indicates greater motion leftward andupward, respectively. 24



where b1 and b3 are the horizontal and vertical acceleration terms. Note that in the context of a longsequence this model supports a piecewise constant acceleration assumption. If acceleration uctuationswithin the scales involved in the estimation are small or fall within the performance range of the robustestimator (about 35% outliers) this model holds. This ow model leads to a brightness constancyassumption of the form I(x; y; t) = I(x+ sXi=1(b0 + b1i); y + sXi=1(b2 + b3i); t+ s) (17)Using a Taylor series expansion and dropping terms (including scale normalization) we arrive at0 = Isx(b0 + b1s + 12 ) + Isy(b2 + b3s + 12 ) + Ist (18)The new scale-generalized error function is given byED(u; v) = nXs=1 X(x;y)2R�(W (Isx(b0 + b1s + 12 ) + (19)Isy(b2 + b3s+ 12 )) + Ist); �e)Figure 17 shows the dense ow and acceleration estimated for a book-falling sequence (see also Figure19). The top row shows the the weighting function's values assigned for each scale (normalized to enhancethe contrast). At low scales the book's region is assigned high weight while the background is assignedvery low weight. This is reversed as scale is increased, so at the top scale the motion of the book is so largethat little weight is given to the book area. The bottom row shows the dense velocity magnitude (left)and the vertical and horizontal accelerations (center and right, respectively). Notice that the estimatedhorizontal acceleration is almost uniformly zero. 25



Scale=1 Scale=3 Scale=4 Scale=6
Figure 17: The weights (upper row) at scales 1, 3, 4 and 6, respectively (out of 6 scales), and the owmagnitude and vertical and horizontal accelerations (bottom row, left to right, respectively) for a fallingbook. 6 Parameterized Flow ModelsDense ow computation generates large data sets that may not be easily used in higher level visiontasks. Recently, it has been demonstrated that parameterized ow models can provide a powerful toolfor reasoning about image motion between successive images (see [7]). The multi-scale ow estimationalgorithm can be extended in a straightforward way to parameterized models of image ow. In thissection we describe the extension of the muti-scale framework to a�ne and planar parameterized imagemotion models.Recall that the ow constraint given in Equation (3) assumes constant ow over a small neighborhoodaround the point (x; y). Over larger neighborhoods, the image ow is given by low-order polynomials[1]. For example, a�ne motion is given byU(x; y) = a0 + a1x+ a2y (20)V (x; y) = a3 + a4x+ a5y (21)26



where ai's are constants and (U; V ) is the instantaneous velocity vector. A more general model is theplanar motion model [1] which is an approximation to the ow generated by a plane moving in 3-D underperspective projection. The planar motion model is given byU(x; y) = a0 + a1x+ a2y + a6x2 + a7xy (22)V (x; y) = a3 + a4x+ a5y + a6xy + a7y2 (23)Equation (8) now becomesED(U; V ) = nXs=1 X(x;y)2A=P �(W (U; V; s; �w)(IsxU + IsyV + Ist); �e) (24)where A=P denotes the region in which the ow is assumed to be a�ne (A) or planar (P ). The minimiza-tion of Equation (24) results in estimates for the parameters ai. The choice of the weighting function Wis somewhat more complex here than it was previously. The weighting function can be designed usingthe current ow estimates computed by the model (U; V ). This weighting leads to di�erent weightswithin the region according to the magnitude of the ow so that at points where the ow estimate islow the coarser scales will be more dominant while the larger ow estimates will determine the �nerscales. Alternatively, W can be designed using the parameters of the model ai (i.e., W (�a; s; �w) where �ais the set of model parameters). This alternative reects the fact that the region is treated as a singleobject that is subject to rigid motion; therefore its motion is completely captured by the parameters �a.The former leads to a computation based on weighting of spatio-temporal derivatives while the latterleads to weighting of parametric models. Once a choice for the weighting function has been made thecomputation of the parameters of the model follows the approach proposed in [6].In the examples in this section we adopt the weighting of parametric models. Recall that the parameters27



of the a�ne and planar models capture several aspects of the region's motion (see [7]). Since thetranslation of the region is of most interest the parameters a0 and a3 can be substituted as jj(a0; a3)jj forjj(u; v)jj in Equation (10) so that it becomes:W (u; v; s; �w) = e�(s� n(�jj(a0 ;a3)jj+1:0) )2=2�w2 (25)Figure 18 shows the results of parameterized ow estimation over the hand region of the moving armover a long sequence (about 540 frames). The parameterized ow is used to automatically track thehand motion throughout the sequence similar to [7] (assuming an initial manual hand segmentation inthe �rst image). The frame numbers are shown with the images. The left graph shows the horizontaland vertical translations (solid and dashed lines, respectively) and the right graph shows the curl of thehand.Parameterized ow models can also be extended to include acceleration. The extension of the a�nemodel requires that the motion parameters across scales be dependent on the scale so that ai becomesai(s). Assuming a constant acceleration for these parameters, the models now becomeU(x; y)=(a0 + a00s) + (a1 + a01s)x + (a2 + a02s)y (26)V (x; y)=(a3 + a30s) + (a4 + a04s)x + (a5 + a05s)y (27)where a00, a03 are the linear horizontal and vertical acceleration components of the motion and the a01; a02; a04and a05 are acceleration components that can be related to angular, divergence and deformation acceler-ations.Figure 19 describes an experiment in which the acceleration of a falling book is estimated from an image28
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