
Human Emotion Recognition from Motion Using a Radial BasisFunction Network ArchitectureMark Rosenblum, Yaser Yacoob, Larry DavisComputer Vision LaboratoryUniversity of MarylandCollege Park, MD 20742Presented at the IEEE Workshop on Motion of Non-Rigidand Articulated Objects, Austin, TX, Nov. 1994AbstractIn this paper a radial basis function network archi-tecture is developed that learns the correlation of fa-cial feature motion patterns and human emotions. Wedescribe a hierarchical approach which at the highestlevel identi�es emotions, at the mid level determinesmotion of facial features, and at the low level recoversmotion directions. Individual emotion networks weretrained to recognize the `smile' and `surprise' emo-tions. Each emotion network was trained by viewinga set of sequences of one emotion for many subjects.The trained neural network was then tested for reten-tion, extrapolation and rejection ability. Success rateswere about 88% for retention, 73% for extrapolation,and 79% for rejection.1 IntroductionVisual communicationplays a central role in humancommunication and interaction. This paper exploresmethods by which a computer can recognize visuallycommunicated facial actions- facial expressions. De-veloping such methods would contribute to human-computer interaction and other applications such as:multi-media facial queries, low-bandwidth transmis-sion of facial data and face recognition from dynamicimagery.Research in psychology has indicated that at leastsix emotions are universally associated with distinctfacial expressions. Several other emotions, and manycombinations of emotions, have been studied but re-main uncon�rmed as universally distinguishable. TheThe support of the Advanced Research Projects Agency(ARPA Order No. 6989) and the U.S. Army Topographic Engi-neering Center under Contract DACA76-92-C-0009 is gratefullyacknowledged.
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Anger SurpriseFigure 1: Six universal expressionssix principle emotions are: happiness, sadness, sur-prise, fear, anger, and disgust (see Figure 1). In thispaper we focus on these emotions.Most psychology research on facial expression hasbeen conducted on \mug-shot" pictures that capturethe subject's expression at its peak. These picturesallow one to detect the presence of static cues (suchas wrinkles) as well as the position and shape of thefacial features. Few studies have directly investigatedthe inuence of the motion and deformation of facialfeatures on the interpretation of facial expressions (areview of the relevant psychological aspects of recog-nizing facial expressions appears in [11]). Bassili [2]suggested that motion in the image of a face would al-low emotions to be identi�ed even with minimal infor-



mation about the spatial arrangement of features. Thesubjects of his experiments viewed image sequences inwhich only white dots on the dark surface of the per-son displaying the emotion are visible. The reportedresults indicate that facial expressions were more ac-curately recognized from dynamic images than froma single static image. Whereas all expressions wererecognized at above chance levels in dynamic images,only happiness and sadness were recognized at abovechance level in static images. As illustrated in Fig-ure 2, Bassili identi�ed principle facial motions thatprovide powerful cues to the subjects for recognizingfacial expressions. These results do not explicitly as-sociate the motion patterns with speci�c face featuresor muscles since such information was unavailable tothe experiment subjects.
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Fear DisgustFigure 2: Motion cues for facial expression [2]Building on these results we explore the potentialof motion analysis in an autonomous system.The problem of recognizing facial expressions hasrecently attracted attention in the computer visioncommunity [4,8,10].Yacoob and Davis proposed an approach for analyz-ing and representing the dynamics of facial expressionsfrom image sequences [10]. This approach is dividedinto three stages: locating and tracking prominent fa-cial features (i.e., mouth, nose, eyes, and brows), using

optical ow at these features to construct a mid-levelrepresentation that describes spatio-temporal actions,and applying rules for classi�cation of mid-level rep-resentation of actions into one of six universal facialexpressions. On a sample of 46 image sequences of32 subjects displaying a total of 105 emotions, thesystem achieved a recognition rate of 86% for `smile,'94% for `surprise,' 92% for `anger,' 86% for `fear,' 80%for `sadness,' and 92% for `disgust.' Blinking detectionsuccess rate was 65%.Connectionist architectures have been used in vi-sual classi�cation problems with great success [6,3].The classi�cation of visual imagery, however, hasmainly focused on static imagery. Seibert and Wax-man [7] recently developed a system that performedobject recognition using the object's rigidmotion. Theneural network learned correlations between di�erentaspect views of an object, and as the network observeda sequence of the object moving in space, it accumu-lated evidence of the object it was viewing.The work reported here explores the use of a con-nectionist learning architecture for identifying thenon-rigid motion pattern characteristics of facial ex-pressions. The neural network views variable lengthsequences of images of a human subject instead of asingle static image. The connectionist approach couldreplace the expert rules developed in [10], and mayallow developing person-speci�c learning capabilities.2 Overview of our approachThe following constitute the framework withinwhich our approach for analysis and recognition of fa-cial expressions is developed:� The face is viewed from a near frontal viewthroughout the sequence.� The overall rigid motion of the head is small be-tween any two consecutive frames.� The non-rigid motions that are the result of facedeformations are spatially bounded, in practice,by an nxn window between any two consecutiveframes.The system is similar to [10] in the tracking andoptical ow computation but di�ers in the analysisand interpretation of motion patterns. The system iscomposed of the following components:� Optical ow computation: Optical ow is com-puted at the points with high gradient at eachframe. Our algorithm for ow computation is



based on a correlation approach proposed byAbdel-Mottaleb et al. [1]. It computes subpixelow assuming that the motion between two con-secutive images is bounded within an nxn win-dow.� Region tracking: We assume that, for each fea-ture, we can initially compute a rectangular re-gion that encloses it. Such an algorithm has beenrecently proposed for range data by Yacoob andDavis [9] and a similar algorithm could be devel-oped for intensity images. Our algorithm tracksthese regions through the remainder of the se-quence. The tracking is based on the localizationof points with high gradient and the optical ow�elds computed at these points.� A connectionist architecture for learning what fa-cial motion information and relations are impor-tant to the determination of emotion. This sys-tem learns using a training set which consists ofsequences of images from a diverse set of humansubjects experiencing the same emotion.3 The Inputs and Outputs of the NNWe perform three stages of preprocessing on theinput sequence before providing input to the neuralnetwork. The �rst stage generates a sequence of im-ages which represents the instantaneous optical owof the image sequence. The second stage extracts, us-ing tracking techniques, the important facial featuresfrom the optical ow sequence (i.e., the right and lefteyebrows and the mouth). The third stage performs alog-polar transformation on the feature motion imagesof the sequence. This transformation compresses theouter extremities of the feature images for the purposeof reducing the e�ects of size variance. Size varianceoccurs because of subjects' varying distance from thecamera, motion during the image sequences, and thenatural variation in the sizes of subjects' features.The output of the system could be structured soan output is associated with each emotion. This rep-resentation, however, does not provide enough spreadfor the neural network to learn e�ectively. An inter-mediate output representation is required to providethis spread. The intermediate output representationchosen represents the stage of an emotion to whichan input image of a sequence belongs. The activationof an output unit in this representation correspondsto the network's con�dence that the emotion of thecurrent sequence is in the stage corresponding to theparticular output unit.

Pomerleau [6] found that when there exists a prox-imal relation between output units the supervisedlearning unit activations should reect this relation.In our application, an output unit represents a stageof an emotion and the stages are related by the obvi-ous temporal proximal relation. If the current train-ing vector is to reect that the emotion is currently instage N , then output unit N should be set with thegreatest activation, while output units N+1 and N�1should be set with a slightly lower activation and so onuntil the boundaries of the output vector are reached.Pomerleau used a Gaussian function to set the train-ing activations. We also used a Gaussian, placing itspeak on the current stage in the output training vec-tor and setting the output units corresponding to thevalue of the Gaussian at that position in the vector(see Figure 3).
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The Gaussian weighting function applied to desired-output vector
corresponding to the fifteenth stage of an emotion sequenceFigure 3: The Gaussian weighted output vector4 The Network ArchitectureThe complexity of recognizing facial expressions re-quired dividing the emotion detection problem intothree layers of decomposition. The �rst layer is byemotion (see Figure 4), and occurs at the networklevel- we train a separate network for each emotion(i.e., six separate networks in total). During training,a network in this layer is only exposed to one emotionfor multiple subjects. The second layer is at the fa-cial component level. This decomposition is internalto each of the emotion tuned networks. Each emotionnetwork is broken into subnetworks, where each sub-network specializes in a particular facial component.Since we are focusing on three facial components, eachemotion network consists of three subnetworks. Acomponent tuned subnetwork only uses the portionof the input vector that corresponds to its componentspecialization. The third layer is by direction sensi-tivity, and further decomposes the component subnet-works. In other words, these \subsubnetworks" are



sensitive to one direction of motion for a speci�c pre-assigned facial component for a speci�c emotion. Inorder to capture all resultant motions, we use the fourdirection sensitivities of up, down, right, and left.The fusion of information from each of the six emo-tion tuned networks is performed by a process externalto these networks, and can be connectionist or handcoded in nature. We developed a hand coded scheme(discussed below) which combines the outputs of allsix emotion networks. The fusion of information fromthe internal subnetworks is done internally in each ofthe emotion networks. The fusion is done implicitlythrough the coupling of these component subnetworksthrough the output units of the individual emotionnetwork.
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Figure 4: The hierarchy of networks based on emotiondecomposition5 The Basic Building BlockBecause of their ability to directly represent proto-typical situations of the application in the receptive�eld centers, we chose to use a modi�ed version of theradial basis function network (RBFN) [5] as the archi-tecture for the basic building blocks. In the followingsection we discuss the enhancements we made to thebasic RBFN architecture to handle the temporal rela-tions associated with this problem.An RBF receptive �eld is a response region in Ndimensional input space, with an N component cen-ter coordinate. The input space can be considered asan image space, since the input units are clamped di-rectly to the values of the pixels of an image featureretina. Since each coordinate in image space corre-sponds to a unique image on the image retina, thereceptive �eld centers also correspond to unique im-ages on the image retina, and these function as theapplication templates. The maximum response of areceptive �eld occurs when an input image is situatedat the same location as the center of the receptive

�eld, and the response degrades in a Gaussian fashionas the Euclidean distance of the input image to thereceptive �eld center increases.5.1 The Spatio-Temporal Building BlocksThe RBFN architecture is not well suited to han-dle temporal relations. A signi�cant part of the taskof analyzing sequences of images, is being able to re-late information from one frame to the next. Thus,enhancements that will allow past information to con-tribute to the current response are necessary. For ex-ample, in the `surprise' emotion, the eyebrows movedownward at the end of the emotion, and in `anger'the eyebrows move downward at the beginning of theemotion. In order to determine whether the eyebrowsare moving downward in the `surprise' or `anger' emo-tion, it is necessary to determine what happened tothe eyebrows before they moved downward.Past information is incorporated into the input vec-tor by using feedback from the previous state of the in-put vector multiplied by a decay constant. Input unitsthat use self feedback are called \context units"[3].The activation function for each input unit in our ar-chitecture is:Ci(t) = � 1 if �Ci(t� 1) + Ii(t) > 1�Ci(t� 1) + Ii(t) if �Ci(t� 1) + Ii(t) < 1where Ci(t) is the activation of input unit i at time t,Ci(t�1) is the activation of input unit i at time t�1,� is the decay constant, and Ii(t) is the current inputto unit i at time t. The decay constant is set so thatremnants of previous motions linger for a portion ofthe sequence. If motion occurs for several iterations atthe same pixel location in the input image, the inputunit activation that corresponds to that pixel locationbecomes saturated and is set to the maximum activa-tion level of one.Each emotion subnetwork consists of receptive�elds tuned to the particular facial feature, and theweights fully connecting those receptive �elds to theoutput units. The set of receptive �elds correspondingto a particular feature and for each motion directionare further tuned to become sensitive to only portionsor subsequences of the input sequence. In other wordsthe component receptive �elds become sensitized tostages of the emotion sequence for the component anddirection they are assigned to. A receptive �eld cen-ter image or template is set by integrating the mo-tion images for a subsequence of the receptive �eld'sassigned facial component and motion direction sensi-tivity. Any position in the summed image that has a



value greater than zero is set to one. This is similarto how the input vector is calculated using a decayconstant, except in this case the decay constant is setto one, and the subsequence of images has a start andend frame in the sequence. Figure 5 shows how a sub-sequence is used to set the center of a receptive �eld fora simple sequence of a ball moving across the retina.It is important to note that an input vector can neverperfectly match a receptive �eld center template un-less the decay constant for calculating the input vectoris set to one.In order to minimize the problem of overloading andunder-utilizing receptive �elds, we de�ned a parameterwhich represented the minimumnumber of pixels thatmust be turned on during the image summing stageto set a receptive �eld center with the summed image.If the number of \on" pixels during the summationcrossed over this minimum threshold, no additionalimages were incorporated into the summed image anda receptive �eld center was set with the current accu-mulated image. The result was that portions of the se-quence where signi�cant motion occurred were spreadover more center templates for higher temporal resolu-tion, and portions of the sequence where little motionoccurred were �t into fewer center templates for lowertemporal resolution.
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Figure 5: The approach to setting the receptive �eldcenters from subsequences.In addition to using past information to set the cen-ter positions of the receptive �elds, past information isalso used to determine the activations of the receptive�elds during the training and usage modes. The de-termination of a receptive �eld activation is similar tothe determination of the activation of an input unit,in that the activation from the previous time step isfactored into the activation at the current time stepusing a decay constant. The activation of a receptive�eld in our architecture is determined by the following

equation:�i(~xt+1; t+1) = � 1 if �i(~xt; t) +Vi(t)> 1�i(~xt; t) +Vi(t) otherwisewhere � is the decay constant andVi(t) = exp ���i (~xt+1 � ~ai)T (~xt+1 � ~ai)�Pj exp (��j (~xt+1 � ~aj)T (~xt+1 � ~aj))Like the input vector determination, the receptive �eldresponse can become saturated, in which case the ac-tivation is set to one.6 Experiments and ResultsWe use two forms of analysis of the emotion net-work outputs: absolute and relative analyses. For ourpreliminary experiments, we only trained two emotionnetworks; one for the `smile' emotion, and another forthe `surprise' emotion. The test stage included imagesequences of `smile,' `surprise,' and `anger' emotions.Anger was used as a null reference since neither of thetrained networks was tuned for `anger.'Before we discuss the methodology and results wede�ne the terminology used. The term familiar-faceindicates that the face used is that of a person thatthe system has seen in the training session. For sucha face there can be two types of sequences, familiar-and unfamiliar-sequences. The former denotes thoseimage sequences that were used in the training, andthe latter indicates these sequences of the familiar-facethat are new to the system.6.1 Absolute AnalysisIn order to evaluate the performance of the neuralnetwork architecture, we conducted experiments thatmeasure the network's retention, extrapolation, andrejection ability. Retention refers to the ability of thenetwork to perform successfully on familiar sequences.Extrapolation refers to the ability of the network toperform successfully on sequences of unfamiliar faces.Rejection refers to the ability of the network to rejecta sequence that did not express the emotion that thenetwork was tuned for.To measure the performance of the system relativeto the above criteria we divided the experiments intofour categories. The �rst category encompassed fa-miliar sequences, and it measured the networks re-tention ability. In the second category, unfamiliarfaces were tested in order to measure the extrapola-tion ability. The third category included unfamiliar



sequences of familiar faces and it measured a smallerincrement of extrapolation than the second category.The fourth category included sequences of emotionsthat the tuned network did not specialize in (these canbe for any type of emotion and face) and it measuresthe rejection rate of the network.For each of the `smile' and `surprise' emotions, wetrained two networks that only di�ered in receptive�eld width, and we tested each network using thefour test categories. Each network was trained for100,000 iterations, and the receptive �eld widths forSMILENET 1 and SURPNET 1 were larger than thereceptive �eld widths for SMILENET 2 and SURP-NET 2 (see Table 1). The `smile' and `surprise' net-works were trained with 20 and 14 subjects, respec-tively. The output vector for each network represented40 stages of an emotion. We used the criterion of atleast seven stages being turned on to signify that thenetwork recognized the emotion of a sequence, and weused an iteration con�dence threshold of 0.155 to in-crement a stage counter for a frame of the sequence.Table 2 shows the results from the absolute analysis.network mouth rf widths eyebrow rf widthsSMILENET 1 1 1SURPNET 1 1 1SMILENET 2 .694 .563SURPNET 2 .694 .563Table 1: The relative receptive �eld width settingsnetwork familiar seq unfam. face unfam. seq. foreign expr.SMILENET 1 16/20=80% 2/4=50% 7/7=100% 29/41=71%SURPNET 1 13/14=93% 5/6=83% 3/3=100% 39/52=75%SMILENET 2 16/20=80% 2/4=50% 4/7=57% 32/41=78%SURPNET 2 13/14=93% 2/6=33% 3/3=100% 46/53=87%Table 2: The results of the absolute analysisIn Table 3 we further break down category 4 tocompare the rejection rate of `anger,' `smile' and `sur-prise.' The results indicate that `anger' got the bestrejection rates.network anger surprise smileSMILENET 1 16/18=89% 13/23=57% {SURPNET 1 17/18=94% { 22/31=71%SMILENET 2 16/18=89% 16/23=70% {SURPNET 2 18/18=100% { 28/31=90%Table 3: The further breakdown of category 4The results indicate that the retention rates arehigher than the extrapolation rates. In Table 3 therejection rates for `surprise' were better than those for`smile' for the three emotions. For the `smile' and `sur-prise' networks with the same receptive �eld widths,the `surprise' network had a much higher rejection rateof the `smile' emotion than the `smile' network hadof the `surprise' emotion. The larger detectable mo-

tion of the `surprise' emotion improved performancefor all four test categories, thus, improving retention,extrapolation and rejection of the `surprise' networksover the corresponding width size `smile' networks.Also fromTable 2 and Table 3 we can see that largerreceptive �eld widths enhanced extrapolation abilitiesof the networks (categories 2 and 3), but at the sametime reduced the retention and rejection rates (cate-gories 1 and 4). Since one of the main goals of thisresearch was to determine if a network could learn thecommonalities of an emotion over a wide populationfrom a small sample set, wider receptive �eld widthsare better suited for our application. On one hand, ifthe receptive �elds widths for a network are too large,thus over-generalizing, then all the receptive �elds willrespond with equally large activations, and the cate-gorizing ability of the network is lost. On the otherhand, if the receptive �eld widths are too small, the re-ceptive �elds will respond crisply to training patterns,but will have negligible responses to test patterns thatonly vary slightly from the training patterns, thus pos-sessing no generalization ability. Therefore a reten-tion/extrapolation trade-o� exists between large andsmall receptive �eld widths.6.2 Relative AnalysisSince it was our intention to teach a network ex-trapolation instead of retention, we focused our rela-tive analysis on networks SMILENET 1 and SURP-NET 1, which had better extrapolation performancebecause of their relatively larger receptive �eld widths.The relative analysis is dependent on the results of theabsolute analysis. Similarly, in the relative analysiswe de�ned four test categories to measure retention,extrapolation and rejection. The �rst category testsfamiliar sequences of `smile' or `surprise.' The sec-ond category tests sequences of unfamiliar faces. Thethird category tests unfamiliar sequences of familiarfaces in at least one of the two training sets. Thefourth category tests expression sequences foreign toboth networks. Since we trained on the `smile' and`surprise' emotions, the only emotion sequences in thefourth category were those of `anger.'In the relative analysis, we compare the responses ofthe two networks; the thresholding is done in the ear-lier absolute stage of analysis. In the case of two net-works, we have four possible combinations of outputs:Yes/Yes, No/Yes, Yes/No, and No/No (where a \Yes"signi�es that a network recognizes a sequence as itsspecialization emotion, and a \No" signi�es the net-work did not recognize the emotion). The Yes/No andNo/Yes responses are straight forward, in that the rel-



ative emotion response is taken as the emotion of thenetwork that responded with a \Yes". The No/No rel-ative response also represents a clear answer that nei-ther network recognizes the emotion of the sequence.The Yes/Yes response is ambiguous however, and is re-solved by the relative analysis. To resolve the Yes/Yesambiguity, the absolute output statistics of each net-work for the ambiguous sequence are compared. Weused the number of stages turned on as the comparisonstatistic. The network that had the highest numberof stages turned on was declared the winning network,and the resultant emotion was determined to be thespecialization emotion of that network. The Yes/Yesambiguous response was possible in test categories 1,2, and 3; thus, the relative ambiguity resolution wasexpected to improve the performance for these threecategories. Table 4 shows the results from the relativeanalysis after the ambiguity resolution for categories1, 2 and 3.familiar seq. unfam. face unfam. seq. foreign expr.30/34=88% 11/15=73% 11/12=92% 14/18=77%Table 4: The results of the relative analysisIn order to compare the absolute and relative anal-yses, the absolute performances for the SMILENET1 and the SURPNET 1 are combined into one per-formance measure based on a weighted average of thenumber of test cases for each network in each test setcategory, except category 4, since it does not apply.Table 5 shows the combined results from the absoluteanalysis compared with the results from the relativeanalysis for each category. The results show an ex-analysis familiar seq. unfamiliar face unfamiliar seq.absolute 85% 70% 100%relative 88% 73% 92%Table 5: Comparison of the absolute results with therelative resultspected slight performance improvement for categories1 and 2, and an unexpected slight reduction in perfor-mance for category 3 between the absolute and relativeanalysis. The reduction in performance for category 3was caused by the incorrect network having a higherscore than the correct network.7 ConclusionIn this paper, we developed a human emotion de-tection system based on radial basis function network.By training the network, it was able to learn the cor-relations between facial feature motion patterns andspeci�c emotions. In order to capture the temporalrelations that are important to emotion detection sev-

eral enhancements were made to the underlying net-work architecture. In order to make the problem moretractable, the emotion detection problem was decom-posed at several levels: emotion, facial feature, andmotion direction sensitivity levels. For our prelimi-nary experiments, of the six universal human emo-tion expressions, we trained networks to recognize the`smile' and `surprise' emotions. Our experiments weredesigned to test a network's retention, extrapolation,and rejection abilities. The analysis of the experimen-tal results were conducted in an absolute and a rela-tive mode. The purpose of the relative mode was toimprove overall emotion detection over the absolutemode by comparing all network outputs and picking awinner.Our experiments suggest that networks tuned bet-ter on emotions that involved more pronounced mo-tion. We also found that a trade-o� existed betweenlarge and small receptive �eld widths. Large widthsimproved extrapolation, while degrading retention andrejection, while small widths had the opposite e�ect.References[1] M. Abdel-Mottaleb, R. Chellappa, and A. Rosen-feld, \Binocular motion stereo using MAP esti-mation", IEEE CVPR, 321-327, 1993.[2] J.N. Bassili, \Emotion recognition: The role offacial movement and the relative importance ofupper and lower areas of the face," Journal ofPersonality and Social Psychology, Vol. 37, 2049-2059, 1979.[3] J. Hertz, A. Krogh and R.G. Palmer, Introductionto the Theory of Neural Computation, AddisonWesley, 1991.[4] K. Mase, \Recognition of facial expression fromoptical ow," IEICE Transactions, Vol. E 74, No.10, 3474-3483, 1991.[5] J. Moody and C. Darken 1988. \Learning withLocalized Receptive Fields," Proceedings of the1988 Connectionist Models Summer School, edsTouretzky, Hinton, and Sejnowski. Morgan-Kaufmann Publishers, 1988.[6] D.A. Pomerleau, Neural Network Perception forMobile Robot Guidance, Ph.D. thesis, CarnegieMellon University, Department of Computer Sci-ence, 1992.[7] M. Seibert and A.M. Waxman, \Adaptive 3-DObject Recognition from Multiple Views", IEEEPAMI, Vol. 14, No. 2, 107-124.
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