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Commentary on

Camille Jordan’s

Essay on the Geometry of n Dimensions

G. W. Stewart

In 1875 Camille Jordan [13] published a paper on n-dimensional geometry in the
Bulletin de la Société Mathématique (tome 3).1 Let Jordan tell us why.

It is well known that Descarte’s merger of analysis and geometry has proved equally
fruitful for each of these two disciplines. On the one hand, geometers have learned
from their contact with analysis to give their investigations an unprecedented gen-
erality. Analysts, for their part, have found a powerful resource in the images of
geometry, as much for discovering theorems as for presenting them in a simple,
impressive form.

This resource vanishes when one turns to the consideration of functions of more
than three variables. Moreover, the theory of these functions is, comparatively
speaking, poorly developed. It appears that the time has come to fill this gap by
generalizing the results already obtained for the case of three variables. A large
number of mathematicians have considered this topic in more or less specialized
ways. But I am not aware of any general work on this subject.

It is no exaggeration to call this work a foray by a great mathematician into largely
unexplored territory, and Jordan’s geometric intuition is something to behold. One of
the high points of his work is his unearthing of what today we call the canonical angles
between subspaces. Another is his anticipation of Lie groups. He uses many of the ideas
of modern vector space theory, such as the standard definition of linear independence
and the Steinitz exchange theorem. Moreover, he describes a general orthogonalization
procedure that includes the widely used Gram–Schmidt method. Yet the paper seems
not to have attracted much attention. Although it is sporadically referenced today for
its introduction of canonical angles, it is not cited in the historical surveys of Dorier
[9] and Moore [16]. Nor is it mentioned in the biographies the Dictionary of Scientific
Biography [8] or the McTutor History of Mathematics [17]. Moreover, it seems to have
had little influence on Jordan’s successors. So far as I can tell, the modern theory
of finite dimensional liner spaces was developed entirely without reference to Jordan’s
work.

One reason for this is, perhaps, that the paper presents many difficulties for its
reader, then and today. First of all, Jordan’s planes are defined as the locus of points
satisfying a system of (typically inhomogeneous) equations — what we would call a trans-
lated subspace or a linear manifold. This creates an uncomfortable inversion between

1The introductory section of Jordan’s paper appeared word-for-word in 1872 the Comptes Rendus
de l’Académie des Sciences, Paris [11], which suggests that the paper was by that time complete.
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2 Jordan 1875

the dimensions of his planes and their numbering. What Jordan calls a 1-plane, or
simply a plane, is defined by single equation and has dimension n − 1. On the other
hand, our standard two dimensional plane is Jordan’s (n−2)-plane, whose points satisfy
n−2 independent linear equations. It takes a great deal of effort to pass back and forth
between these two points of view.

In addition, Jordan establishes his results by manipulating the defining equations
of his planes, which obscures the physical geometry of the planes themselves. For
example, the intersection of two planes corresponds to the union of their equations.
Again, whereas in linear algebra subspaces are built up as linear combinations of basis
vectors, Jordan regards his planes as being the intersection of 1-planes.2

Another difficulty is Jordan’s widespread use of elimination to prove his results.
This technique, which is related to what today we would call block Gaussian elimination,
consists of starting with a set of linear equations and obtaining a smaller set of equations
in a reduced number of variables. This is, of course, perfectly legitimate. But Jordan
often leaves the details unclear or fails to show that the required elimination can be
effected.

Finally, Jordan’s exposition is not easy going. At a low level he does not always
arrange his materials well, and he is frequently obscure. Typos abound. At a higher
level, he often does not provide enough detail to understand the statements of his
theorems or their proofs. In my view the paper has an improvisatory flavor — Jordan
seems to be developing his subject as he writes. It is reasonable to conjecture that had
he rewritten the paper, it would it would have been more accessible

The comments above should not be allowed to obscure the significance of Jordan’s
results. He his profound understanding of his subject leads him to deep theorems —
especially the nature of parallelism and the concept of canonical angles between planes.
Later he introduces the Lie group of orhogonal matrices. If his rigor is not up to our
standards, all his results, perhaps with minor modifications, remain nonetheless true.

This commentary is written to supplement my translation of Jordan’s paper. The
translation itself stops at the point where Jordan has introduced the canonical angles
between planes.3 For reasons given above, the reader can expect both the original and
the translation to be hard going — hence the commentary. In preparing it I have had
to compromise between two extremes.

2J. Dieudonné, in his introduction to the third volume of Jordan’s collected works [7], has this to say.
“Up to 1880 the elementary notions about n-dimensional space had not been widely disseminated, and in
this work Jordan wishes to show how the classical results from the geometry of two and three dimension
may be generalized. He confines himself to real Euclidian geometry and uses only the methods of analytic
geometry. Thus he defines linear manifolds by their equations (or alternatively as the intersections of
hyperplanes) and not (in contrast with Möbius or Grassmann) as being generated by points or vectors.
This [approach] obviously complicates his manipulations.”

3See Dieudonné’s introduction [7] for commentary in modern terms of the material not appearing in
this translation.
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On the one hand, a blow-by-blow description of Jordan’s development in his own
terms will not be of much help to the modern reader. On the other hand, to recast and
prove his results in the terms of vector spaces would be anachronistic and would trivialize
his accomplishments. The compromise adopted here is to stick close to Jordan’s proofs,
but recast his manipulations in modern terms. For example, we will use matrices freely
along the terminology and techniques of modern linear algebra, e.g., null spaces.

Two points need further amplification. First, in this overview we will make free use
of matrix inverses. Although Cayley had introduced matrices in the middle of the nine-
teenth century [4, 5], at the time of Jordan’s paper they had not caught on. Nonetheless,
mathematicians of the time had ways of getting at the elements of the inverse matrix.
Jordan himself gives an example in his treatment of changes of coordinate systems.

Second, many of the matrix reductions, canonical or otherwise, that we now write
as transformations of the matrix in question (e.g., similarity transformations), were
discovered in the nineteenth century as reductions of linear or bilinear forms by changes
of variables [14, p. 804 ff.]. Since the correspondence is rather obvious, I will not hesitate
to use the modern approach in this commentary.

A striking aspect of Jordan’s essay is the constructive approach that informs his
proofs. Behind a typical proof lies an algorithm, however meagerly sketched. One way
of understanding what he is doing is to make these algorithms explicit, which I will do
from time to time in this commentary.

Jordan’s paper consists major divisions identified by Roman numerals and titles.
The entire paper is divided into numbered sections, the numbers running consecutively
without regard to the major divisions. This organization will be followed here, with
frequent merger of sections.

I. Definitions — Parallelism

1. Jordan starts off with basic definitions, beginning with the underlying n-dimensional
space.

We define the position of a point in an n-dimensional space by the n coordinates
x1, . . . , xn.

Note that Jordan’s space is not equipped with the usual apparatus of a vector
space — addition, multiplication by a scalar, etc. Later he will introduce the Euclidean
distance between two points and subsequently transformations of the coordinates. But
his theorems and proofs are all cast in terms of planes, which he defines as follows.

One linear equation in these coordinates defines a plane. Two simultaneous linear
equations that are distinct and not incompatible define a biplane; k equations, a
k-plane; n − 1 equations define a line; n equations define a point. By the generic
term multi-plane we will understand any of the above geometric entities.
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Although it does not become clear until later, by linear equation Jordan means a
(generally) inhomogeneous equation. Typically he will write the equation of a k-plane
as

A1 = a11x1 + · · ·+ a1nxn + α1 = 0,

· · ·
Ak = ak1x1 + · · ·+ aknxn + αn = 0,

(1)

or for short A1 = · · · = Ak = 0. The abbreviated version conceals the difference between
the terms dependent on x and the constants independent of x. In general we will write
the defining equations of a k-plane in the form

Ax = a, (2)

where A is a k×n matrix, x is an n-vector, and a is a k-vector.
It will be instructive to investigate these definitions in the light of today’s mathemat-

ical language. In his definition of plane Jordan’s uses the terms distinct and compatible
only for 2-planes. What he requires for his subsequent definitions is that the equations
have a nonempty set of solutions and that the removal of any equation will change that
set. In today’s parlance this means that the rows of A in (2) are linearly independent.

The term k-plane suggests that k has something to do with the dimensionality of
its solution set. Specifically, the set of solutions of (2) has the following form

x = x0 + zA, zA ∈ N (A) (3)

where x0 is a particular solution of (2) [e.g., A∗(AA∗)−1a] and N (A) is the null space
of A; i.e., {x;Ax = 0}. Thus the Jordan plane generated by (2) is just a translated
subspace

x0 +N (A).

The definition (2) has important consequences. First, since the k rows of A are
linearly independent, the dimension of its null space is n− k. In other words a k-plane
has dimension n − k. In particular, what Jordan calls a plane (i.e., a 1-plane) has
dimension n − 1. As we shall soon see, the Jordan’s planes are sort of dual to vectors
in a vector space.

Second, a plane is a point set, not a set of equations.4 As long as that point set
is maintained, A and a in (2) can be changed. In particular if L is nonsingular the
equation

LAx = La (4)

defines the same plane as does (2). Note for later reference that (4) implies that we

can replace A with a matrix having orthogonal rows; e.g., by (AA∗)−
1
2A. Jordan will

4However, Jordan often identifies planes and their equations and will on occasions refer to, e.g., the
multi-plane (1).
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later describe an orthogonalization method of his own that is related to the well-known
Gram–Schmidt orthogonalization method.

Third, in (3) the vector x0, may be replaced by x0 + z0, where z0 ∈ N (A), without
changing the plane. Informally, sliding a plane along itself does not produce a new
plane.

Finally, Jordan’s multi-planes can move about Rn. This movement can be controlled
by varying the right-hand side a of (2). Note that if a 6= a′, then the intersection of the
planes defined by the equations Ax = a and Ax = a′ is the empty set. Thus the planes
defined by A are either identical or nonintersecting (i.e., parallel).

2. Jordan now introduces the concept of a generating plane:

Let
A1 = 0, . . . , Ak = 0 (J1)

be the equations of a k-plane Pk. If these equations are combined linearly, we get
an infinite number of equations of the form

λ1A1 + · · ·+ λkAk = 0.

The various planes represented by these formulas clearly have Pk as their common
intersection, and for short we will call them the generating planes of Pk.

· · ·
It is clear that in place of the equations (J1), we can define Pk by the equations of
any k generators

λ1A1 + · · ·+ λkAk = 0, , λ′1A1 + · · ·+ λ′kAk = 0, . . . ,

provided that the determinant of the coefficients λ is not zero.

In other words, the generating planes are of the form `∗A = `∗a. It takes only k
independent generating planes to define their plane. Here Jordan uses the fact that if
(A∗ B∗) has full column rank then the plane generated by the equation(

A
B

)
x =

(
a
b

)
is the intersection of the planes Ax = a and Bx = b.

Generating planes play a role complementary to vectors in linear spaces. Jordan
builds his multi-planes from the top down by intersecting generating planes. This should
be contrasted with the technique of building up subspaces from a basis of vectors.

Finally, Jordan notes that the points of a k-plane can be represented as a function
of n − k variables. He shows that by adjoining equations to (2) to form a nonsingular
equation of the form (

A11 A12

L11 L12

)(
x1

x2

)
=

(
a
`

)
. (5)



6 Jordan 1875

This equation may then be solved for x1 and x2 in terms of L. Although Jordan does
not give the details, it is a good illustration of the method of elimination, which Jordan
frequently uses to establish his results. We will take time out to show how it works.

Assume that A11 is nonsingular. If we multiply (5) by the matrix(
I 0

−L21A
−1
11 I

)
,

we get (
A11 A12

0 L22 − L21A
−1
11 A12

)(
x1

x2

)
=

(
a

`− L21A
−1
11 a

)
.

If, in addition, L22 − L21A
−1
11 A12 is nonsingular, then we can write

x2 = (L22 − L21A
−1
11 A12)−1(`− L21A

−1
11 a)

which exhibits x2 as a function of `. Similarly, x1 is a function of x2 and hence of `:

x1 = A−1
11 (a−A12x2). (6)

Thus we have parameterized the vectors x belonging to the plane defined by (2) as a
function of the (n−k)-vector `.

There are three comments to make about the above development

• The particular procedure given here is called block Gaussian elimination with back
substitution. It is one of several variants of elimination. What they all have in common
is that they take a linear system in a set of variables and produced a smaller system in
a subset of the variables. Hence the name elimination. They also provide a means for
finding the values of the eliminated variables once the smaller system has been solved.
We will see other examples a little later.

• If A11 is singular, the process breaks down. In this case there is a cure: rearrange
the columns of A so that A11 is nonsingular, a strategy that now goes under the name
of pivoting. In this case it can always done because the rows of A are independent.
It should be noted that Jordan does not mention that pivoting may be necessary, but
later he sometimes suggests the equivalent by requiring changes in the ordering of his
equations or their terms.

• Even after pivoting, there is no guarantee that the matrix L22 − L21A
−1
11 A12 (some-

times called a Schur complement) is nonsingular. It may be possible to choose L11 and
L12 so that this is always true. For example, if we choose L21 = 0 and L22 = I, then
L22 − L21A

−1
11 A12 = I, so that x2 = ` and x1 = A−1

11 (a−A12x2). In other words, if A11

is nonsingular, the last k−n components of x may be chosen arbitrarily and the first k
can be recovered from (6).
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3. Jordan now turns to the interpolation problem of how planes may be determined by
a choice of points in Rn.

A k-plane is determined by n − k + 1 points. Specifically, consider an arbitrary
plane that is forced to contain the n− k + 1 points. This condition gives n− k + 1
linear equations in the n + 1 coefficients of the plane. If n − k + 1 coefficients are
eliminated using the these conditional equations, k arbitrary coefficients remain in
the equation of the plane. Therefore, the general equation of any plane that pass
through the n− k + 1 given points has the form

λ1A1 + · · ·+ λkAk = 0, (J2)

and the k-plane A1 = · · · = Ak = 0 is the common intersection of these planes
passing through the n− k + 1 given points.

Let’s see how this plays out in matrix terms. Let X denote the n×(k+1) matrix
whose columns consist of the coordinates of the points determining the plane. Write a
single generating plane in the form a∗x−α = 0; The n− k+ 1 coefficients are given by
the equation a∗X −αe∗ = 0, where e is the vector of dimension n− k+ 1 consisting of
all ones. If we set

X̂ =

X1

X2

e∗

 ,

where X1 is of order n− k + 1, and partition (a∗ α) = (a∗1 a∗2 α) conformally, then

a∗1X1 + a∗2X2 − αe∗ = 0.

Hence if X1 is nonsingular

a∗1 = −(a∗2X2 − αe∗)X−1
1 . (7)

Thus we may we may select (a∗2 α) and fill out a by computing a1 from (7). In fact,
since the dimension of (a∗2 α) is k, we can select k independent samples and obtain k
generating planes for the k-plane containing the points x1, . . . , xn−k+1.

All this depends on X1 being nonsingular. Otherwise, we can use row pivoting to
make it so. Jordan allows the possibility by not specifying which of the n − k + 1 of
the variables are to be eliminated. He has thus shown that the ability to carry out the
elimination is a sufficient condition for the theorem. However, he does not show that the
condition is necessary. It might be that there are points that determine a plane of the
appropriate dimension for which the elimination cannot be carried through. Fortunately,
it it can be shown that any such plane cannot be unique unless X̂ is of full rank.
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4. In §§4–12 Jordan defines a notion of parallelism between two planes and treats
its consequences. Essentially, two hyperplanes are parallel if they have some parallel
generating planes. Since generating planes are 1-planes, Jordan begins his discussion of
parallelism by considering what it means for two 1-planes

a∗x = α and b∗x = β, a, b 6= 0, (8)

to be parallel. He treats three cases.

1. If the components of a are not proportional to those of b— i.e., if a and b are
linearly independent — then (8) has a solution x. Hence, the two planes intersect
at x and cannot be parallel.

2. If a = µb for some µ 6= 0 and α 6= µβ, then (8) has no solution; i.e., the two planes
do not intersect and hence are parallel.

3. If a = µb and α = µβ then the two planes coincide and are by convention parallel.

To complete the picture here is a fourth case that Jordan will consider later. Specif-
ically, suppose that a and b are orthogonal: that is,

a∗b = 0. (9)

Then then the two planes are at right angles. For example, suppose that α = β = 0, a
is the lies along the x-axis in three-dimensional space, and b lies along the y-axis. Then
the two resulting planes are the (y, z)-plane and the (x, z)–plane. Jordan will generalize
this notion and say that the resulting planes are perpendicular.

5. Jordan now turns to a general definition of parallelism. He begins enigmatically.

Let Pk and Pl be two arbitrary multi-planes. If from among the generating planes
of Pk there are some that that are parallel to generating planes of Pl, then they
generate a multi-plane.

Specifically, Jordan considers the set Pk of all generating planes of Pk that are
parallel to one of the generating planes of Pl and the set Pl of all generating planes
of Pl that are parallel to one of the generating planes of Pk. Since the equations of
two such planes are of the form a∗x = α and b∗x = β, where the vectors a and b are
proportional, we can write the two planes in the form c∗x = α̂ and c∗x = β̂. It follows
that the correspondence between generating planes in Pk that are parallel to generating
planes in Pl is one-one.

From Pk Jordan draws ρ equations C1 = 0, . . . , Cρ = 0 that satisfy the following
conditions:
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1. They are mutually independent; i.e., they satisfy no linear identity of the form

λ1C1 + · · ·+ λρCρ = 0.5

2. There is no generating plane of Pk that is independent of the chosen planes
and is parallel to a generating plane of Pl.

This set of equations, which we will write Cx = a1, generates a plane which Jordan
calls Pρ. In addition there is a corresponding plane P ′ρ whose generators are taken from
the Pl and can be written in the from Cx = b1. Jordan then says that Pk and Pl have
a common parallelism of order ρ.

This definition leads directly to equivalents to the three cases that derive from
equation (8). To see this, let us write the equations for Pk and Pl in the form(

C
A2

)
x =

(
a1

a2

)
and

(
C
B2

)
x =

(
b1
b2

)
, (10)

where A2, a2 are chosen from the equations for the generating planes of Pk and similarly
for B2 and b2.6 Now first, if C is is an empty matrix, the rows A = A2 and B = B2

are linearly independent, and the the equations always have a solution, no matter what
their right hand sides. In other words, the planes Pk and Pl always have a point of
intersection and are therefore not parallel. Second if C is not empty and a1 6= b1, planes
defined by the the the two systems are inconsistent and have no point of intersection;
i.e., the two planes are parallel. Third, if a1 = b1 then the two planes intersect in a
(k+l−ρ)-plane. In Jordan’s terms, Pρ and P ′ρ are identical.

When k + l > n it would seem possible that k + l − ρ could also be greater than n,
in which case the partitioning in (10) would make no sense. However, if k + l > n the
union of the spaces spanned by the vectors in A∗ and B∗ cannot fit into n-space unless
the spaces have at least k + l − n independent vectors in common — vectors that will
contribute to C. Thus, ρ cannot be not less than k + l− n, and hence k + l− ρ cannot
be greater than n.

6, 7, 8, 9. Jordan devotes these sections to finding

conditions that must be satisfied by the coefficients of the equations of Pk and Pl for
these planes to have a mutual parallelism of order ρ and for them to be contained
in the same ρ-plane.

5It is worth noting that this conditions for equations is essentially the same as Frobenius’ definition
of linear independent set of vectors [10, p.232] Also see [9, p.258].

6Later (§12) Jordan will introduce these equations expanded from C. The existence of A2 and B2

requires the use of some variant of the Steinitz exchange lemma: see [9, p.250–251]. Whether or not
Jordan regarded the lemma as obvious is not easily decided.



10 Jordan 1875

Jordan begins with the defining equations of his multi-planes Pk and Pl: namely,
Ax = a and Bx = b, where it is assumed that A and B have full row rank. For a linear
combination of the equations, say `∗Ax = `∗a and m∗Bx = m∗b to generate parallel
planes, we must have `∗A = m∗B (up to a scaling factor which we may assume to be
one). Equivalently we must have

(B∗ A∗)
(
m
−`

)
= 0. (11)

Thus the problem becomes one of determining a maximal set of independent null vectors
of (B∗ A∗). The cardinality of this set is the order of parallelism ρ of Pk and Pl.

The solution to this problem involves elimination. In §7, Jordan assumes that k+l ≤
n. He then eliminates m followed by the elimination of k−ρ components of `. This allows
the remaining ρ components of ` to be chosen arbitrarily, after which the remaining
components of ` and the components of m may be determined.

The following algorithm implements these ideas using Gaussian elimination with
partial and complete pivoting. The pivoting strategies ensure that m is eliminated first
and that zeros end up in the proper place.7

Perform Gaussian elimination on the matrix (B∗ A∗), using partial pivoting
on B∗ and then switching to complete pivoting to process A∗.

The result of this algorithm may be summed up in the following equation:

T (B∗ A∗E) =


l k−ρ ρ

l B̂11 Â12 Â13

k−ρ 0 Â22 Â23

n−k−l+ρ 0 0 0

, (12)

where

1. T is a nonsingular matrix of order n. Because it is nonsingular, the null vectors
of the right-hand side of (12) are the same as those of (B∗ A∗E).

2. E is a permutation matrix of order k that reflects the reordering of the columns
of A∗ due to complete pivoting. Its inverse must be applied to the right-hand side
to get the null vectors of (B∗ A∗). To keep things simple, we will assume that
E = I.

7Briefly, Gaussian elimination on a matrix of order n consists in successively using diagonal elements
to zero out (eliminate) the subdiagonal elements of a matrix. If, at step k, the diagonal element akk
is zero, the elimination may fail. Pivoting consists replacing akk with another, nonzero element. In
partial pivoting the pivot is chosen to be the largest element (in magnitude) from the pivot column
akk, . . . , ank. In complete pivoting the choice is made from the elements aij (i, j = k, . . . , n).
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3. B̂11 is a nonsingular upper triangular.

4. Â22 is a nonsingular upper triangular matrix.

We may obtain a complete set of independent null vectors by solving the system(
B̂11 Â12 Â13

0 Â22 Â23

) M
−L2

Iρ

 = 0.

This gives
L2 = Â−1

22 Â23 and M = B̂−1
11 (Â12L2 − Â13).

Thus the full matrix L is given by

L =

(
Â−1

22 Â23

Iρ

)
. (13)

The ith row of L∗ is (`i eρ−i+1). On comparing this with (11) we see that the coefficients
of ith generating plane of P ′k consists of the (ρ−i+1)th generating plane of Pk and a
linear combination of the first k−ρ generating planes. The right-hand side of P ′k consists
of the same linear combination of the right-hand sides of the generating planes of Pk.
This is essentially the result that Jordan announces in (J10) and (J11).

In §8 Jordan briefly treats the case k + l > n. In this case, as noted above, at least
k+ l−n of (A∗ B∗) must be linearly dependent on the others. Removing those columns
reduces the case to where k + l ≤ n, which can be treated as above.

The algorithm given above also works when k > n and gives the following result:

T (B∗ A∗E) =


l n−l−σ σ k+l−n

l B̂11 Â12 Â13 Â14

n−l−σ 0 Â22 Â23 Â24

σ 0 0 0 0

,
where 0 ≤ σ ≤ n − l and Â22 is nonsingular and upper triangular. The null vectors of
this matrix can be obtained in the form

(
B̂11 Â12

0 Â22

)−1(
Â13 Â14

Â23 Â24

)
−Ik+l+σ−n

 . (14)

Thus the order of parallelism is ρ = k + l + σ − n.
Here are some comments on these results.

• Jordan does not mention pivoting explicitly. But he suggests it by saying that there
are choices of variables to eliminate and then assumes that their indices are conveniently
numbered; e.g. at the beginning or end of a sequence of variables. For example:
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Then equation (J7) allows the determination of µ1, . . . , µl and k−ρ of the quantities
λ, say λρ+1, . . . , λk, as functions of the ρ free parameters λ1, . . . , λρ [emphasis
added].

• The above quotation suggests that Jordan requires a knowledge of ρ to carry through
his argument. This is consistent with his statement that he wants to find conditions
under which Pk and Pl have parallelism of order ρ. In the Gaussian elimination algo-
rithm, on the other hand, the value ρ is evident in the final form (12). All you have to
do is count the number of rows in A22 and subtract it from k.

• The Gaussian elimination algorithm and (14) can be implemented to run on a com-
puter and determine the coefficients of the generating planes of P ′k and P ′l . The actual
computation, however, must be performed in finite precision arithmetic with rounding
error, and the result is that quantities that should be zero will be in general nonzero,
which is to say that no parallelism will be detected. Thus for the algorithm to work,
these offending quantities must be detected and set to zero. Unfortunately, this process
is fraught with difficulties only too well known to numerical analysts.

10, 11, 12. Jordan makes the following statements

If two multi-planes Pk and Pl have no parallelism, they intersect in a multi-plane
Pk+l.

If Pk and Pl are parallel of order ρ and do not have the same ρ-plane, then they do
not intersect.

If Pk and Pl have the same ρ-plane, then they intersect in a (k+l−ρ)-plane.

These three statements follow easily from the form (10).

13. Jordan states:

A k-plane Pk sliding over an l-plane while remaining parallel to itself it produces a
multi-plane.

Here Jordan seems to be going around Robin Hood’s barn to prove what he has es-
tablished previously. For if Pk and Pl intersect then either they must have no parallelism
or they must lie in the same ρ-plane. In the first case they intersect in an (k+l)-plane
[§10]. In the second they intersect in a (k+l−ρ)-plane [§12].

II. Distance and Perpendicularity

Jordan now proceeds to the metric geometry of his planes. Here is an outline of his
results.

1. Jordan begins by defining what we now call the Euclidean distance in n-space.
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2. He then shows how to compute the point x in a k-plane Pk that is nearest to an
arbitrary point y. He calls x the projection of y onto x.

3. He uses projections to define the mutual perpendicularity between two planes Pk
and Pl and gives an elegant characterization of perpendicularity.

4. He then shows that any k-plane can be written as the intersection of k mutually
perpendicular planes.

5. He finally establishes what is now called the Pythagorean equality for projections.

14. Jordan begins with some definitions.

The distance between two points whose coordinates are respectively x1, . . . , xn and
y1, . . . , yn is defined by the formula

∆ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The distance between a point p and a multi-plane is its distance to the point of the
multi-plane that is nearest it. This point q is the projection of the point p onto the
multi-plane.

The distance between two multi-planes that do not intersect is the distance between
the nearest neighbors of their points.

The projection of a multi-plane onto another is the locus of the projections of its
points.

Note that Jordan’s distance is defined only between two points; the points themselves
do not have associated magnitudes, unlike vectors in a vector space.

15. Jordan now sets out to determine the coordinates of the projection x of a point
y onto the plane Pk whose equations are Ax = a. His argument goes as follows. The
differential of the distance (x−y)∗(x−y) with respect to x is 2(x−y)dx. Hence, setting
the differential to zero, we get

(x− y)dx = 0. (15)

But x is constrained to lie on Ak. Hence

Adx = 0. (16)

This means that (15) must be a linear combination of the rows of (16). Hence for some
k-vector `

x− y = A∗`. (17)

Now if we eliminate the variables `, we end up with n− k equations for x. Conjoining
these with the equations

Ax = a,
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we get n equations in n unknowns for x.
It is worth while to see how the elimination plays out in matrix terms. Write the

equation x− y = A∗` in the partitioned form(
x1 − y1

x2 − y2

)
=

(
A∗1
A∗2

)
`,

where A∗1 is assumed to be nonsingular. If we premultiply this equation by(
Ik 0

−A∗2A
−∗
1 In−k

)
,

we get (
x1 − y1

x2 − y2 −A∗2A
−∗
1 (x1 − y1)

)
=

(
A∗1
0

)
`,

or (
In−k −A∗2A

−∗
1

)(x2 − y2

x1 − y1

)
= 0,

and finally (
In−k −A∗2A

−∗
1

)(x2

x1

)
= y2 −A∗2A

−∗
1 y1.

If we now append the system Ax = a, we get(
In−k −A∗2A

−∗
1

A2 A1

)(
x2

x1

)
=

(
y2 −A∗2A

−∗
1 y1

a

)
. (18)

If we multiply the first row of this equation by A2 and subtract it from the second row,
we get the equation

(A1 +A2A2A
−∗
1 )x1 = a−A2y2 +A2A

−∗
2 A−∗1 y1 (19)

for x1. Then x2 may be obtained from the equation

x2 = y2 +A∗2A
−∗
1 (x1 − y1).

There are three comments to be made on this derivation.

• In practice the matrix A∗1 may be singular, in this case, one can pivot by interchanging
rows of (17) so that the new A∗1 is nonsingular. This is always possible because A∗ is
assumed to be of full rank.

• Jordan does not show that the augmented the system (18) is nonsingular. From
(19) we see that it is true if and only if A1 + A2A2A

−∗
1 is nonsingular. This matrix is
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nonsingular if and only if A1A
∗
1 +A2A

∗
2 = AA∗ is nonsingular, which is true because A

has full row rank.

• Jordan overlooks the possibility of determining x directly from (17). The derivation
is simple. On multiplying (17) by A, we get

a−Ay = AA∗`.

Since the rows of A are independent, AA∗ is nonsingular and

` = (AA∗)−1a− (AA∗)−1Ay. (20)

Finally substituting this expression in (17), we get

x = A∗(AA∗)−1a+ [I −A∗(AA∗)−1A]y (21)

It is worth noting that (21) is in the form (3). Specifically, A∗(AA∗)−1a is a particular
solution of Ax = a and [I −A∗(AA∗)−1A]y lies in the null space of A.

16. Jordan now introduces the notion of perpendicularity between planes.

In general, an l-plane Pl will be said to be perpendicular to a k-plane Pk if given
two planes P ′

l and P ′
k that are parallel to Pl and Pk respectively and pass through

an arbitrary point q, the projection of each point of P ′
l onto P ′

k lies in intersection
of P ′

l and P ′
k.

It is clear that the concept of perpendicular planes is not the same as that of or-
thogonal subspaces, since the latter intersect only at the origin. The model to look to
is the coordinate planes of Cartesian 3-space. Here, for example, the xy-plane and the
xz-plane have a nontrivial intersection, namely, the x-axis. However, all projections
from one plane onto the other lie on the x-axis.

17, 18, 19, 20. In these sections Jordan establishes a condition for perpendicularity of
two planes Pk and Pl and shows that perpendicularity is a reciprocal relation, something
that is not obvious from his definition. The result, which uses an extension of the
representation (10), is simple and elegant.

Let the equations for Pk and Pl be written in the form(
C
A2

)
x =

(
a1

a2

)
and

(
C
B2

)
y =

(
b1
b2

)
, (22)

where

CA∗2 = 0 and CB∗2 = 0. (23)
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Then a necessary condition for Pl to be perpendicular to Pk is that

B2A
∗
2 = 0. (24)

The representation (22) differs from (10) by the orthogonality hypotheses (23). Jor-
dan provides the algorithmic wherewithal to obtain the required orthogonality in §§20–
21, which we will discuss separately.

Jordan gives three proofs of his result. The first treats the case where C is empty;
i.e., when Pk and Pl have no parallelism. The second treats the general case, but does
not explicitly give the condition (24). The third proof also treats the general case, and
that is the one that will be described here here.

First note that the definition of perpendicularity is stated in terms of two planes P ′k
and P ′l that have a common point q. Without loss of generality, we may assume that
q = 0, which amounts to setting a1, a2, b1, and b2 to zero in (22). To keep the notation
simple we will assume that Pk = P ′k and Pl = P ′l . Thus our equations become(

C
A2

)
x =

(
0
0

)
and

(
C
B2

)
y =

(
0
0

)
. (25)

Suppose now that y ∈ Pl, so that y satisfies (25). Let x be the projection of y
onto Pk, so that x satisfies (25). Then x and y satisfy (17), which we may write in the
partitioned form

x− y = (C∗ A∗2 )

(
`1
`2

)
. (26)

By the definition of perpendicularity, x also must be in Pl; i.e.,(
C
B2

)
x =

(
0
0

)
.

From (25) It follows that (
C
B2

)
(x− y) = 0. (27)

If the value of x− y in (26) is substituted into (27), the result is(
C
B2

)
(C∗ A∗2 )

(
`1
`2

)
=

(
CC∗ 0

0 B2A
∗
2

)(
`1
`2

)
=

(
0
0

)
,

where the zeros in the matrix come from (23). It follows that `1 = 0 and

B2A
∗
2 `2 = 0. (28)
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At this point we have essentially followed Jordan’s development. However, Jordan
goes on to claim that “all the values of λ1, . . . , λk that satisfy these ρ equations [i.e.,
CC∗`1 = 0] must satisfy as an identity all the other equations of the system.” The
assertion is not obvious, since `2 depends on y. What is needed is the assertion that
as y varies over Pl, the vector `2 varies over all of Rk−ρ. This, along with (28), would
imply that B2A

∗
2 = 0.

In fact, this assertion is true. But even granted the assertion, it only establishes
necessity of the conditions for perpendicularity. Jordan goes on to state that, since
B2A
∗
2 = 0 implies A2B

∗
2 = 0, Pk is orthogonal to Pl. But this is true only if the

condition A2B
∗
2 = 0 is sufficient for Pk to be orthogonal to Pl, something Jordan does

not prove.
It is possible to establish sufficiency by algebraic manipulations. Necessity appears

to require additional analytic methods — specifically the invocation of the singular value
decomposition or an equivalent. In an appendix to this commentary I will give the proofs
of both necessity and sufficiency. As it turns out, Jordan introduced the singular value
decomposition in a paper that appeared in the year before the present paper [12, 19]8

and hence would have understood these proofs.
�

We will now turn to Jordan’s method of orthogonalization, which appears in §20.
The problem is to adjust A2 and B2 in (22) so that they satisfy (23).

Thus Jordan considers the problem of finding a linear combinations the rows of C
and A2 that is orthogonal to the rows of C. Since the planes generated by C and A2

have no parallelism, we must find row vector p∗ = (p∗C p∗A), where pC has ρ components
and pA has k − ρ components such that

(p∗C p∗A)

(
C
A2

)
C∗ = 0. (29)

It is easily seen that
p∗C = −p∗AA2C

∗(CC∗)−1. (30)

(Jordan arrives at essentially the same result by invoking elimination). If we choose
k− ρ independent vectors for pA (e.g., unit vectors), then we obtain k− ρ independent
vectors p whose planes are all perpendicular to the generating planes of C and may
replace A2.

It should be noted that if CC∗ is a diagonal matrix (i.e., the rows of C are orthog-
onal) and choices for the vectors pA are the unit vectors, then Jordan’s algorithm is
equivalent to a single step of the modified Gram–Schmidt algorithm. We will return to
this point in a moment.

21. Jordan states:
8However, see footnote 1
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Any k-plane Pk can be represented in an infinite number of ways as the intersection
of k rectangular planes. [Note the distinction between a k-plane and k planes.]

Jordan does not define the term rectangular, but he means that the k planes are
mutually perpendicular. As we have seen, perpendicularity in 1-planes amounts to
orthogonality of the vectors of coefficients of the planes. It follows that if the equation
for Pk is Ax = a, and we replace it by SA = Sb, where SA(SA)∗ is a diagonal matrix,
then the k rows of SA = Sb are equations of the required 1-planes.

Jordan proceeds by successive orthogonalization using the algorithm he sketched in
§20. Specifically, he chooses a plane generator A1 of Pk. He then orthogonalizes rows
of A against A1 to produce a (k−1)-plane Pk−1. From Pk−1 he draws another plane
generator A2. By construction A2 is orthogonal to A1. The next step is to find a (k−2)-
plane Pk−2 in Pk that is perpendicular to A1 and A2. From Pk−2, he draws a plane
generator A3 that is necessarily orthogonal to A1 and A2. The procedure continues by
finding a (k−3)-plane in Pk that is perpendicular to A1, A2, and A3, from which he
which draws plane generator A4, and so on. The 1-planes defined by A1, . . . , Ak are the
ones required by his assertion.

Jordan is vague about he how he finds the planes Pk−1, Pk−2, etc. A likely possibility
is to take C in (29) from, say for example, the generators A1 and A2, and A from the
generators of Pk−2. One then orthogonalizes as above to get the generators of Pk−3.
Because of the orthogonality of A1 and A2, CC∗ is diagonal, and the whole procedure
reduces to a scaled version of the modified Gram–Schmidt algorithm.

Yet it would be wrong to assert that Jordan anticipated the Gram–Schmidt algo-
rithm. He never specifically mentions the choices in the preceding paragraph. The best
that can be said is that he presents a constructive orthogonalization procedure which,
in a particular incarnation, becomes the modified Gram–Schmidt algorithm.9

22, 23. Jordan states:

Let p be an arbitrary point, q be its projection onto a multi-plane Pk, and r be
an arbitrary point of Pk. Then the distances between the three points p, q, and r
satisfy the relation

pr2 = pq2 + qr2.

This is the well-known generalization of the Pythagorean theorem. Jordan proves it
using his characterization of projection in §15.

Jordan next considers the projection of a projection.

Let Pk+l be a multi-plane contained in Pk. The projection [r] of p onto Pk+l falls
on the same point s as the projection of q [onto Pk+l]. [Here q is the projection of p
onto Pk. The notation here comes from his statement of the Pythagorean theorem
above.]

9For more on the history of the Gram–Schmidt algorithm see [15].
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Specifically, he shows that if r is an arbitrary point in Pk+l, then

pr2 = ps2 + sr2. (31)

and concludes that his assertion is true. However, he implicitly uses the result that if
(31) holds for all r in Pk+l then s is the projection of p onto lk+l, which is true but
requires proof.

III. Change of coordinates

The chief contribution of this section is the introduction of changes in coordinate systems
and expressions for the distance between two points in terms of the new coordinates.
However, Jordan begins with a discussion of lines between parallel planes.

24. Jordan states:

Two parallel lines D and D′ extending between two parallel planes P and P ′ have
the same length.

The proof is a straightforward manipulation of the Jordan’s definitions.
At the end of this section he concludes:

Three parallel planes divide two arbitrary lines proportionally.

25, 26, 27. Jordan now turns to the problem defining new coordinate systems. While
we would define a coordinate system by introducing a set of n independent vectors,
Jordan defines his coordinate system in terms of n independent planes.

He begins with the following statement that would seem to belong in the last section.

The locus of points whose distance along a given direction from a fixed plane P is
constant will necessarily be a plane parallel to P .

He then defines his new coordinate system.

Given a system of n independent planes P,Q, . . ., a point in space is completely
determined when one knows its distance from each of these planes, each direction
being taken along, say, the direction of the intersection of the n − 1 other planes.
Specifically, [according to the statement quoted above] these distances determine n
planes parallel to P,Q, . . . whose intersection is the point in question.

As an example, consider the 1-planes x = 0, y = 0, and z = 0 in Euclidean 3-space.
These planes are commonly called the (y, z)-, (x, y)-, and (x, z)-planes. According
to Jordan’s definition for any point (u, v, w) the first of his coordinates is the length
projection of (u, v, w) onto the (y, z)-plane along the direction of the x axis — i.e., u
as might be expected. Similarly the second coordinate is v, and the third is w. These
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turn out to be the same as the original coordinates because of the orthonormality of the
original coordinate axes.

By distance Jordan presumably means a signed magnitude, but he does not specify
the sign. However, a plane P defined by a∗x = α has two sides, one the set of points
y for which α − a∗y > 0 and the other the set for which α − a∗y < 0. (Note that if
α− a∗y = 0, then y ∈ P ). Thus it is reasonable to take the sign of the direction of the
point y to the plane to be the sign of, say, α− a∗y.

Jordan then turns to the problem of computing of computing the new coordinates
for an arbitrary point and then the distance between two points in terms of their coordi-
nates. At the heart of his derivation is the solution of linear equations, which he effects
by means of determinants, essentially expressing the inverse of a matrix in terms of its
adjugate matrix. Here we will translate his development into the language of matrices.
To distinguish between vectors formed from Jordan’s scalars, we will denote all vectors
by an overline; e.g., ξ.

Jordan writes for the equations of the planes P,Q, . . . in the form a∗i x = αi (i =
1, . . . n). Their intersection is the point x satisfying Ax = α, where A = (a∗1 · · · a∗n)∗.
He then turns to the problem of determining the coordinates of an arbitrary point ξ.
He treats them a coordinate at a time.

Specifically, partition

A =

(
a∗1
A2

)
, and α =

(
α1

α2

)
Then the locus of points parallel to the last n− 1 planes must satisfy the equation

A2(x− ξ ) = 0.

Moreover, the point where x intersects the first plane must satisfy

a∗1 (x− ξ) = α1 − a∗1 ξ.

These two equations may be combined into one by writing

A(x− ξ) = e1(α1 − a∗1 ξ),

where e1 is the vector whose first component is one and whose remaining components
are zero. This equation has the solution

x− ξ = A−1e1(α1 − a∗1 ξ) = a
(−1)
1 (α1 − a∗1 ξ),

where a
(−1)
1 is the first column of the inverse of A. It follows that the directed distance

from ξ to x is given by

X1 = ±‖x− ξ‖ = ‖a(−1)
1 ‖(α1 − a∗1 ξ),



Commentary 21

where ‖ · ‖ is the Euclidian norm. The remaining components of the vector of new
components may be found in the same way and the result summarized in the equation

X = W (α−Aξ), W = diag(‖a(−1)
1 ‖, . . . , ‖a(−1)

n ‖). (32)

Jordan uses his equivalent of this formula to compute the distance between two
points whose new components are X and X

′
. Specifically, (32) can be inverted to give

the following expressions

ξ = A−1W−1X +A−1α and ξ
′
= A−1W−1X

′
+A−1α.

Hence
‖ξ − ξ′‖2 = (X −X ′)∗(W−1A−∗A−1W−1)(X −X ′)

= (X −X ′)(X −X ′) + (X −X ′)B(X −X ′),

where B = W − I. Because because the diagonal elements of W−1A−∗A−1W−1 are
one, the diagonal elements of B are zero and its off-diagonal elements are those of
W−1A−∗A−1W−1.

Finally, Jordan observes that if A is orthogonal then B = 0 and ‖X − X
′‖ =

‖ξ − ξ′‖. In other words, if the planes defining the new coordinate system are mutually
perpendicular, then the standard formula for the distance between two points remains
unchanged.

It may be of interest to see how Jordan writes the elements of A−1. He effectively
uses the formula

A−1 =
adj(A)

det(A)
,

where adj(A) is the adjugate matrix of A— i.e. the transpose of the matrix of cofactors
of the elements of A— and det(A) is the determinant of A. He rather cleverly writes
the (i, j)-cofactor in the form

cij =
d det(A)

d aij
,

which can be easily verified by expanding det(A) along its ith row or jth column and
then differentiating.

Invariant Angles

In this section — one of the high points of the essay — Jordan defines what we now call
the canonical angles between subspaces. His angles are defined for multi-planes, but
planes or subspaces they are the same angles.

28, 29. Jordan begins with some definitions from geometry. Two geometric figures
are said to be congruent whenever they can be represented by the same equations with
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respect to systems of orthogonal coordinates suitably chosen for each. They are identical
if one can pass from the coordinate system of one to the coordinate system of the other
by an orthogonal substitution with determinant one. In this case they differ only in
their positions in space. The are reflective if the determinant of the substitution is
minus one.10

Jordan goes on to show that any k-plane is both identical and reflective to itself.
On might wonder why the sign of the determinant determines whether two figures

are identical or reflective. The reason is that for any orthogonal matrix U of order n
there is an orthogonal matrix V with positive determinant such that

V ∗U = diag(In−1 ±1) (33)

Equivalently, V = U . The plane V is the product of rotations with positive determinant
in the planes. Geometrically this says that given to congruent figures, one may be
obtained from the other by a sequence of rotations in the in planes defined by pairs of
coordinate axes, followed, if the minus sign obtains obtains in (33), by a reflection in
the (n− 1) dimensional plane orthogonal to the nth coordinate axis.

30, 31, 32. In these sections, Jordan derives the angle between two planes P and Q in
two ways. He assumes that the planes intersect and that one of the points of intersection
is the origin.

The first and simplest derivation is to introduce a coordinate system consisting of the
plane P and of another plane perpendicular to the first that contains the intersection
of both. The remainder of the the coordinate system is an arbitrary set of planes
containing the origin and perpendicular to P and Q.

In such a coordinate system the equations of P and Q are

x1 = 0,

ax1 + bx2 = 0.

If we normalize a and b so that their sum of squares as one, then we can regard the
normalized a as a cosine and b as a sine:

x1 = 0,

x1 cosα+ x2 sinα = 0.
(34)

Thus the angle α characterizes the relation of the subspaces P and Q. As Jordan puts
it:

Therefore, systems of two planes are not all the same but differ among themselves
by a characteristic element.

10The French words in the paper corresponding the congruent, identical, and reflective are respectively
pareil, eǵal, and symet́rique.
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Note that if we were to interchange P and Q, the coordinate system would change,
and it is not immediately clear that the angle α so obtained is the same as the original.
Jordan, therefore, turns to an approach that works with the actual equations of P and
Q. The idea is simple, even though the execution is tedious. Let q be a point of Q, and
let p be its projection onto P . Let D2 be the square of the distance between p and q.
Similarly let r be the projection of q onto the intersection of P and Q, and let ∆2 be
the square of its length. Then D2/∆2 is the square of the sine of the angle α between
qr and rp. Since distance is invariant under orthogonal substitutions, P and Q have
the same value of sin2 α in any rectangular coordinate system.

Jordan concludes by noting that sin2 α and not sinα is the invariant, since sign of
the latter can change under orthogonal substitutions.

33, 34, 35, 36, 37. Neither of the above approaches will work in the general case
of a k-plane Pk and an l-plane Pl, since the two planes will typically have more than
one canonical angle. Jordan’s approach to this problem is to peel off perpendicular
multi-planes from Pk and Pl until all that is left is a set of multi-planes from which
the canonical angles can be extracted. Unfortunately for those of us who do not share
Jordan’s geometric insight, the meaning of his constructions is not readily grasped. We
will therefore introduce a canonical form for the matrices A and B defining Pk and Pl
that may used to illustrated Jordan’s constructions.

We will consider the case where k ≤ l, k+ l ≤ n, and 0 ∈ Pk∩Pl. By row operations
on A and B and an orthogonal change of the variables x, the matrices A and B for Pk
and Pl may be reduced to the forms given below

A∗ =



ρ r t

ρ I 0 0
r 0 I 0
t 0 0 I
ρ 0 0 0
r 0 0 0
t 0 0 0
l−k 0 0 0
q 0 0 0


, A∗⊥ =



ρ r t l−k q

ρ 0 0 0 0 0
r 0 0 0 0 0
t 0 0 0 0 0
ρ I 0 0 0 0
r 0 I 0 0 0
t 0 0 I 0 0
l−k 0 0 0 I 0
q 0 0 0 0 I


, (35)

,
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B∗ =



ρ r t l−k
ρ I 0 0 0
r 0 Γ 0 0
t 0 0 0 0
ρ 0 0 0 0
r 0 Σ 0 0
t 0 0 I 0
l−k 0 0 0 I
q 0 0 0 0


, B∗⊥ =



ρ r t q

ρ 0 0 0 0
r 0 −Σ 0 0
t 0 0 I 0
ρ I 0 0 0
r 0 Γ 0 0
t 0 0 0 0
l−k 0 0 0 0
q 0 0 0 I


. (36)

The columns of the matrices A∗⊥ and B∗⊥ span the orthogonal complements of the column
spaces of A and B. (This representation is adapted from a more general representation
in [20])

A guided tour of this representation will be useful.

• The first columns of A∗ and B∗ express the parallelism of Pk and Pl. They correspond
to the rows labeled C in the earlier part of the paper.

• The matrices Γ and Σ have the form

Γ = diag(γ1, . . . , γr) (1 > γ1 ≥ · · · ≥ γr > 0), (37)

Σ = diag(σ1, . . . , σr) (0 < σ1 ≤ · · · ≤ σr < 1), (38)

where

Γ2 + Σ2 = I.

The γi and σi are the sines and cosines of Jordan’s invariant angles. Note that these
angles are nonzero and oblique. The third column of A∗ contains vectors that are or-
thogonal to B∗. The third and fourth columns of B∗ contain vectors that are orthogonal
to A∗.

• The dimensions in the representation are constrained as follows:

1. ρ+ r + t = k,

2. 0 ≤ ρ ≤ n,

3. 0 ≤ t ≤ n,

4. q = n− (k + l).
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As we have noted, Jordan excludes the possibility of angles equal to zero or π/2.
There are, however, natural candidates for such angles.

The identity matrix in the first row ρ of column ρ in B∗ can be regarded as containing
cosines with angle zero, while the sines of these angles are in are contained in the zero
matrix in the second row ρ in column ρ. Similarly, the identity in the second row t of
column t can be regarded as sines of angles π/2, while their cosines are contained in the
zero matrix in the first row t and the column t.

The question what to do with these angles is not easily resolved. Jordan has decided
that neither belongs among his canonical angles. But this has decision has its problems.
Consider the angles in column t. They are ephemeral in the sense that arbitrarily
small perturbations of A∗ and B∗ can cause them them to deviate from π/2, in which
case they must be placed among the canonical angles. Otherwise put, the number of
canonical angles is sensitive to arbitrarily small perturbations. Note that the potential
angles of π/2 in column l−k are structural in the sense that if l > k then R(B) must
have k− l vectors perpendicular to R(B), and no perturbation that leaves the equations
of Pk and Pl respectively independent can cause such vectors to vanish.

If k+ l ≤ n, as we are assuming here, then all the angles in column ρ are ephemeral,
and once again they may deviate from zero under arbitrarily small perturbations. Since
ρ is the order of parallelism of Pk and Pl, this says that if l + k ≤ n, then parallelism
itself is an ephemeral property. On the other hand if k + l > n, then structural vectors
appear in column ρ, since there must be at least k + l − n vectors common to both Pk
and Pl. In this case parallelism has at least a partial stability.

One can only conjecture why Jordan chose to reject the angles 0 and π/2. I will give
three possibilities.

1. In writing his essay Jordan was wearing his hat as a geometer and considered his
planes as objects that were not subject to perturbations.

2. Jordan wanted to give prominence to the number, ρ which is the order of paral-
lelism.

3. Jordan’s method for extracting canonical angles will not work if there are angles
of 0 and π/2. For more on this see the comments on §32.

Or perhaps the truth is some combination of the three. In any event, in §49 Jordan
is forced to allow zero and π/2 as invariant angles when establishing the number of
invariant angles.

As we have noted earlier, Jordan works entirely with the equations of his multi-
planes, and largely ignores the structure of the planes themselves. This structure can be
seen in the orthogonal complements in (35) and (36). Briefly, the columns of B∗⊥ labeled
ρ and q represent the common subspaces of Pk and Pl [see (3)]. The column labeled r
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of B∗⊥ contain the invariant angles, which are the same as those of the equations. The
column labeled t in A∗⊥ is orthogonal to the same column of B∗⊥. Finally the column
labeled l − k in A∗⊥ is orthogonal to all the columns of B∗⊥.

We are now in a position to understand Jordan’s strategy for defining canonical
angles. If we denote by A∗r and B∗r the second columns of A∗ and B∗ in (35) and
(36), then A∗rBr = Γ. Thus, as observed above, the problem of finding canonical angles
can be reduced to stripping off the unwanted columns of A∗ and B∗ to leave only A∗r
and B∗r , which contain the canonical angles. Jordan gives a general prescription for
accomplishing this. We will now follow his development, illustrating it by showing how
it applies to the canonical representations (35) and (36).

Jordan, as might be expected, proceeds by defining a sequence of perpendicular
planes along with perpendicular plane generators. We give his definitions here followed
by the order of the planes, their defining equations, and finally the names of the functions
defining the perpendicular plane generators. Jordan assumes that Pk and Pl have a
common point π, which we will take to be zero. He denotes by Pn−k the (n−k)-plane
perpendicular to Pk. This is the plane A∗⊥x = 0 in (35). Similarly, for the plane Pn−l
is the plane B∗⊥x = 0 . For brevity we will call the “ρ-plane” containing two planes the
“smallest covering plane.” Note that “smallest” refers to the number of equations, not
the dimension of the plane.

1. Pρ is the smallest covering plane for Pk and Pl.

ρ = ρ,
(
Iρ 0 0 0 0 0 0

)
x1, . . . , xρ

2. Pσ is the smallest covering plane for Pn−k and Pn−l.

σ = ρ+ n− k − l,
(

0 0 0 Iρ 0 0 0 0
0 0 0 0 0 0 0 In−k−l

)
y1, . . . , yσ

3. Pτ is the smallest covering plane for Pn−k and Pl.

τ = t+ l − k,
(

0 0 0 0 0 It 0 0
0 0 0 0 0 0 Il−k 0

)
z1, . . . , zτ

4. Pυ is the smallest covering plane for Pk and Pn−l.

υ = t,
(
0 0 It 0 0 0 0

)
u1, . . . , uυ
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5. Pα is the plane whose generators are those of Pk that are perpendicular to Pρ and
Pυ.

α = r,
(
0 Ir 0 0 0 0 0

)
v1, . . . , vα

6. Pβ is the plane whose generators are those of Pn−k that are perpendicular to Pσ
and Pτ .

β = r,
(
0 0 0 Ir 0 0 0

)
w1, . . . , wβ

7. Pγ is the plane whose generators are those of Pl that are perpendicular to Pρ and
Pτ .

γ = r,
(
0 Γ 0 Σ 0 0 0

)
From this we see that Pα (or Pβ) and Pγ contain enough information to recover the

canonical angles. It should be stressed that the example given here is constrained by
the hypotheses k + l ≤ n. If k + l > n, the results would be somewhat different but
would still reveal the canonical angles.

At this point Jordan turns to the problem of extracting the canonical angles from
Pα and Pγ . In our illustration α, β, and γ are equal, as they must be. But Jordan has
to first establish the equality of these dimensions.

The first six multi-planes Jordan constructs above form an orthogonal system span-
ning the entire space of points. If we make a change of variables corresponding to
this system, the individual planes correspond to nonintersecting sets of the variable
x1, . . . , xn, and we may assume that the variables corresponding to each of the multi-
planes are contiguous. In particular, if we label the sets corresponding to Pα and Pβ as
xα and xβ, the we can write the equations for Pα, Pβ and Pγ in the form

(I 0)

(
xα
xβ

)
= 0,

(0 I)

(
xα
xβ

)
= 0,

(39)

and

(A B)

(
xα
xβ

)
= 0. (40)

It should be stressed that initially Jordan does not make this change of variables, though
he will do so later. It is also worth noting that he does make such a change in the example
leading to (34).

The problem then is to manipulate these two equation to extract Γ and Σ. Here are
the rules of the game.
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1. Any transformation must preserve the rank of (A B). Specifically, we may form
the product M(A B) provided that M is nonsingular.

2. Any transformation must preserve the relation (40) along with perpendicularity
of the equations. Thus we may write

(AU BV )

(
U∗xα
V ∗xβ

)
= 0.

where U and V are orthogonal.

Jordan now shows that A is nonsingular. On multiplying (40) by A−1, we get

(I C)

(
xα
xβ

)
= 0, (41)

where C = A−1B.11 Now Jordan, citing an important paper by Cauchy [3], constructs
an orthogonal matrix F such that F∗(C∗C)F = G2 = diag(g2

1, . . . , g
2
α), where the gi

are positive. It is easily shown that if D = CFG−1 then D∗D = I and D∗CF = G.
Now

(I CF )

(
xα
F∗xβ

)
= 0,

and hence on premultiplying by D∗ we get

(D∗ D∗CF )

(
xα
F∗xβ

)
= (D∗ G)

(
xα
F∗xβ

)
= 0.

Finally

(D∗D G)

(
D∗xα
F∗xβ

)
= 0,

or

(I G)

(
D∗xα
F∗xβ

)
≡ (I G)

(
x′α
x′β

)
= 0.

If we define Θ by G = tan(Θ) and premultiply Γ = cos(Θ), we get

(Γ Σ)

(
x′α
x′β

)
= 0. (42)

The equation (42) specifically exhibits the cosines and sines of the invariant angles
between Pk and Pl. If we wish to preserve the identity matrices in (39), observe that in
the case of Pα

(D 0)

(
x′α
x′β

)
= 0,

11Note that A, B, and C are not the matrices in (22).
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and on premultiplying by D∗ we get

(I 0)

(
x′α
x′β

)
= 0. (43)

A similar maneuver applies to Pβ.

There are three things to note about this procedure.

• The procedure does not work if there is a canonical angle of π/2. This is most easily
seen from the point of view of our running example. In this case A = Γ and B = Σ.
Since cos(π/2) = 0, the diagonal matrix Γ must have a zero on its diagonal, and hence
is singular. Thus we cannot form C = A−1B in (41), and the process breaks down.

We can cure this problem by interchanging A and B so that the equation for Pγ
becomes

(B A)

(
xβ
xα

)
= 0.

But if there is a canonical angle of zero then B will also be singular. Thus if Pk and Pl
have both angles of zero and π/2, the process breaks down completely.

It should be added that if there are eigenvalues very near zero and π/2 then Jordan’s
procedure theoretically works but will suffer from numerical problems.

• In diagonalizing C (i.e., D∗CF = G) Jordan has computed the very useful singular
value decomposition. However, it is not numerically the most stable way of proceeding.
Jordan gave a better characterization of this decomposition in the year before the paper
treated here appeared. (Recall, however, that an abstract of the present paper appeared
in 1872 [11].) For more on the singular value decomposition see [19].

• Jordan’s procedure can be adapted to calculate the important CS decomposition [18]
]. But the procedure suffers from the problems mentioned above.

38,39,40,41,42. In these sections Jordan establishes the orthogonal invariance of his
canonical angles. He gives two proofs, of which we will only consider the first.

Jordan’s strategy is to take a geometric construction that is obviously orthogonally
invariant and express the canonical angles as a function of this construction. For his
first proof he considers the angle between the two generating planes for Pα and Pγ .

Specifically let

(`∗ 0)

(
x′α
x′β

)
= `∗x′α = 0

be a generating plane of Pα as defined in (43). Similarly let

m∗(Γ Σ)

(
x′α
x′β

)
= 0.
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be a generating plane of Pγ as defined in (42). Then the angle θ between these planes
is given by

cos2 θ =
(m∗Γ`)2

‖m‖2‖l‖2
.

The values of the local maxima and minima of cos2 θ regarded as a function of ` and m
are clearly orthogonal invariants.

Jordan goes on to show by a rather complicated argument that the maxima are
attained when mi = ni = ei, where ei is the ith column of the identity matrix of order
α. The maximum value at that point is γ2

i . Thus, the γ2
i , which are the squares cosines

of the angles between Pα and Pγ , are invariant under orthogonal substitutions.

Jordan summarizes these results as follows.

Let two α-planes Pα and Pγ have only a single point in common. If we seek pairs of
their generating planes whose angles are [locally] maximal or minimal, we will get
two corresponding systems of real perpendicular planes A1, . . . , Aα and A′

1, . . . , A
′
α.

The desired maxima and minima are none other than the angles of the multi-planes
Pα and Pγ .

It should be noted that Jordan implicitly assumes that the angles are distinct. If
there is a multiple angle, then there is a multiplicity of corresponding planes. Selecting
perpendicular pairs from this collection is a nontrivial problem.

Jordan concludes by noting once again that that the it is the squares of the trigono-
metric functions of the angles that are the invariants and not the functions themselves.

43,44,45,46,47. Jordan has defined the geometric relations of congruence, equality, and
symmetry (§28). He now considers the relation of the planes Pα, Pγ in the canonical form
of a plane P and the planes P ′α, P ′γ of a plane P ′ He first observes, that if 2α < n and Pα
and P ′α have the same invariants then the Pα and P ′α are both identical and reflective.
For they one can be transformed to the other by an orthogonal transformation. But the
determinant of this transformation can be changed by changing the sign of a coordinate
that does not occur in the canonical equations.

The sign-changing option is not available when 2α = n, and therefore the two planes
cannot be identical and reflective at the same time. Jordan now treats the problem of
determining which occurs. He begins by transforming the equations of the of the α-
and γ-planes into a common system of coordinate planes, so that the equations for the
pair Pα and Pγ have the equations

vr = 0 (r = 1, 2, . . . , α)

and

Ar = ar1v1 + · · · arαvα + br1w1 + · · · brαwα = 0 (r = 1, 2, . . . , α)
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while the pair Pα and Pγ have the equations

vr = 0 (r = 1, 2, . . . , α)

and
Ar = Ar1v1 + · · ·Arnvn +Br1w1 + · · ·Brnwn (r = 1, 2, . . . , α).

He tacitly assumes that the signs of the determinants of the orthogonal substitutions
that result in these equations has been noted. He then states that

they are identical if the product of the two determinants

∆1 =

∣∣∣∣∣∣∣
A11 · · · A1α

...
...

Aα1 · · · Aαα

∣∣∣∣∣∣∣ and ∆2 =

∣∣∣∣∣∣∣
B11 · · · B1α

...
...

Bα1 · · · Bαα

∣∣∣∣∣∣∣
has the same sign as the product as the product of the determinants

δ1 =

∣∣∣∣∣∣∣
a11 · · · a1α
...

...
aα1 · · · aαα

∣∣∣∣∣∣∣ and δ2 =

∣∣∣∣∣∣∣
b11 · · · b1α
...

...
bα1 · · · bαα

∣∣∣∣∣∣∣ .
In the opposite case, they are reflective.

Jordan’s proof of this fact amounts to repeating the reduction in §35 of the planes Pα
and Pγ to canonical form by transformations of positive determinant so that g2, . . . , gα
are positive, and the sign of g1 is the same as the sign as δ1δ2. He then does the same
thing for P ′α and P ′γ , where the sign of g′1 has the same sign as ∆1∆2. But if g1 and g2

have the same sign then their canonical forms are identical and the planes are identical.
Otherwise, the canonical forms differ only in the sign of g1 and g′1, and the planes are
reflective.

49. In this section Jordan shows that the planes Pn−k and Pn−l perpendicular to Pk
and Pl have the same canonical invariants. He establishes this fact by exhibiting the
specific generating planes for the Pn−k and Pn−l corresponding to the generating planes
for the canonical forms of Pk and Pl.

A curious feature is that the angles in Pn−k and Pn−l are shifted. This is an artifact
of the necessity to keep the α-planes of the complements orthogonal to those of the
original. For example, one of the plane planes of Pα is

v′1 cos θ1 + w′1 sin θ1

and the corresponding plane of Pn−k is

−v′1 sin θ1 + w′1 cos θ1
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which is duly orthogonal. But it is not in canonical form. It can be brought into
canonical form by shifting θ1 by π

2 . This shift, however, does not alter the fact that θ1

is an invariant of Pn−k.

This result answers a question that must occur to the present day reader: what
do the canonical angles of the equations of two planes have to do with the planes
themselves? As we have seen the the equations of Pk and Pl generate a planes that are
perpendicular to their equations. Hence the planes themselves have the same invariants
as the equations.

49. Jordan states:

A system formed from a k-plane Pk and an l-plane Pl has in general α invariants,
where α is the smallest of the four numbers k, l, n− k, and n− l.

There is a puzzle in this statement. The invariant angles are constrained to lie
strictly between zero and π/2. However, if k ≤ l, it is possible for Pk to be contained
entirely in Pl, in which case the only possible invariant angle is zero. Or Pk could be
orthogonal to Pl so that an invariant angle can be only be π/2. In either event (or
in the case where there is a mixture of angles zero and π/2), Pk and Pl, have strictly
speaking, have invariant angles.

The answer to the puzzle lies in the weasel words “in general.” A little reflections
will show that a line Pk that is also in Pl, can be moved out of Pl by an arbitrarily small
perturbation of Pk. Likewise any line in Pk that is perpendicular to Pl can be made to
loose its perpendicularity by an arbitrarily small perturbation in Pk. Thus unless Pk
and Pl have some special relation, one can expect in general that the system will have
k invariant angles.

This situation is illustrated in the example based on the decompositions (35) and
(36). Specifically Pρ is the plane common to Pk and Pl, while Pυ is the plane in Pk that
is perpendicular to Pl. The rest of Pk is contained in the plane γ. In the particular case
(as opposed to the general case) where α 6= k, Jordan says,

we can express the general case by saying that among the k angles of Pk and Pl,
there are ρ that are equal to zero and υ that are equal to π

2 .

Also see the comments on page 25.

50. Jordan begins:

We have seen (§33) that the inquiry into the angles between two arbitrary multi-
planes can immediately be reduced to an inquiry into the angles between two alpha
planes, where α is at most equal to n

2 . This last inquiry can be resolved by reducing
the two α-planes to their canonical form, as we have done in §34 and the following.
But one can also treat the problem directly.
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Jordan continues with equations for two α-planes P and Q:

Ax = 0 and Bx = 0,

where A and B have the dimensions α×n. The coefficients of a generating plane of P
can be written in the form `∗A = 0, and likewise m∗B = 0 is a generating plane of Q.
The angle between these two planes is given by

s2 = cos2 θ =
(`∗AB∗m)2

(`∗AA∗`)(m∗BB∗m)
. (44)

The problem is then to find the stationary points of s2 (§38 ff.). (Actually, Jordan states
that the problem is “to find the minimum of” s2.)

Although Jordan does not mention it, the square in the numerator of (44) creates
problems, since any nonzero ` and m for which s = 0 becomes a stationary point of s2.
In his development, however, he effectively cancels s from s2. We will not go into the
details here.

The result of Jordan’s subsequent manipulations is the equation(
0 AB∗

BA∗ 0

)(
`
m

)
= s

(
AA∗ 0

0 BB∗
)(

`
m

)
. (45)

This is a symmetric generalized eigenvalue problem in which the matrix on the right is
positive definite. Therefore, the problem has real 2α real eigenvalues. The eigenvalues
come in pairs of σ and −σ; for if ` and m satisfy (45), ` and −m satisfy the same
equation with s replaced by −s. (Jordan himself states that it “contains pairs of powers
of s.”)

It worth noting that if A and B are orthonormal, so that AA∗ = BB∗ = I, then
the problem reduces to the ordinary eigenvalue problem(

0 AB∗
BA∗ 0

)(
`
m

)
= σ

(
`
m

)
.

The eigenvalues of this matrix are the singular values of AB∗ and their negatives. This
proves the well known fact that if A∗ and B∗ are orthonormal bases for two subspaces
then the eigenvalues AB∗ are the cosines of the canonical angles between the subspaces.

Appendix: A proof of Jordan’s conditions for perpendicularity.

Here we will give a proof of the sufficiency and necessity of the condition (24) — i.e,
B2A
∗
2 = 0 — for Pk and Pl to be perpendicular to one another. Applying Jordan’s

orthogonal procedure described in §21, we may assume that A2, B2, and C are or-
thonormal. The proof is based on the alternate characterization given in (21) of the
projection of a vector onto a plane.

For necessity we will need the following lemma.
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LetM be a k×l matrix. Let u1 and v1 be vectors such that u∗1u1 = v∗1 v1 = 1

γ = u∗1Mv1 = max
u∗u=v∗v=1

u∗Mv∗. (46)

Let U = (u1 U2) and V = (v1 V2) be orthogonal matrices. Then

U∗MV =

(
γ 0

0 M̂

)
. (47)

This lemma appears in a paper, mentioned above [12], that Jordan published in 1874 —
a year before the present paper — in which he shows how a general matrix may be
diagonalized by two sided orthogonal transformations. Jordan goes on to apply this
lemma to M̂ , and so on until M has been reduced to diagonal form. The result is what
today is called the singular value decomposition, which was also described by Beltrami
in 1873 [2] (the discoveries were independent). It should be noted that Jordan does
not work in terms of transformations of matrices. Instead, as would be natural in the
nineteenth century, he shows how a bilinear form may be diagonalized by orthogonal
changes of its variables.

We will assume that the defining equations for Pk and Pl are in the form (22).
Without loss of generality, we may assume that CC∗ = Iρ, A2A

∗
2 = Ik−ρ and B2B

∗
2 =

Il−ρ. Then according to (20), the projection of a point y onto Pk is[(
C
A2

)
(C∗ A∗2 )

]−1(
a1

a2

)
−

{
I − (C∗ A∗2 )

(
C
A2

)[(
C
A2

)
(C∗ A∗2 )

]−1(
C
A2

)}
y.

But since a1 and a2 are zero and since by orthonormality[(
C
A2

)
(C∗ A∗2 )

]−1

=

(
I 0
0 I

)
,

the formula for the projection reduces to

(I − C∗C −A∗2A2)y ≡ Qky.

Similarly the projection of y on Pl is given by

(I − C∗C −B∗2B2)y ≡ Qly.

If Pl is to be perpendicular to Pk, a vector z in Pl when projected onto Pk must
also lie in Pl. Now for any vector y, Qly lies in Pl, and moreover any vector in Pl can
be so represented. If we project this vector onto Pk we get the vector QkQly. But by
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perpendicularity, this projection must also lie in Pl. Hence QlQkQly = QkQly Since
this last equation must hold for all y, it follows that QlQkQl = QkQl. In terms of the
above definitions of Qk and Qk, for Pl to be perpendicular to Pk we must have

(I − C∗C −B∗2B2)(I − C∗C −A∗2A2)(I − C∗C −B∗2B2)

= (I − C∗C −B∗2B2)(I − C∗C −A∗2A2) (48)

We will now simplify this equation. First if we write it in the form

(I−C∗C−B∗2B2)(I−C∗C−A∗2A2)−(I−C∗C−B∗2B2)(I−C∗C−A∗2A2)(C∗C+B∗2B2)

= (I − C∗C −B∗2B2)(I − C∗C −A∗2A2),

then we get

(I − C∗C −B∗2B2)(I − C∗C −A∗2A2)(C∗C +B∗2B2) = 0

Further term-by-term simplification gives (recall that C∗A2 = 0 and C∗B2 = 0)

A∗2A2B
∗
2B2 = B∗2B2A

∗
2A2B

∗
2B2. (49)

Now (49) is fully equivalent to (48). Hence if B∗2A2 = 0, equality holds in (48),
and Pl is perpendicular to Pk. Thus B∗2A2 = 0 is a sufficient condition for Pl to be
perpendicular to Pk.

To prove the necessity of the condition, premultiply (49) by A2 and postmultiply by
B∗2 to get

A2B
∗
2 = (A2B

∗
2 )(A2B

∗
2 )∗(A2B

∗
2 ). (50)

Set M = A2B
∗
2 so that equation (50) becomes M = MM∗M . Now if M 6= 0, Then by

(47) we have UMV ∗ = UMV ∗VM∗U∗UVM∗ or

diag(γ, M̂) = diag(γ, M̂)diag(γ, M̂∗)diag(γ, M̂),

where γ 6= 0 (since M 6= 0). In particular, for perpendicularity we must have

γ = γ3, (51)

which is possible only if γ = 1. But if γ = 1, then by (46) we must have (A2u1)∗(B2v1) =
1. By orthonormality of A∗2 = B∗2 , this implies A∗2u1 = B∗2 v1. But by hypotheses
no nontrivial linear combinations of the rows of A2 and B2 can be the same. Hence
0 < γ < 1, and (51) cannot be satisfied. This shows that the condition A∗2B2 = 0 is
necessary for Pl to be perpendicular to Pk.

Finally, we note that if we interchange B2 and A in (48) we end up with the condition
A∗2B2 = 0. Which is equivalent to B∗2A2 = 0. Thus Pk is perpendicular to Pl if and only
if Pl is perpendicular to Pk, which, as noted above, is not obvious from the definition
of perpendicularity.
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AFTERWORD

My main interest in Jordan’s paper was to see how he constructed the canonical angles
between two subspaces or, as Jordan would have it, the angles between two multi-planes.
Consequently, at this point about halfway through Jordan’s paper, the translation comes
to an end. But Jordan goes on to treat several interesting topics that he mentioned in
his introduction. Among these is an determinantal expression for the distance between
two multi-planes. It is worth noting that the distance can be computed directly from
the representation of two multi-planes that Jordan uses to define his canonical angles
between the multi-plane; see [20]. Jordan also gives a canonical form for an orthogonal
matrix which consists of a block diagonal matrix of 2×2 plane rotations, followed by
a diagonal element of ±1 if the order of the matrix is odd. This decomposition can
be computed from the real Schur form of the matrix, for which there is off-the-shelf
software [1]. Finally, Jordan introduces the Lie group of orthogonal matrices.



Essay on geometry in n dimensions: by M. Camille Jordan

Session: May 12, 1875

Translated by G. W. Stewart

It is well known that Descarte’s merger of analysis and geometry has proved equally
fruitful for each of the two disciplines. On the one hand, geometers have learned from
their contact with analysis to give their investigations an unprecedented generality.
Analysts, for their part, have found a powerful resource in the images of geometry, as
much for discovering theorems as for presenting them in a simple, impressive form.

This resource vanishes when one turns to the consideration of functions of more
than three variables. Moreover, the theory of these functions is, comparatively speak-
ing, poorly developed. It appears that the time has come to fill this gap by generalizing
the results already obtained for the case of three variables. A large number of mathe-
maticians have considered this topic in more or less specialized ways. But we are not
aware of any general work on this subject.∗

In this essay we propose to show how the formulas for straight lines and planes
may be generalized to cover linear functions of an arbitrary number of variables. The
study of these elementary topics must naturally precede any investigations concerning
functions of higher degrees.

Although these investigations will be purely algebraic, we thought it useful to adopt
at the outset certain expressions from geometry. Thus we will take a point in n-
dimensional space to be defined by the values of the n coordinates x1, . . . , xn. A single
linear equation in these coordinates will define a plane; k simultaneous linear equations
will define a k-plane; n − 1 equations, a line. The distance between two points will be√

(x1 − x′1)2 + · · · ; etc.
Given these definitions, in section I of this memoir we will treat the various degrees

of parallelism that can exist between two multi-planes. In the second section, we will
give conditions for perpendicularity, and in the third the formulas for transforming
coordinates.

The following sections include results of greater interest. Sections IV and V are
devoted to the study of relations that can exist between two multi-planes independent
of the choice of axes (with the coordinates remaining rectangular). The main results
are summarized in the following propositions.

1. A system formed from a k-plane and an l-plane passing through a common point
in the space has ρ distinct invariants, where ρ is the smallest of the numbers k, l, n−k,
and n−l. One can regard these invariants as defining the angles between the two planes.

∗It seems that a only a part of this subject can be regarded as nearly complete: namely the curvature
of surfaces. (See the thesis of M. Morin, 1867 and the memoirs of M. Sophus Lie, Goettinger Nachrichten,
1871.)
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2. The various planes perpendicular to Pk and Pl form by their respective intersec-
tions an (n−k)-plane Pn−k and an (n−l)-plane Pn−l that have the same angles as Pk
and Pl.

3. If Pk and Pl do not have a point in common, they will have another invariant,
namely, the shortest distance between them. This invariant can be written as a fraction
whose numerator and denominator are sums of squares of determinants.

In section VI we give a system of formulas that connect the mutual angles of several
multi-planes consisting of n arbitrary planes (all meeting at the same point). For n = 3
these formulas reduce to those of spherical trigonometry. We will unify these formulas
by a consideration of the determinant of the quadratic form that gives the distance
between two points (when the n planes taken as the coordinate planes).

In section VII we will show how an orthogonal change of variables having deter-
minant one can be reduced by a change in the rectangular axes to a simple canonical
form that depends on n

2 invariants if n is even and n−1
2 if n is odd. We will give partial

differential equations that are satisfied by these invariants. From these investigations,
we will deduce, among other things, generalizations of the following theorems.

Any plane motion may be reduced to a rotation about a point.

Any movement in space is a helicoidal movement.

From this we further obtain a generalization of the law of reciprocity noted by M.
Chasles, which serves as the basis for his elegant investigations of the movement of solid
bodies.

We conclude by giving the laws of composition of infinitesimal movements in four-
dimensional space. The result we obtain is summarized in the following theorem.

A rotation R about a point in a four-dimensional space can be represented by two
lines A B in a three-dimensional space of suitable lengths and directions. Two rotations
R1 and R2 that are represented respectively by the lines A1 and B1 and A2 and B2 will
have a combined rotation represented by a line A depending on A1 and A2 and a line B
depending on B1 and B2 (the lines are combined according the parallelogram rule).

I. Definitions — Parallelism

1. We define the position of a point in an n-dimensional space by n coordinates
x1, . . . , xn.

One linear equation in these coordinates defines a plane. Two simultaneous linear
equations that are distinct and not incompatible define a biplane; k equations, a k-plane;
n− 1 equations define a line; n equations define a point.

By the generic term multi-plane we will understand any of the above geometric
entities.

2. Let

A1 = 0, . . . , Ak = 0 (52)
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be the equations of a k-plane Pk. If these equations are combined linearly, we get an
infinite number of equations of the form

λ1A1 + · · ·+ λkAk = 0.

The planes represented by these equations clearly have Pk as their common intersection,
and for short we will call them the generating planes of Pk. Their intersections, taken
2, 3, . . . , k − 1 at a time, will give an infinite number of biplanes, triplanes, etc. that
contain Pk. We may call them the generating biplanes, triplanes, etc. of Pk.

It is clear that in place of the equations (52), we can define Pk by the equations of
any k generators

λ1A1 + · · ·+ λkAk = 0, , λ′1A1 + · · ·+ λ′kAk = 0, . . . ,

provided that the determinant of the coefficients λ is not zero.
On the other hand, let k′ be any integer greater than k but not greater than n. If we

adjoin k′− k new equations Ak+1 = 0, . . . , Ak′ = 0 to the equations (52) that determine
Pk, then the set of these equations (assumed distinct and not incompatible) determines
a k′-plane that lies entirely in Pk. We say that the k′-planes obtained in this manner
are the k′-planes of Pk.

Finally we note that the standard coordinates of any k-plane

A1 = 0, . . . , Ak = 0

can be expressed as a linear function of n− k independent auxiliary variables. Specifi-
cally, it is sufficient to set

Ak+1 = λ1, . . . , An = λn−k,

where Ak+1, . . . , An are arbitrary linear functions of x1, . . . , xn. We will then have a
system of n equations which allow the these coordinates to be expressed as a function
of the new variables λ.

3. In general a plane is determined by n points. In fact, the general equation of a
plane contains n+1 coefficients, whose ratios are determined by n linear equations that
are obtained by successively substituting the values of the coordinates of the n given
points into the equation.

A k-plane is determined by n−k+1 points. Specifically, consider an arbitrary plane
that is forced to contain the n − k + 1 points. This condition gives n − k + 1 linear
equations in the n+ 1 coefficients of the plane. If n− k + 1 coefficients are eliminated
using the these conditional equations, k arbitrary coefficients remain in the equation of
the plane. Therefore, the general equation of any plane that pass through the n− k+ 1
given points has the form

λ1A1 + · · ·+ λkAk = 0, (53)
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and the k-plane A1 = · · · = Ak = 0 is the common intersection of these planes passing
through the n− k + 1 given points. Moreover, this k-plane is the only one to have this
property. For if a k-plane Pk contains the given points, its generating planes necessarily
contain them, and they will be of the form (53). Thus Pk is the same as the k-plane
A1 = · · · = Ak = 0, which is the common intersection of these planes.

4. In general two planes given by the equations

A = a1x1 + · · ·+ anxn + α = 0,

B = b1x1 + · · ·+ bnxn + β = 0

will intersect in a biplane. But an exception occurs when

a1

b1
= · · · = an

bn
.

For in this case the two equations A = 0 and B = 0 are incompatible. We then say that
the two planes are parallel. Finally, if we have

a1

b1
= · · · = an

bn
=
α

β
,

the two equations A = 0 and B = 0 cannot generate more than a single plane, and the
two planes are not only parallel but coincide.

5. Let Pk and Pl be two arbitrary multi-planes. If from among the generating planes
of Pk there are any that that are parallel to some generating planes of Pl, then they
generate a multi-plane.

Specifically, let
C1 = 0, . . . , Cρ = 0

be the generating planes that are parallel to generating planes of Pl and are chosen in
such a way that:

1. They are mutually independent; i.e., they satisfy no linear identity of the form12

λ1C1 + · · ·+ λρCρ = 0.

2. There is no generating plane of Pk that is independent of the chosen planes and
is parallel to a generating plane of Pl.

By definition Pl will have planes

C1 = δ1, . . . , Cρ = δρ,

12This definition of independence for equations is essentially the same as the usual definition of linear
independent vectors, also stated in 1876 by Frobenius [10, p.236]. Also see [9, p.232].



Essay on Geometry in n Dimensions 41

among its generating planes that are parallel to their respective predecessors. The
multi-plane Pk will have all the planes

λ1C1 + · · ·+ λρCρ = 0 (54)

among its generating planes. These planes generate the ρ-plane

C1 = 0, . . . , Cρ = 0,

which we will denote by Pρ. For its part, Pl will have among its generating planes all
planes of the form

λ1C1 + · · ·+ λρCρ = λ1δ1 + · · ·+ λρδρ (55)

which are parallel to their predecessors that generate the ρ-plane

C1 = 0, . . . , Cρ = 0,

and which we will denote by P ′ρ.
Therefore, for a generating plane of Pk to be parallel to generating plane of Pl it is

not only necessary but also sufficient that it be a generating plane of Pρ. Conversely, for
a generating plane of Pl to be parallel to one of those of Pk is is necessary and sufficient
that it be one of the generating planes of P ′ρ. We express this relation by saying that
the two multi-planes Pk and Pl have a common parallelism of order ρ.

Speaking absolutely, we will say that Pk is parallel to Pl if all its generating planes
are parallel to those of Pl. For this to be true it is obviously necessary that k ≤ l. If
k = l, it is clear that Pl will also be parallel to Pk.

If δ1 = 0, . . . , δρ = 0 [In the text, λ1 = 0, . . . , λρ = 0] simultaneously, the various
planes of Pρ will not only be parallel to those of P ′ρ, but they will be the same, and Pl
and Pk will be contained in the same ρ-plane Pρ.

Otherwise, if, say, δ1 is different from zero, then for the planes (54) and (55) to
coincide we must have the relation

λ1δ1 + · · ·+ λρδρ = 0.

Solving this relation for λ1 and substituting it into (54), we get we get the following
relation for the generating planes common to Pk and Pl:

λ2

(
C2 −

δ2

δ1
C1

)
+ · · ·+ λρ

(
Cρ −

δρ
δ1
C1

)
= 0.

From this we see that these planes are none other than the generating planes of the
(ρ−1)-plane

C2 −
δ2

δ1
C1 = 0 · · ·Cρ −

δρ
δ1
C1 = 0
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that contain Pl and Pk.

6. Let us now look for conditions that must be satisfied by the coefficients of the
equations of Pk and Pl for these planes to have a mutual parallelism of order ρ and for
them to be or not to be contained in the same ρ-plane.

Let
A1 = a11x1 + · · ·+ a1nxn + α1 = 0,

· · ·
Ak = ak1x1 + · · ·+ aknxn + αk = 0,

(56)

be the equations of Pk and let

B1 = b11x1 + · · ·+ b1nxn + β1 = 0,

· · ·
Bl = bl1x1 + · · ·+ blnxn + βk = 0,

(57)

be those of Pl. For a generating plane of Pk to be parallel to a generating plane of Pl,
the following identity [in x] must hold:

λ1A1 + · · ·+ λkAk = µ1B1 + · · ·+ µlBl + constant.

If we equate separately the coefficients of the variables to zero, we get13

λ1a11 + · · ·+ λkak1 = µ1b11 + · · ·+ µlbl1,

· · ·
λ1a1n + · · ·+ λkakn = µ1b1n + · · ·+ µlbln.

(58)

If we want the above generating planes to be not only parallel but also coincident, then
the constant must be zero, and hence we get the additional equation

λ1α1 + · · ·+ λkαk = µ1β1 + · · ·+ µlβl. (59)

7. Given these results, suppose first of all that k + l ≤ n. Then the number
of parameters λ and µ will be less than or equal to the number of equation in (58).
Therefore, if these equations are distinct, which is the typical case, then one cannot
satisfy them except by setting all the parameters to zero. Hence in this case Pk and Pl
will not in general have any parallelism.

13This argument, which, it seems, derives (58) by setting x1, . . . , xn successively to one while holding
the other x’s zero, will not work, since it ignores the constant terms in the equation above (58). An
alternative is to note that, according to Article 5, the coefficients of the xi of two parallel planes
be proportional. If, without loss of generality we assume they are equal, then (58) follows directly.
Moreover, for the planes to coincide their constant terms must be equal, which implies (59).
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But this conclusion does not hold if the coefficients a, b have been determined in
such a way that the equations (58) reduce to a number p of distinct equations that is less
than k+l. Moreover, it is easy to see that that p cannot be less than l. Specifically, since
the equations (57), which define Pl, are assumed to be distinct and mutually consistent,
at least one of the the determinants obtained by taking l columns from the tableau∣∣∣∣∣∣∣

b11 · · · b1n
...

...
bl1 · · · bln

∣∣∣∣∣∣∣
must be nonzero: say that

Λ =

∣∣∣∣∣∣∣
b11 · · · b1l
...

...
bl1 · · · bll

∣∣∣∣∣∣∣ 6= 0.

With this choice, the first l equations of (58) are distinct and allow µ1, . . . , µl to be
determined as functions of λ1, . . . , λk; for the determinant of the coefficients multiplying
µ1, . . . , µl is equal to Λ, which is nonzero.

Therefore, let p = k+ l− ρ and ρ ≤ k. Then equation (58) allows the determination
of µ1, . . . , µl and k − ρ of the quantities λ, say λρ+1, . . . , λk, as functions of the ρ free
parameters λ1, . . . , λρ.

Let
λρ+1 = mρ+1λ1 + · · ·+ nρ+1λρ,

· · ·
λk = mkλ1 + · · ·+ nkλk.

(60)

If we substitute these values in the expression

λ1A1 + · · ·+ λkAk

for the plane generators of Pk and for short set

C1 = A1 +mρ+1Aρ+1 + · · ·+mkAk,
· · ·

Cρ = Aρ + nρ+1Aρ+1 + · · ·+ nkAk,
(61)

then the equation
λ1C1 + · · ·+ λρCρ = 0 (62)

defines the generating planes of Pk that are parallel to those of Pl. Moreover, the planes
C1 = 0, · · · , Cρ = 0 are mutually independent. For if there were an identity of the form

ν1C1 + · · ·+ νρCρ = 0,
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then by replacing the values of C1, . . . , Cρ by the values from equation (61), we would
obtain a new identity of the form

ν1A1 + · · ·+ νρAρ + νρ+1Aρ+1 + · · · = 0.

This is a contradiction, since the equations A1 = 0, . . . , Ak = 0 were assumed to be
distinct.

The planes defined by equation (62) are therefore none other than precisely the
generating planes of the ρ-plane C1 = 0, . . . , Cρ = 0, and Pk and Pl have parallelism of
order ρ. Moreover, Pk and Pl will lie in the same ρ-plane provided (59) is a consequence
of (58).

8. Suppose now that k + l > n. In the general case where the equations in (58) all
are all distinct, we will have a parallelism of order k+ l− n. But if these equations can
be reduced to p distinct equations, the parallelism is of order k+ l− p. Finally, Pk and
Pl will lie in the same ρ-plane provided (59) is a consequence of (58).

9. Consequently, to write down the conditions for a parallelism of any order, we
need only note that the equations (58) reduce to p distinct equations. But it is well
known that for this to be true it is necessary and sufficient that 1) at least one of the
minors of degree p formed from the coefficients of these equations be nonzero, and 2) all
the minors of degree p+ 1 vanish.

In addition, for Pk and Pl to be in a single ρ-plane it is necessary that when equation
(59) is adjoined to the system of equations (58) the minors of order p + 1 containing
coefficients of the new equation vanish along with the original minors.

10. If two multi-planes Pk and Pl have no parallelism, they intersect in a multi-plane
Pk+l.

Specifically, by hypothesis, the equation

λ1A1 + · · ·+ λkAk = µ1B1 + · · ·+ µlBl + constant

cannot be satisfied. Equivalently, neither can the equation

λ1(A1 − α1) + · · ·+ λk(Ak − αk) = µ1(B1 − β1) + · · ·+ µl(Bl − βl)

be satisfied. Therefore the k + l functions A1 − α1, . . . , Ak − αk, B1 − β1, . . . , Bl − βl
are distinct, and the equations

A1 = 0, . . . , Ak = 0, B1 = 0, . . . , Bl = 0,

which can be written in the form

A1 − α1 = −α1, . . . , Bl − βl = −βl,

are distinct and mutually compatible, and therefore determine a k + l plane.
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11. If Pk and Pl are parallel of order ρ and do not have the same ρ-plane, then they
do not intersect.

Specifically, Pk and Pl have, by hypothesis, generating planes C1 = 0 and C1 = δ1

that are parallel but not coincident. The points of intersection have to satisfy these
two equations, which are incompatible. Thus if Pk and Pl are parallel of order ρ and
intersect, then they have the same ρ-plane.

12. If Pk and Pl have the same ρ-plane, then they intersect in a (k+l−ρ)-plane.

Specifically, let

C1 = · · · = Cρ = 0

be the ρ-plane formed from the common generating planes of Pk and Pl. One can replace
the equations

B1 = · · · = Bl = 0,

which defines Pl by the equivalent equations

C1 = 0, . . . , Cρ = 0, Bρ+1 = 0, . . . , Bl = 0,

in which the first ρ equations are solely combinations of the equations A1 = 0, . . . , Ak =
0, which define Pk.

14 Thus the number of distinct distinct equations satisfied by the
intersection of Pk and Pl are reduced to k + l − ρ.

13. A k-plane Pk sliding over an l-plane while remaining parallel to itself it produces
a multi-plane.

Suppose the two multi-planes are defined by equations (56) and (57). Then the
equations of a k-plane passing through the point ξ1, . . . , ξn are

A1 = a11ξ1 + · · ·+ a1nξn + α1[= 0],

· · ·
Ak = ak1ξ1 + · · ·+ aknξn + αn[= 0].

(63)

But if the point ξ1, . . . , ξn is to belong to Pl, then

B1 = b11ξ1 + · · ·+ b1nξn + β1 = 0,

· · ·
Bl = bl1ξ1 + · · ·+ blnξn + βn = 0.

(64)

Therefore, on eliminating ξ1, . . . , ξn in (63) and (64), we obtain equations — linear equa-
tions — for the desired locus.

14This is an example of what is now called the Steinitz exchange lemma.
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To fix our ideas, suppose that Pk and Pl are in the same ρ-plane Pρ. We may assume
that the planes C1 = 0, . . . , Cρ = 0 are among the planes chosen to define Pk and Pl.
Hence we may assume that

A1 = B1 = C1, . . . , Aρ = Bρ = Cρ.

But then the right-hand sides of the first ρ equations in (63) are zero because of (64).
Hence the equations

A1 = 0, . . . , Aρ = 0

are among the equations for the desired locus, and the other equations may be obtained
by eliminating the n variables ξ among the last k − ρ equations of the system (63) and
the last l equations of the system (64). This elimination gives l + k − ρ [l + k − ρ − n
in the original] equations that suffice to determine the desired locus.

II. Distance and Perpendicularity

14. The distance between two points whose coordinates are respectively x1, . . . , xn and
y1, . . . , yn is defined by the formula

∆ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The distance between a point p and a multi-plane is its distance to the point of the
multi-plane that is nearest it. This point q is the projection of the point p onto the
multi-plane.

The distance between two multi-planes that do not intersect is the distance between
the nearest neighbors of their points.

The projection of a multi-plane onto another is the locus of the projections of its
points.

15. We will now try to find the coordinates x1, . . . , xn of the projection q of a point
p whose coordinates are y1, . . . , yn onto the multi-plane Pk whose equations are

a11x1 + · · ·+ a1nxn + α1 = 0,

· · ·
ak1x1 + · · ·+ aknxn + αn = 0.

(65)

Since the point q is in Pk, its coordinates satisfy (65). On the other hand, the
expression

∆2 = (x1 − y1)2 + · · ·+ (xn − yn)2

must be smaller than for neighboring point q′ lying in Pk and having coordinates x1 +
dx1, . . . , xn + dxn.
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Setting the differential of ∆2 to zero, we get the equation

(x1 − y1)dx1 + · · ·+ (xn − yn)dxn = 0. (66)

Moreover, since q′ lies in Pk, the differentials dx1, . . . , dxn are not arbitrary but must
satisfy

a11dx1 + · · ·+ a1ndxn = 0,

· · ·
ak1dx1 + · · ·+ akndxn = 0.

(67)

Since equation (66) must be satisfied whenever (67) is, it is a linear combination of the
latter. Hence,

x1 − y1 = λ1a11 + · · ·+ λkak1,

· · ·
xn − yn = λ1a1n + · · ·+ λkakn,

(68)

where λ1, . . . , λk are suitable multipliers. If we eliminate λ1, . . . λk from these equations,
there remain n− k distinct equations

C1 = 0, . . . , Cn−k = 0 (69)

among the x1, . . . , xn, which along with the equations (65) completely determine these
quantities.

16. Suppose now that instead of being unknowns to be determined x1, . . . , xn are
the coordinates of a given point of Pk. The equations (68) or (69), in which y1, . . . , yn
are regarded as variables, represent the locus of points in space whose projection falls
on the point x1, . . . , xn. Hence this locus is a (n− k)-plane, say Pn−k. We will say that
that Pn−k is the is the (n− k)-plane perpendicular to Pk over the point x1, . . . , xn.

In general, an l-plane Pl will be said to be perpendicular to a k-plane Pk if given
two planes P ′l and P ′k that are parallel to Pl and Pk respectively and pass through an
arbitrary point q, the projections of each point of P ′l onto P ′k lies in intersection of P ′l
and P ′k.

17. We will now try and establish conditions for perpendicularity. As before, let be
the equations of P ′k be

A1 = a11x1 + · · ·+ a1nxn + α1 = 0,

· · ·
Ak = ak1x1 + · · ·+ aknxn + αn = 0,

(70)

and let those of P ′l be

B1 = b11x1 + · · ·+ b1nxn + β1 = 0,

· · ·
Bl = bl1x1 + · · ·+ blnxn + βn = 0.

(71)
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An arbitrary point of P ′l , say y1, . . . , yn is connected with its projection by the
relations (68). For P ′l to be perpendicular to P ′k it is by definition necessary that
x1, . . . , xn satisfy the relations (71) along with y1, . . . , yn. Hence, we have the equations

b11(x1 − y1) + · · ·+ b1n(xn − yn) = 0,

· · ·
bl1(x1 − y1) + · · ·+ bln(xn − yn) = 0.

(72)

[For Pl to be perpendicular to Pk,] these equations must be a consequence of (68)
whenever x1, . . . , xn satisfies (70) and y1, . . . , yn satisfies (71).

18. First suppose that Pk and Pl have no parallelism; i.e., P ′k and P ′l have no
common generating plane. The equations (70), which are satisfied by x1, . . . , xn and
the equations

B′1 = b11y1 + · · ·+ b1nyn + β1 = 0

· · ·
B′l = bl1y1 + · · ·+ blnyn + βn = 0

(73)

do not furnish any relation among the quantities x1 − y1, . . . , xn − yn.
Specifically, suppose we can deduce a relation of the form

µ1A1 + · · ·+ µkAk + ν1B
′
1 + · · ·+ νlB

′
l = c1(x1 − y1) + · · ·+ cn(xn − yn) = 0.

If x1, . . . , xn and y1, . . . , yn are interchanged, this relation gives the identity

µ1A1 + · · ·+ µkAk + ν1B1 + · · ·+ νlBl = 0.

Hence P ′l and P ′k have a common generating plane

µ1A1 + · · ·+ µkAk = −(ν1B1 + · · ·+ νlBl) = 0,

which is contrary to hypothesis.
Therefore the equations (72) have to be deduced from the equations (68) alone. If

the values of x1−y1, . . . , xn−yn in the equations (68) are substituted into the equations
(72) and then the coefficients of the indeterminants λ1, . . . , λk are set to zero,15 we get
the system

b11a11 + · · ·+ b1na1n = 0

· · ·
br1as1 + · · ·+ brnasn = 0

· · ·

(74)

15What Jordan means is that for each value of j the coefficients other than λj are set to zero while
λj remains nonzero. Since the λj are functions of y, this requires that as y varies of Rk the vectors
(λ1, . . . , λk) span Rn. The assertion is true, but Jordan does not prove it.
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Each of these kl equations taken alone says that one of the planes B1, . . . , Bl is
perpendicular to one of the planes A1, . . . , Al. Moreover their symmetric form shows
that if Pl is perpendicular to Pk, then Pk is likewise perpendicular to Pl.

16

19. More generally, suppose that Pk and Pl have a parallelism of order ρ; i.e., P ′k
and P ′l are contained in the same ρ-plane.

Let

C1 = µ11A1 + · · ·+ µ1kAk = ν11B1 + · · ·+ ν1lBl = c11x1 + · · ·+ c1nxn + γ1 = 0,

· · ·
Cρ = µρ1A1 + · · ·+ µρkAk = νρ1B1 + · · ·+ νρlBl = cρ1x1 + · · ·+ cρnxn + γρ = 0

be the equations of the ρ-plane P ′ρ. Let

ν11B1 + · · ·+ ν1lBl = C1 − δ1 = 0,

· · ·
νρ1B1 + · · ·+ νρlBl = Cρ − δρ = 0

be the generating planes corresponding to Pρ. Equations (70) and (73) give the following
equations:

µ11A1 + · · ·+ µ1kAk − ν11B
′
1 − · · · − ν1lB

′
l = c11(x1 − y1) + · · ·+ c1n(xn − yn) = 0,

· · ·
µρ1A1 + · · ·+ µρkAk − νρ1B

′
1 − · · · − νρlB′l = cρ1(x1 − y1) + · · ·+ cρn(xn − yn) = 0.

Substituting the values of x1 − y1, . . . , xn − yn from equation (68) into the above
equations, we get the following conditional equations in the parameters λ1, . . . , λk:

D1 = 0, . . . , Dρ = 0 (75)

In order to obtain the conditions for perpendicularity, we must first substitute the
values of x1−y1, . . . , xn−yn from equation (68) into (72), then eliminate the parameters
λ1, . . . , λk with the help of equation (75), and finally set the coefficients of the remaining
parameters to zero. Then each of equations (72) will decompose into k − ρ distinct
equations. Each of these l systems of k − ρ equations express the fact that the point
x1, . . . , xn lies respectively in the planes B1, . . . , Bl.

But these systems of conditions are not distinct. In fact, just after the point
x1, . . . , xn has been processed by the planes C1 = 0, . . . , Cρ = 0, it is sufficient to com-
plete the process by a suitable choice of ρ planes from the planes B1, . . . , Bl. This reduces
the number of distinct conditions necessary for perpendicularity to (l − ρ)(k − ρ).17

16Note that Jordan has proved the necessity of the conditions (74) for A to be orthogonal. He
does not prove the sufficiency of these conditions. Yet sufficiency is what he needs to show that the
perpendicularity of A to B implies the perpendicularity of B to A.

17This is a another example of Jordan’s use of the Steinitz exchange lemma.
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20. Once again we have the following: If Pl is perpendicular to Pk, then conversely
Pk is perpendicular to Pl. To make this reciprocity clear, we may suppose that the
planes C1, . . . , Cρ have been chosen to be among the planes defining P ′k and P ′l .

In addition, the remaining planes that define these two multi-planes may be chosen
so that they are perpendicular to the preceding planes. Specifically, let

π1A1 + · · ·+ πkAk = 0

be one of the generating planes of P ′k. It will be perpendicular to the planes C1 =
0, . . . , Cρ = 0 if the equations

(π1ai1 + · · ·+ πka1k)cr1 + · · ·+ (π1a1n + · · ·+ πkakn)crn = 0

are satisfied for r = 1, . . . , ρ. These ρ equations determine ρ of the constants π, say
πk−ρ+1, . . . , πk as a function of the others.

For example, let

πk−ρ+1 = m1πi + · · ·+ n1πk−ρ,

πk = mρπ1 + · · ·+ nρπk−ρ.

The desired planes are given by the formula

π1(A1 +m1Ak−ρ+1 + · · ·+mρAk) + · · ·+ πρ(Aρ + n1Ak−ρ+1 + · · ·+ nρAk) = 0.

This formula represents a (k− ρ)-plane from which we may freely choose (k− ρ) planes
to define P ′k [i.e., by varying π1, . . . , πρ].

18

Therefore let

A1 = C1 = c11x1 + · · ·+ c1nxn + γ1 = 0,
· · ·

Aρ = Cρ = cρ1x1 + · · ·+ cρnxn + γρ = 0,
Aρ+1 = Aρ+1,1x1 + · · ·Aρ+1,nxn + αρ+1 = 0,

· · ·
Ak = Ak,1x1 + · · ·+Ak,nxn + αk = 0,

(76)

be the planes that define P ′k chosen as described above. We then have a sequence of
conditional equations of the form

cr1as1 + · · ·+ crnasn = 0 (77)

18When ρ = 1, Jordan’s algorithm amounts to using the Gram–Schmidt method to orthogonalize the
remaining generating planes of A to C1.
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Likewise, we can define P ′l by means of the planes

C1 = 0, · · · , Cl = 0
Bρ+1 = Bρ+1,1x1 + · · ·+Bρ+1,nxn + βρ+1 = 0,

· · ·
Bl = Bl,1x1 + · · ·Bl,nxn + βk = 0,

(78)

which have been chosen so that

cr1bs1 + · · ·+ crnbsn = 0. (79)

If we compare the equations (76) and (78) to the equations (70) and (71), we get

a11 = b11 = c11, . . . , aρn = bρn = cρn. (80)

Let us now substituted the values of (68) into the equations (72). If we take into
account the equations (80), (77), and (79) and for short set

cr1cs1 + · · ·+ crncsn = Krs,

ar1bs1 + · · ·+ arnbsn = Lrs,

then we get
λ1K11 + · · ·+ λρK1ρ = 0,

· · ·
λ1Kρ1 + · · ·+ λρKρρ = 0,

λρ+1Lρ+1,1 + · · ·+ λkLρ+1,k = 0,
· · ·

λρ+1Ll,1 + · · ·+ λkLlk = 0.

The first ρ equations of this system are the result of substituting the values (68) into
the equations C1 = 0, . . . , Cρ = 0. Moreover, all the values of λ1, . . . , λk that satisfy
these ρ equations must satisfy as an identity all the other equations of the system. This
gives the relations

Lρ+1,1 = 0, . . . , Llk = 0.

These relations are clearly symmetric with respect to a and b, and they say that each
of the planes Aρ+1, . . . , Ak is perpendicular to each of the planes Bρ+1, . . . , Bl.

19

21. Any k-plane Pk can be construed as the intersection of k rectangular planes in
an infinite number of ways.20

19This derivation suffers from the same problems as the as the derivation in §18. Namely, the values
of λ1, . . . , λk must by shown to have a sufficiency of independence, and the conditions Li = 0 (i =
ρ+ 1, . . . k) must be shown to be sufficient.

20By “rectangular” Jordan means “mutually perpendicular.”
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Specifically, let A1 = 0 be an arbitrary generating plane of Pk. We have seen that
Pk contains a (k− 1)-plane Pk−1 that is perpendicular to A1.21 Let A2 be an arbitrary
generating plane of Pk−1. It will be perpendicular to A1. Moreover, Pk contain a (k−2)-
plane perpendicular to the biplane (A1, A2). Let A3 be one of its plane generators. It
will be perpendicular to A1 and A2. On can find in Pk a new plane Pk−2 perpendicular
to the three proceeding planes. And so on.

If we set k = n in the above proposition, we see that we can cause an infinite number
of systems of rectangular planes to pass through an arbitrary point in the space.

22. Let p be an arbitrary point, q be its projection onto a multi-plane Pk, and r be
an arbitrary point of Pk. Then the distances between the three points p, q, and r satisfy
the relation

pr2 = pq2 + qr2.

Specifically, let y1, . . . , yn, x1, . . . , xn, and ξ1, . . . , ξn be the coordinates of p, q, and
r, and suppose that Pk is defined by (65). Then

pr2 = (y1 − ξ1)2 + · · ·+ (yn − ξn)2

= (y1 − x1 + x1 − ξ1)2 + · · ·+ (yn − xn + xn − ξn)2

= pq2 + qr2 + 2{(y1 − x1)(x1 − ξ1) + · · ·+ (yn − xn)(xn − ξn)}

But if we replace y1 − x1, . . . , yn − xn by their values in (68), the term between the
braces becomes

λ1{a11(x1 − ξ1) + · · ·+ a1n(xn − ξn)}+ · · ·+ λk{ak1(x1 − ξ1) + · · ·+ akn(xn − ξn)}

In this expression the multipliers of λ1, . . . , λk are clearly zero since x1, . . . , xn and
ξ1, . . . , ξn satisfy (65).

23. Let Pk+l be a multi-plane contained in Pk. The projection of p onto Pk+l falls
on the same point s as the projection of q.

In fact, let be r an arbitrary point of Pk+l. Then we have from the above

pr2 = pq2 + qr2.

Moreover, since s is the projection of q on Pk+l,

qr2 = qs2 + rs2.

Finally,
ps2 = pq2 + qs2.

21By “contains” Jordan means that there are k − 1 of the plane generators of A that generate Pk−1

with the desired properties. These may be obtained by the orthogonalization algorithm described in
§20. As a point set, Pk−1 contains Pk.
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All this implies that

pr2 = ps2 + sr2.

which shows that the point s is the projection of p onto Pk+1.22

III. Changes of coordinates

24. Two parallel lines D and D′ extending between two parallel planes P and P ′ have
the same length.

Specifically, let the equations of the line D be

A1 = a11x1 + · · ·+ a1nxn + α1 = 0,
· · ·

An−1 = an−1,1x1 + · · ·+ an−1,nxn + αn−1 = 0
(81)

and let the equation of the plane P be

B = b1x1 + · · ·+ bnxn + β = 0. (82)

Let the equations of the line D′ be

A1 = α′1, . . . , An−1 = α′n−1 (83)

and let the equation of the plane P ′ be

B = β′. (84)

The coordinates ξ1, . . . , ξn of the intersection of D with P satisfy equations (81)
and (82). The coordinates η1, . . . , ηn of the point of intersection of D with P ′ satisfy
equations (81) and (84). Hence

a11(η1 − ξ1) + · · ·+ a1n(ηn − ξn) = 0,
· · ·

an−1,1(η1 − ξ1) + · · ·+ an−1,n(ηn − ξn) = 0,
b1(η1 − ξ1) + · · ·+ bn(ηn − ξn) + β′ = 0,

(85)

The coordinates ξ′1, . . . , ξ
′
n and η′1, . . . , η

′
n of the points of intersection of D′ with P and

P ′ satisfy the same equations. Hence

η′1 − ξ′1 = η1 − ξ1, . . . , η
′
n − ξ′n = ηn − ξn1,

22Jordan assumes here that if the last equality holds for all r ∈ Pk+l then s is the projection of p onto
Pk+1, which is true but requires proof.



54 Camille Jordan

whence

(η′1 − ξ′1)2 + · · ·+ (η′n − ξ′n)2 = (η1 − ξ1)2 + · · ·+ (ηn − ξn)2,

QED.

In addition, we note that the values of η1 − ξ1, . . . , ηn − ξn obtained from (85) vary
in proportion to the constant β′. From this we have the following conclusion.

Three parallel planes divide two arbitrary lines proportionally.

25. The locus of points whose distance along a given direction from a fixed plane P
is constant will necessarily be a plane parallel to P .

Given a system of n independent planes P,Q, . . ., the position of a point in space
is completely determined when one knows its distance from each of these planes, each
direction being taken along, for example, the direction of the intersection of the n − 1
other planes. Specifically, [according to the statement italicized above] these distances
determine n planes parallel to P,Q, . . . whose intersection is the point in question.

The above distances, X1, . . . , Xn, form a new system of coordinates which can be
used instead of x1, . . . , xn to define the points in space.

26. The new coordinates are related to the old by linear equations. Specifically, let

a11x1 + · · ·+ a1nxn + α1 = 0,

· · ·
an1x1 + · · ·+ annxn + αn = 0,

(86)

be the equations of the planes P,Q, . . . . Let ξ1, . . . , ξn be the coordinates of an arbitrary
point. The line parallel to the intersection the planes Q, . . . passing through this point
has the equations

ar1(x1 − ξ1) + · · ·+ arn(xn − ξn) = 0 (r = 2, . . . , n). (87)

In addition, the coordinates x1, . . . , xn of the intersection of this parallel line with P
satisfy the equation P or, what amounts to the same thing,

a11(x1 − ξ1) + · · ·+ a1n(xn − ξn) = a11ξ1 + . . .+ a1nξn − α1.
23 (88)

23The right-hand side of this equation should be −(a11ξ1 + . . . + a1nξn + α1). This means that the
definition of L below and should be modified, as should the right-hand side of (89).
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For brevity set
a11ξ1 + . . .+ a1nξn − α1 = L,∣∣∣∣∣∣∣

a11 · · · a1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣ = ∆,

d∆

dars
= brs,√

b2r1 + · · ·+ b2rn = Mr.

Then the following can be derived from (87) and (88):

x1 − ξ1 =
b11L

∆
, . . . , xn − ξn =

b1nL

∆
,

X1 = [±]
√

(x1 − ξ1)2 + · · ·+ (xn − ξn)2 =
M1

∆
L,=

M1

∆
(a11ξ1 + · · ·+ a1nξn − αi).

In the same way, we find for all values of r that

Xr =
Mr

∆
(ar1ξ1 + · · ·+ arnξn − αr). (89)

Inverting these equalities we get

ξr =
b1r
M1

X1 + · · ·+ bnr
Mn

Xn +
b1rα1 + · · ·+ bnrαn

∆
. (90)

27. It is easy to express the distance between two points as a function of the new
coordinates. Specifically, let ξ′1, . . . , ξ

′
n and X ′1, . . . , X

′
n be the coordinates of the second

point. Since they satisfy (87) and (90), we have

ξr − ξ′r =
b1r
M1

(X1 −X ′1) + · · ·+ bnr
Mn

(Xn −X ′n).

The distance D between the two points is given by the formula

D2 =
∑
r

(ξr − ξ′r)2 =
∑
r

(Xr −X ′r)2

+ 2
∑
rs

br1bs1 + · · ·+ brnbsn
MrMs

(Xr −X ′r)(Xs −X ′s).

This formula simplifies when the coordinate new planes are orthogonal. Specifically,
by definition,

ar1as1 + · · · arnasn = 0 if r 6= s. (91)
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Moreover, without any change to the system of new planes we can multiply the equation
of each by a constant so that

a2
r1 + · · ·+ a2

rn = 1.

But then a11, . . . , ann will be the coefficients of an orthogonal substitution. From the
properties of such substitutions we have

ar1as1 + · · ·+ arnasn = 0, a1rasr + · · · anrans = 0,

∆ = ±1,
brs
δ

= asr, Mr =
√

∆2(a2
1r + · · ·+ a2

nr) = 1,

br1bs1 + · · ·+ brnbsn
MrMs

= ∆2(a1ra1s + · · ·+ anrans) = 0,

(92)

so that D2 reduces to a sum of squares.

Conversely, if the equations (92) are satisfied, the equations (90) represents an or-
thogonal substitution, and the inverse substitution defined by (89) will also be orthog-
onal. Hence the equations (91) will be satisfied, and the new coordinate planes will
therefore be mutually perpendicular.

IV. Invariant Angles

28. The transformation of coordinates in the space of n dimensions offers the same
benefits as in ordinary geometry. It allows one to change the equations representing a
single figure and to simplify them by a suitable choice of the variables that appear in
the transformations.

Two arbitrary figures in space are said to be congruent whenever they can be repre-
sented by the same equations with respect to systems of orthogonal coordinates suitably
chosen for each.

If the orthogonal systems by which the two figures are represented are such that one
can pass from one to the other by a orthogonal substitution of determinant 1 [coefficient
in the original], the two figures are said to be identical, and they differ only in their
position in space. They are reflective if the determinant of the substitution is equal to
−1.

29. All k-planes are simultaneously identical and reflective. Specifically, we have
seen that any k-plane can be regarded as resulting of k intersecting planes that are
mutually perpendicular. From arbitrary point of Pk we construct the Pn−k plane that
is perpendicular to it, which will be the intersection of n − k mutually perpendicular
planes that will also be perpendicular to the preceding planes. If we take these n planes
so defined as coordinate planes, the equations of Pk assume the form

x1 = 0, . . . , xk = 0.
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Since the equations of an arbitrary k-plane can be reduced to the same form, this
k-plane will be identical or reflective to Pk. But at the same time it will be identical
and reflective. For Pk is itself reflective, since its equations do not change when x is
changed to −x (an operation that is an orthogonal substitution of determinant −1).

30. We will now consider a system of two intersecting planes P and Q. We will take
one of the points of intersection as the origin and the plane P for the plane x1 [= 0].
For the plane x2 [= 0] we will take a plane perpendicular [rectangular] to the first plane
and passing through the biplane (P,Q). For the other coordinate planes we will take
n− 2 rectangular planes associated with the (n− 2)-plane perpendicular to (P,Q). The
equations of the two planes then will have the form

x1 = 0,

ax1 + bx2 = 0.

If we divide the second equation by
√
a2 + b2, which is permissible, and set a√

a2+b2
=

cosα and b√
a2+b2

= sinα, we have

x1 = 0,

x1 cosα+ x2 sinα = 0.
(93)

Thus the canonical form to which we can reduce the equations of a system of two
planes contains an angle α as a parameter. Therefore, systems of two planes are not
the same but differ among themselves by a characteristic element.

31. That this must be the case can be seen a priori [i.e., without changing of
coordinates] Consider the equations of two planes in their general form:

P = a1x1 + · · · a2xn + α = 0,

Q = b1x1 + · · · b2xn + β = 0.

Let y1, . . . , yn be the coordinates of an arbitrary point q of Q. It projection x1, . . . , xn
onto P is given by the relations

a1(x1 − y1) = λa1, . . . , an(xn − yn) = λan

where λ is a constant to be determined from the condition that x1, . . . , xn satisfy the
equation P = 0. Equivalently,

a1(x1 − y1) + · · ·+ an(xn − yn) = L

where, for short, L = a1y1 + · · ·+ anyn − α.
It follows that

λ =
L

a2
1 + · · ·+ a2

n

,
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and the distance between the two points y1, . . . , yn and x1, . . . , xn is given by the formula

D2 = λ2(a2
1 + · · ·+ a2

n) =
L2

a2
1 + · · ·+ a2

n

. (94)

We will now determine the distance ∆ from q to the intersection of the planes P,Q.
The projection z1, . . . , zn of the point p on its intersection is given by the relations

z1 − y1 = λa1 + µb1, . . . , zn − yn = λan + µbn,

the parameters λ, µ being determined by the condition that z1, . . . , zn must satisfy the
relations P = 0, Q = 0. Equivalently,

a1(z1 − y1) + · · ·+ an(zn − yn) = L,

b1(z1 − y1) + · · ·+ bn(zn − yn) = 0.

Hence
λΣra

2
r + µΣrarbr = L, λΣrarbr + µΣrb

2
r = 0,

or

λ =
Σb2r · L

Σa2
rΣb

2
r − (Σarbr)2

, µ = − Σarbr · L
Σa2

rΣb
2
r − (Σarbr)2

.

Substituting these values in the expression

∆2 = (λa1 + µb1)2 + · · ·+ (λan + µbn)2

and canceling the common factor Σra
2
rΣrb

2
r − (Σrarbr)

2, we get

∆2 =
Σrb

2
r · L

Σra2
rΣrb2r − (Σrarbr)2

. (95)

Dividing this equation into (94), we get

D2

∆2
=

Σra
2
rΣrb

2
r − (Σrarbr)

2

Σra2
rb

2
r

(96)

The ratio of D2

∆2 is therefore independent of the position of the point q in plane Q and
is therefore equal to a constant K.

Let us now replace the current coordinate by another system, also rectangular. Then
D2

∆2 = K ′, where K ′ is the function analogous to K formed with the new coefficients.
But the distances D and ∆ are not changed under orthogonal substitutions, and hence
K = K ′. Thus the function K is invariant under all orthogonal substitutions, and two
systems of two planes cannot be congruent if they have different values of this invariant.
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If the two planes are reduced to the canonical form (93), then

K = sin2 α

The quantity

1−K =
(Σarbr)

2

Σa2
rΣb

2
r

= cos2 α

is a second invariant, which, like the first, is reflective with respect to the coefficients of
the two planes.

The angle α may be called the angle of the two planes.
32. It should be noted that although sin2 α and cos2 α are invariants, the same is

not true of the coefficients sinα and cosα in the canonical equation for the plane Q.
Specifically, changing the sign of one of the coordinates x1, x2, or both, will change the
signs of the corresponding coefficients.

33. Let us now turn to the consideration of two multi-planes Pk and Pl having a
common point π. In order to treat the problem in full generality, we will assume the
following.

1. The multi-planes Pk and Pl lie in a common ρ-plane Pρ (without lying in a common
(ρ+ 1)-plane).

2. The multi-planes Pn−k and Pn−l erected at the point π and perpendicular Pk and
Pl lie in a common σ-plane Pσ (without lying in a common (σ + 1)-plane).

3. Pn−k and Pl are lie in a common τ -plane Pτ (without lying in a common (τ + 1)-
plane).

4. Pn−l and Pk are lie in a common υ-plane Pυ (without lying in a common (υ+ 1)-
plane).

We take the following for coordinate planes:

1. ρ rectangular planes
x1 = 0, . . . , xρ = 0

chosen from the plane generators of Pρ;

2. σ rectangular planes
y1 = 0, . . . , yσ = 0

chosen from the plane generators of Pσ;

3. τ rectangular planes
z1 = 0, . . . , zτ = 0

chosen from the plane generators of Pτ ;
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4. υ rectangular planes
u1 = 0, . . . , uυ = 0

chosen from the plane generators of Pυ;

5. k − ρ− υ = α rectangular planes

v1 = 0, . . . , vτ = 0

chosen arbitrarily from the generators of the multi-plane Pα that are in Pk and
are perpendicular to Pρ and Pυ.

6. n− k − σ − τ = β rectangular planes

w1 = 0, . . . , wβ = 0

chosen from the generators of the multi-plane Pβ that are in Pn−k and perpendic-
ular Pσ and Pτ .

It is clear that coordinate planes defined above are all mutually perpendicular and
that the equation of Pk take the form

x1 = 0, . . . , xρ = 0

u1 = 0, . . . , uρ = 0

v1 = 0, . . . , vα = 0

The multi-plane Pl is the result of intersecting the planes

x1 = 0, . . . , xρ = 0

z1 = 0, . . . , zρ = 0

with a (l − ρ − τ = γ)-plane Pγ perpendicular to them. Moreover, since Pγ is perpen-
dicular to Pn−l, they will be perpendicular to the planes

y1 = 0, . . . , yσ = 0, z1 = 0, . . . , zµ = 0,

which are contained in Pn−l. Therefore, the equations of its generating planes have the
form

A1 = a11v1 + · · ·+ a1αvα + b11w1 + · · ·+ b1βvβ = 0,

· · ·
Aγ = aγ1v1 + · · ·+ aγαvα + bγ1w1 + · · ·+ bγβvβ = 0.

(97)

Thus the comparison of two multi-planes Pk and Pl reduces to the comparison of the
γ-plane Pγ with the α-plane Pα, which is the intersection of the planes

v1 = 0, . . . , vα = 0.
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Let us now consider how to carry out this comparison.

34. In the first place, it is easy to see that the three integers α, β, γ are equal.

Specifically, if γ were greater than α, we could eliminate v1, . . . , vα in (97) to obtain
a generating plane of Pγ of the form

c1w1 + · · ·+ cβwβ = 0. (98)

This plane will be perpendicular to Pα and hence to Pk. On adjoining this equation
those defining Pτ , we get a (τ + 1)-plane containing both Pn−k and Pl, contrary to our
assumption [about the maximality of τ ].

If γ were less than α, then we could find a (α−γ)-plane in Pα that is perpendicular
to Pγ . For the general equation

λ1v1 + · · ·+ λαvα

of the generating plains of Pα contains α parameters λ1, . . . , λα, and there are only γ
conditions for perpendicularity. Hence α−γ parameters remain free. If the equations of
this (α−γ)-plane are adjoined to those of Pυ, we obtain a (ν+α−γ)-plane that contains
both Pk and Pn−l, which is contrary to hypothesis. It follows that α = γ.

If γ were greater than β, we could eliminate w1, . . . , wβ in (98) so as to obtain a
generating plane of Pγ whose equation is of the form

c1v1 + · · ·+ cαvα = 0.

This plane is among the generating planes of Pk. On adjoining one of these planes to
those of Pρ, we get a (ρ+1)-plane that contains both Pk and Pρ, which is contrary to
hypothesis.

If γ were less than β, we could find an (β−γ)-plane in Pβ that is perpendicular to Pγ .
On adjoining the equations of this (β−γ)-plane to those of Pσ, we have a (σ+β−γ)-plane
that contains both Pn−k and Pn−l, which is contrary to hypothesis.

Therefore, γ = β = α, and we can write (97) in the form

Ar = ar1v1 + · · ·+ arαvα + br1w1 + · · ·+ brαvα = 0 (r = 1, 2, . . . , α). (99)

35. In the second place, the α functions of the form

Br = ar1v1 + · · ·+ arαvα (100)

are all distinct. For if they were related by a linear equation, [say],

k1B1 + · · ·+ kαBα = 0,
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then Pγ would have a generating plane

k1A1 + · · ·+ kαAα = 0,

whose equation reduces to the form (100), a result we have shown to be impossible [§34].
Since the functions Br are distinct, we can solve the equations (97) for v1, . . . , vα

and get inverse relations of the form

vr = er1B1 + · · ·+ erαBα (r = 1, 2, . . . , α).

Given this, it is clear that the planes

Cr = er1A1 + · · ·+ erαAα = 0 (101)

reduce to the form

Cr = vr + b′r1w1 + · · ·+ b′rαwα = 0 (r = 1, 2, . . . , α). (102)

We may thus regard Pγ as no longer being determined by the intersection of the planes

A1 = 0, . . . , Aα = 0,

but instead by the intersection of the planes

C1 = 0, . . . , Cα = 0,

whose equations have a simpler form.
36. To obtain a further simplification, consider the function∑

ρ

(b′1ρw1 + · · ·+ b′ααwα)2 = Φ(w1, . . . , wα).

We can find an orthogonal substitution with real coefficients∣∣∣∣∣∣
w1 f11w1 + · · ·+ fα1wα

· · ·
w1 fα1w1 + · · ·+ fααwα

∣∣∣∣∣∣ (103)

that, when applied to this function, causes the mixed terms to vanish [i.e., terms of the
form b′iρb

′
jρwiwj (i 6= j). Jordan calls them les rectangles.] (Cauchy, Sur l’équation à

l’aide de laquelle on détermine les inégalités séculaires, etd.; Exercices de mathematics,
t. IV.). Once these coefficients have been determined, we replace the coordinate planes

v1 = 0, . . . , vα = 0
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by new rectangular planes
v′1 = 0, . . . , v′α = 0 (104)

given by the relations

v′r = fr1v1 + · · ·+ frαvα (r = 1, 2, . . . , α). (105)

On the other hand, in place of the equations

Cr = 0 (r = 1, 2, . . . , α)

used to define Pγ , we will use the equivalent system formed from the following equations:

A′r = fr1C1 + · · ·+ frαCα = v′r + b′′r1w1 + · · · b′′rαwα. (r = 1, 2, . . . , α), (106)

where for short we have set

b′′rρ = fr1b
′
1ρ + · · ·+ frαb

′
αρ

(
r = 1, 2, . . . , α
ρ = 1, 2, . . . , α

)
We then have

Σρ(b
′′
1ρw1, . . . , b

′′
αρwα)2 = Σρ[Σrb

′
rρ(fr1w1 + · · ·+ frαwα)]2

= Φ(f11w1 + · · ·+ fα1wα + · · ·+ f1αw1 + · · ·+ fααwα).

Therefore, this expression does not have any cross terms in the variables owing to the
condition

Σρb
′′
rρb
′′
sρ = 0, r 6= s, (107)

which says that the planes A′1, . . . , A
′
α are mutually rectangular.

37. Furthermore, let

Σρb
′′2
rρ = g2

r (r = 1, 2, . . . , α). (108)

When the relations (107) and (108) are divided by grgs and g2
r respectively, they show

that the quantities
b′′11

g1
, . . . ,

b′′rρ
gr
, . . . ,

b′′αα
gα

are the coefficients of an orthogonal substitution. If we take

w′r =
b′′r1
g1
w1 + · · ·+ b′′rα

gr
wα (α = 1, 2, . . . , r) (109)

in place of w1, . . . , wα, then Pα will still be determined by the equations (104), while
the equations for Pγ reduce to the simple form

A′r = v′r + grw
′
r (r = 1, . . . , α), (110)
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in which no more than α parameters g1, . . . , gα appear.
If we set

gr = tan θr,

and multiply the equations (110) by cos θr, they take the form

A′r = v′r cos θr + w′r sin θr = 0. (111)

We will say that θ1, . . . θα are the angles of the two α-planes Pα and Pγ .
38. The quantities cos2θr and sin2θr are orthogonal invariants. On can show this

in two ways.
First, let

λ1v
′
1 + · · ·+ λαv

′
α,

be an arbitrary plane generator of Pα and

µ1(v′1 cos θ1 + w′1 sin θ1) + · · ·+ µα(v′α cos θα + w′α sin θα)

be arbitrary plane generator of Pγ . The angle between these planes is given by the
formula

cos2 θ =
(λ1µ1 cos θ1 + · · ·+ λαµα cos θα)2

(µ2
1 + · · ·+ µ2

α)(λ2
1 + · · ·+ λ2

α)
=

N2

ML
. (112)

If one varies the indeterminants λ and µ, the [local] maxima and minima this expressions
will clearly be invariants.

First of all suppose that only the λ are varied. If the λ’s are determined so that N2

ML
[MN in the text] has a maximum or minimum value t2, then we must have

t2 =
N2

ML
=

N2 + d.N2

ML+MdL

whatever the variations dλ1, . . . , dλn. From this it follows that

d.N2 = t2MdL.

Hence
dN2

λ1
= t2M

dL

dλ1
, . . . ,

dN2

λα
= t2M

dL

dλα
,

or
Nµ1 cos θ1 = t2Mλ1, . . . , Nµα cos θα = t2Mλα, (113)

On subtracting the values of λ from these equations, substituting them into (112),
and simplifying, we get

t2 = cos2 θ =
µ2

1 cos2 θ1 + · · ·+ µ2
α cos2 θα

µ2
1 + · · ·+ µ2

α

=
R

S
. (114)
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39. Let us now take the quantities µ1, . . . , µn as the variables. The variational law
for t2 that follows from (116) may be represented geometrically. Specifically, since t2

depends only on the ratios of the quantities µ1, . . . , µα, we may assume that they may
be constrained to vary in such a way that S is always equal to one. That done, in an
α-dimensional space construct a line[situated at the origin] of length r = 1

t2
and making

angles µ1, . . . , µα with the coordinate axes. The locus of the ends of these lines will be
the ellipsoid

1 = X2
1 cos2 θ1 + · · ·+X2

α cos2 θα.

40. It remains to obtain the maxima and minima of t2. Let s2 be one of them. We
have

s2 =
R

S
=
R+ dR

S + dS
=
dR

dS
,

from which we have
dR

dµ1
= s2 dS

dµ1
, . . . ,

dR

dµα
= s2 dS

dµα
,

or

µ1 cos2 θ1 = µ1s
2, . . . , µα cos2 θα = µαs

2, (115)

These equations will be satisfied if we set

s2 = cos2 θρ, µ1 = . . . = µρ−1 = µρ+1 = . . . = µα = 0.

Then the equations (113) give the corresponding values of the unknowns λ:

λ1 = . . . = λρ−1 = λρ+1 = . . . = λα = 0. (116)

Therefore, there exist α distinct maxima and minima corresponding respectively
to the angles between the planes A1, . . . , Aα and A′1, . . . , A

′
α. We thus established the

following theorem.

Let two α-planes Pα and Pγ that have only a single point in common be given.
If we seek pairs of their generating planes whose angles are maximal or minimal, we
will get two corresponding systems systems of real perpendicular planes A1, . . . , Aα and
A′1, . . . , A

′
α. The desired maxima and minima are none other than the angles of the

multi-planes Pα and Pγ.

41. For the second way, let v′1, . . . , v
′
α and w′1, . . . , w

′
α be the coordinates of an

arbitrary point in Pγ . Its distance h from the multi-plane defined by the equations

v′1 = · · · = v′α = 0

is evidently given by

h2 = v′21 + · · ·+ v′2α .
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On the other hand, its distance k from the origin of the coordinates is given by the
formula

k2 = v′21 + · · ·+ v′2α + 2′21 + · · ·+ w′2α .

Hence, on taking the equations (60) into account,

k2 = v′21 + · · ·+ v′2α + v′21 cot2 θ1 + · · ·+ v′2α cot2 θα =
v′21

sin2 θ1
+ · · ·+ v′2α

sin2 θα
.

Given this, the maxima and minima of h2

k2
are evidently invariants. Let one of them

be u2. Then as before

u2 =
h2

k2
=
h2 + d.h2

k2 + d.k2
,

whence
d.h2

dv′1
= u2d.k

2

dv′1
, . . . ,

d.h2

dv′α
= u2d.k

2

dv′α
.

These equations may be satisfied by setting

u2 = sin2 θρ, v
′
1 = · · · = v′ρ−1 = v′ρ+1 = · · · = v′α = 0.

Thus we have α distinct invariants, which are the squares of the sines of the angles
θ1, . . . , θα.

42. We note, once again, that the quantities cos θr, sin θr, and tan θr = gr are not
invariant, since one can change their signs simply by changing the sign of one of the
coordinates. Only their squares are invariant.

43. Consider two arbitrary systems of two α-plains Pα, Pγ and P ′α, P ′γ . If they have
the same invariants, then they are congruent; for we have just seen that they can be
reduced by orthogonal substitutions to a single canonical form. But it will be useful to
distinguish the case where the two systems are identical from the case where they are
reflective.

If n > 2α, then the two systems are simultaneously identical and reflective. For
each of them is reflective to itself; its equation does not change under the orthogonal
substitution of determinant −1 that one obtains by changing the sign of one of the
coordinates that does not occur in the canonical equations.

Such is no longer the case when n = 2α: one has either identity or reflectivity. Let
us see how the two cases may be distinguished.

44. As before, let

vr = 0 (r = 1, 2, . . . , α)

and

Ar = ar1v1 + · · · arαvα + br1w1 + · · · brαwα = 0 (r = 1, 2, . . . , α)
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be the equations that define Pα and Pγ . Likewise, we can write the equations that
define P ′α and P ′γ in the form

Vr = 0 (r = 1, 2, . . . , α)

and

Ar1V1 + · · ·ArαVα +Br1W1 + · · ·BrαWα = 0 (r = 1, 2, . . . , α)

where, V1 = 0, . . . ,Wα = 0 are rectangular planes.

The substitution

|v1, . . . , wα V1, . . . ,Wα|.

is orthogonal, and since its determinant is equal to ±1, it is clear that the system P ′α,
P ′γ will be equal or symmetric to the system of two multi-planes Pα, Pγ defined by

vr = 0 (r = 1, 2, . . . , α)

and

Ar = Ar1v1 + · · ·Arnvn +Br1w1 + · · ·Brnwn (r = 1, 2, . . . , α).

The question therefore reduces to determining when the new system is identical to the
system Pα and Pγ and when, on the other hand, the two are reflective.

45. We are going to show that they are identical if the product of the two determi-
nants

∆1 =

∣∣∣∣∣∣∣
A11 · · · A1α

...
...

Aα1 · · · Aαα

∣∣∣∣∣∣∣ and ∆2 =

∣∣∣∣∣∣∣
B11 · · · B1α

...
...

Bα1 · · · Bαα

∣∣∣∣∣∣∣
has the same sign as the product as the product of the determinants

δ1 =

∣∣∣∣∣∣∣
a11 · · · a1α
...

...
aα1 · · · aαα

∣∣∣∣∣∣∣ and δ2 =

∣∣∣∣∣∣∣
b11 · · · b1α
...

...
bα1 · · · bαα

∣∣∣∣∣∣∣ ,
In the opposite case, they are reflective.

46. To define Pγ we will take the the planes

Cr = 0

defined by the relations (50) and (51) instead of the the planes

A = 0.
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In this new system of planes the determinants corresponding to δ1 and δ2 are

δ′1 = εδ1 = 1, δ′2 = εδ2 =
δ2

δ1
=

∣∣∣∣∣∣∣
b′11 · · · b′1α
...

...
b′α1 · · · b′αα

∣∣∣∣∣∣∣
where ε denotes the determinant ∣∣∣∣∣∣∣

e′11 · · · e′1α
...

...
e′α1 · · · e′αα

∣∣∣∣∣∣∣
reciprocal to δ. From this it is seen that δ′2 has the same sign as δ1δ2.

Instead of v1, . . . , vα, let us now take as coordinates the quantities v′1, . . . , v
′
α deter-

mined by the relations (105). Let us also define Pγ by the intersection of the planes A′r
given by the formula (106). The determinant

δ′′2 =

∣∣∣∣∣∣∣
b′′11 · · · b′′1α
...

...
b′′α1 · · · b′′αα

∣∣∣∣∣∣∣
given by the formula (106) is clearly equal to δ2ψ, where ψ is the determinate of the
coefficients f11, . . . , fαα. This determinant is equal to ±1, since the substitution (103) is
orthogonal. We may assume that it is equal to one. For in order to change its sign it is
sufficient to change all the signs in f11, . . . , f1α. This can be done without changing the
fact that the substitution (103) causes the off-diagonal elements in Φ to vanish. Under
this supposition we have

δ′′2 = δ2.

Given this, we clearly have

δ′′2 = g1 · · · gαψ′, (117)

where ψ′ is the determinant of the equations (109). Since these relations are orthogonal,
we have

ψ′ = ±1.

Moreover, the signs of the g1, . . . , gα are arbitrary. Hence we may assume that g2, . . . , gα
are positive and determine the sign of g1 so that ψ′ is equal to one. From (117) we see
that g1 has the same sign as δ′′2 or the product δ1δ2.

We can therefore give Pα and Pγ the forms

v′1 = 0, . . . , v′α = 0, (118)
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and

v′1 + g1w
′
1 = 0, . . . v′α + gαw

′
α = 0 (119)

by orthogonal transformations of determinant one.

47. Proceeding is the same way with the system P ′α and P ′γ , which by hypothesis
has the same invariants g2

1, . . . , g
2
α, we can by orthogonal transformations of determinant

one transform their equations in to the same canonical form as above, provided ∆1∆2

have the same sign as δ1δ2. If ∆1∆2 has a different than δ1δ2, then we can reduce it to a
form that differs from the above by the sign of g1. In the first case, the two systems are
clearly identical. In the second case they are reflective, since to make their canonical
forms the same, we have only to change the sign of a single coordinate. We have thus
established our proposition.

48. We have seen above that one can determine a system of coordinates x1, . . . , xρ,
y1, . . . , yσ, z1, . . . , zτ , u1, . . . , uυ, v′1, . . . , v

′
α, and w′1, . . . , w

′
α such that Pk and Pl are

respectively determined by the equations

x1 = 0, . . . , xρ = 0
u1 = 0, . . . , uυ = 0
v′1 = 0, . . . , v′α = 0

(120)

and by the equations

y1 = 0, . . . , yσ = 0
z1 = 0, . . . , zτ = 0
v′1 cos θ1 + w′1 sin θ1, . . . , v

′
α cos θα + w′α sin θα.

(121)

The multi-planes Pn−k and Pn−l taken perpendicularly from the origin of their pre-
decessors will have the equations

y1 = 0, . . . , yρ = 0
z1 = 0, . . . , zυ = 0
w′1 = 0, . . . , w′α = 0

(122)

and
y1 = 0, . . . , yσ = 0
u1 = 0, . . . , uυ = 0
−v′1 sin θ1 + w′1 cos θ1, . . . ,−v′α sin θα + w′α cos θα.

(123)

A comparison of these equations shows:

1. Pn−k subtends with Pk α angles equal to π
2 + θ1, . . .

π
2 + θα

2. Pn−k and Pn−l subtend between themselves α angles equal to π + θ1, . . . , π + θα
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It follows that Pn−k and Pn−l have the same invariants as Pk and Pl.
49. A system formed from a k-plane Pk and an l-plane Pl has in general α invariants,

where α is the smallest of the four numbers k, l, n− k, and n− l.
Specifically, let us assume that the coefficients of Pl and Pk have no special relation

to one another. Suppose, first of all that k is the smallest of the four numbers above.
Then we have k + l ≤ n and k + n− l ≤ n. Then pk in general has no generating plane
in common with Pl or Pn−l. Hence according to §33,

ρ = 0, υ = 0, α = k − ρ− υ = k.

In the particular case that Pk has ρ generating planes in common with Pl and υ
generating planes in common with Pn−l, we can express the general case by saying that
among the k angles of Pk and Pl, there are ρ that are equal to zero and υ that are equal
to π

2 .
On the other hand, let n−k ≤ k, l, n− l. Then, as above, the multi-planes Pn−k and

Pn−l will have in general n− k invariant angles, and Pk and Pl, which are respectively
perpendicular to Pn−k and Pn−l, will have the same invariants (see §48).

50. We have seen (§33) that the inquiry into the angles between two arbitrary
multi-planes can immediately be reduced to an inquiry into the angles between two
alpha planes, where α is at most equal to n

2 . This last inquiry can be resolved by
reducing the two α-planes to their canonical form, as we have done in §34 and the
following. But one can also treat the problem directly.

Specifically, let
a11x1 + · · ·+ a1nxn = 0,

· · · · · · · · ·
aα1x1 + · · ·+ aαnxn = 0,

and
b11x1 + · · ·+ b1nxn = 0,

· · · · · · · · ·
bα1x1 + · · ·+ bαnxn = 0,

be the equations of the two α-planes — call them P and Q.
By setting

A1 = a11λ1 + · · ·+ aα1λα, . . . , An = a1nλ1 + · · ·+ aαnλα (124)

we may write the general equation of a generating plane of P as

A1x1 + · · ·+Anxn = 0.

Likewise, on setting

B1 = b11λ1 + · · ·+ bα1λα, . . . , Bn = b1nλ1 + · · ·+ bαnλα (125)
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we can write a generating plane of Q as

B1x1 + · · ·+Bnxn = 0.

The angle φ between two of the planes is given by the expression

cos2 φ =
(
∑
AρBρ)

2∑
A2
ρB

2
ρ

=
M

N
. (126)

It remains to find the minimum of this expression.
Let s2 be the required minimum. The values corresponding to the unknowns —

λ1, . . . , λn on the one hand and µ1, . . . , µn on the other — are determined only up to
their ratios, because M

N is homogeneous and of degree zero with respect to each of these
systems of variables. One can, therefore, determine the λ’s and the µ’s in such a way
that in addition to the condition

M

N
= s2

it satisfies the auxiliary conditions∑
A2 = 1 and

∑
B2 = 1,

whence

N =
∑

A2
∑

B2 = 1 and s =

√
M

N
=
√
M =

∑
AρBρ.

All this given, let us perturb the variables λ, µ by infinitely small increments. Then
according to the conditions for a minimum, we have

s2 =
M

N
=
M + dM

N + dN
.

If we multiply by the denominators and set separately each of the coefficients of λ1, . . . , λα
and µ1, . . . , µα from zero [?], we get for σ = 1, . . . , α

dM

dλσ
= s2 dN

dλσ
(127)

and
dM

dµσ
= s2 dN

dµσ
. (128)

But
dM

dλσ
= 2

∑
AρBρ

∑
aσρBρ = 2s

∑
aσρBρ,

dN

dλσ
= 2

∑
B2
ρ

∑
aσρAρ = 2

∑
aσρAρ.
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If we substitute these values into equation (127) and cancel the common factor s, we
get ∑

aσρBρ = s
∑

aσρAρ. (σ = 1, 2, . . . , α). (129)

Likewise equation (128) gives∑
bσρAρ = s

∑
bσρBρ (σ = 1, 2, . . . , α). (130)

Equations (124), (125), (129), and (130), form a system of 2n+ 2α linear equations
among the 2n+ 2α quantities λ, µ, A, and B. If we set the determinant of this system
to zero, we get the characteristic equation that determines s. This equation is of degree
2α, but it is easy to see that that it only contains pairs of powers of s.24

24There are actually only 2α free quantities since Aρ and Bρ depend linearly on the λ’s and µ’s. The
characteristic equation give ρ values of s corresponding to the cosine of the canonical angles and in
addition the corresponding values of −s.
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