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Abstract

Minimum-error-rate training (MERT) is a bot-
tleneck for current development in statistical
machine translation because it is limited in
the number of weights it can reliably opti-
mize. Building on the work of Watanabe et
al., we explore the use of the MIRA algorithm
of Crammer et al. as an alternative to MERT.
We first show that by parallel processing and
exploiting more of the parse forest, we can
obtain results using MIRA that match or sur-
pass MERT in terms of both translation qual-
ity and computational cost. We then test the
method on two classes of features that address
deficiencies in the Hiero hierarchical phrase-
based model: first, we simultaneously train a
large number of Marton and Resnik’s soft syn-
tactic constraints, and, second, we introduce
a novel structural distortion model. In both
cases we obtain significant improvements in
translation performance. Optimizing them in
combination, for a total of 56 feature weights,
we improve performance by 2.6 B on a
subset of the NIST 2006 Arabic-English eval-
uation data.

1 Introduction

Since its introduction by Och (2003), minimum er-
ror rate training (MERT) has been widely adopted
for training statistical machine translation (MT) sys-
tems. However, MERT is limited in the number of
feature weights that it can optimize reliably, with
folk estimates of the limit ranging from 15 to 30 fea-
tures.

One recent example of this limitation is a series
of experiments by Marton and Resnik (2008), in

which they added syntactic features to Hiero (Chi-
ang, 2005; Chiang, 2007), which ordinarily uses no
linguistically motivated syntactic information. Each
of their new features rewards or punishes a deriva-
tion depending on how similar or dissimilar it is
to a syntactic parse of the input sentence. They
found that in order to obtain the greatest improve-
ment, these features had to be specialized for par-
ticular syntactic categories and weighted indepen-
dently. Not being able to optimize them all at once
using MERT, they resorted to running MERT many
times in order to test different combinations of fea-
tures. But it would have been preferable to use a
training method that can optimize the features all at
once.

There has been much work on improving MERT’s
performance (Duh and Kirchoff, 2008; Smith and
Eisner, 2006; Cer et al., 2008), or on replacing
MERT wholesale (Turian et al., 2007; Blunsom et
al., 2008). This paper continues a line of research on
online discriminative training (Tillmann and Zhang,
2006; Liang et al., 2006; Arun and Koehn, 2007),
extending that of Watanabe et al. (2007), who use
the Margin Infused Relaxed Algorithm (MIRA) due
to Crammer et al. (2003; 2006). Our guiding princi-
ple is practicality: like Watanabe et al., we train on
a small tuning set comparable in size to that used
by MERT, but by parallel processing and exploit-
ing more of the parse forest, we obtain results us-
ing MIRA that match or surpass MERT in terms of
both translation quality and computational cost on a
large-scale translation task.

Taking this further, we test MIRA on two classes
of features that make use of syntactic information
and hierarchical structure. First, we generalize Mar-
ton and Resnik’s (2008) soft syntactic constraints by



training all of them simultaneously; and, second, we
introduce a novel structural distortion model. We ob-
tain significant improvements in both cases, and fur-
ther large improvements when the two feature sets
are combined.

The paper proceeds as follows. We describe our
training algorithm in section 2; our generalization
of Marton and Resnik’s soft syntactic constraints in
section 3; our novel structural distortion features in
section 4; and experimental results in section 5.

2 Learning algorithm

The translation model is a standard linear model
(Och and Ney, 2002), which we train using MIRA
(Crammer and Singer, 2003; Crammer et al., 2006),
following Watanabe et al. (2007). We describe the
basic algorithm first and then progressively refine it.

2.1 Basic algorithm
Let e, by abuse of notation, stand for both output
strings and their derivations. We represent the fea-
ture vector for derivation e as h(e). Initialize the fea-
ture weights w. Then, repeatedly:

• Select a batch of input sentences f1, . . . , fm.

• Decode each fi to obtain a set of hypothesis
translations ei1, . . . , ein.

• For each i, select one of the ei j to be the oracle
translation e∗i , by a criterion described below.
Let ∆hi j = h(e∗i ) − h(ei j).

• For each ei j, compute the loss `i j, which is
some measure of how bad it would be to guess
ei j instead of e∗i .

• Update w to the value of w′ that minimizes:

1
2
‖w′ − w‖2 + C

m∑
i=1

max
1≤ j≤n

(`i j − ∆hi j · w′) (1)

where we set C = 0.01. The first term means
that we want w′ to be close to w, and second
term (the generalized hinge loss) means that we
want w′ to score e∗i higher than each ei j by a
margin at least as wide as the loss `i j.

When training is finished, the weight vectors from
all iterations are averaged together. (If multiple

passes through the training data are made, we only
average the weight vectors from the last pass.) The
technique of averaging was introduced in the con-
text of perceptrons as an approximation to taking a
vote among all the models traversed during training,
and has been shown to work well in practice (Fre-
und and Schapire, 1999; Collins, 2002). We follow
McDonald et al. (2005) in applying this technique to
MIRA.

Note that the objective (1) is not the same as that
used by Watanabe et al.; rather, it is the same as
that used by Crammer and Singer (2003) and related
to that of Taskar et al. (2005). We solve this opti-
mization problem using a variant of sequential min-
imal optimization (Platt, 1998): for each i, initialize
αi j = C for a single value of j such that ei j = e∗i ,
and initialize αi j = 0 for all other values of j. Then,
repeatedly choose a sentence i and a pair of hypothe-
ses j, j′, and let

w′ ← w′ + δ(∆hi j − ∆hi j′) (2)

αi j ← αi j + δ (3)

αi j′ ← αi j′ − δ (4)

where

δ = clip
[−αi j,αi j′ ]

(`i j − `i j′) − (∆hi j − ∆hi j′) · w′

‖∆hi j − ∆hi j′‖
2 (5)

where the function clip[x,y](z) gives the closest num-
ber to z in the interval [x, y].

2.2 Loss function

Assuming B as the evaluation criterion, the loss
`i j of ei j relative to e∗i should be related somehow
to the difference between their B scores. How-
ever, B was not designed to be used on individ-
ual sentences; in general, the highest-B transla-
tion of a sentence depends on what the other sen-
tences in the test set are. Sentence-level approxi-
mations to B exist (Lin and Och, 2004; Liang
et al., 2006), but we found it most effective to per-
form B computations in the context of a set O of
previously-translated sentences, following Watan-
abe et al. (2007). However, we don’t try to accu-
mulate translations for the entire dataset, but simply
maintain an exponentially-weighted moving average
of previous translations.



More precisely: For an input sentence f, let e be
some hypothesis translation and let {rk} be the set of
reference translations for f. Let c(e; {rk}), or simply
c(e) for short, be the vector of the following counts:
|e|, the effective reference length mink |rk|, and, for
1 ≤ n ≤ 4, the number of n-grams in e, and the num-
ber of n-gram matches between e and {rk}. These
counts are sufficient to calculate a B score, which
we write as B(c(e)). The pseudo-document O is
an exponentially-weighted moving average of these
vectors. That is, for each training sentence, let ê be
the 1-best translation; after processing the sentence,
we update O, and its input length O f :

O ← 0.9(O + c(ê)) (6)

O f ← 0.9(O f + |f|) (7)

We can then calculate the B score of hypothe-
ses e in the context of O. But the larger O is, the
smaller the impact the current sentence will have on
the B score. To correct for this, and to bring the
loss function roughly into the same range as typical
margins, we scale the B score by the size of the
input:

B(e; f, {rk}) = (O f + |f|) × B(O + c(e; {rk})) (8)

which we also simply write as B(e). Finally, the loss
function is defined to be:

`i j = B(e∗i ) − B(ei j) (9)

2.3 Oracle translations
We now describe the selection of e∗. We know of
three approaches in previous work. The first is to
force the decoder to output the reference sentence
exactly, and select the derivation with the highest
model score, which Liang et al. (2006) call bold up-
dating. The second uses the decoder to search for
the highest-B translation (Tillmann and Zhang,
2006), which Arun and Koehn (2007) call max-B
updating. Liang et al. and Arun and Koehn experi-
ment with these methods and both opt for a third
method, which Liang et al. call local updating: gen-
erate an n-best list of translations and select the
highest-B translation from it. The intuition is that
due to noise in the training data or reference transla-
tions, a high-B translation may actually use pe-
culiar rules which it would be undesirable to en-
courage the model to use. Hence, in local updating,
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Figure 1: Scatter plot of 10-best unique translations of a
single sentence obtained by forest rescoring using various
values of µ in equation (11).

the search for the highest-B translation is limited
to the n translations with the highest model score,
where n must be determined experimentally.

Here, we introduce a new oracle-translation selec-
tion method, formulating the intuition behind local
updating as an optimization problem:

e∗ = arg max
e

(B(e) + h(e) · w) (10)

Instead of choosing the highest-B translation
from an n-best list, we choose the translation that
maximizes a combination of (approximate) B
and the model.

We can also interpret (10) in the following way:
we want e∗ to be the max-B translation, but we
also want to minimize (1). So we balance these two
criteria against each other:

e∗ = arg max
e

(B(e) − µ(B(e) − h(e) · w)) (11)

where (B(e) − h(e) · w) is that part of (1) that de-
pends on e∗, and µ is a parameter that controls how
much we are willing to allow some translations to
have higher B than e∗ if we can better minimize
(1). Setting µ = 0 would reduce to max-B up-
dating; setting µ = ∞ would never update w at all.
Setting µ = 0.5 reduces to equation (10).

Figure 1 shows the 10-best unique translations for
a single input sentence according to equation (11)
under various settings of µ. The points at far right are
the translations that are scored highest according to



the model. The µ = 0 points in the upper-left corner
are typical of oracle translations that would be se-
lected under the max-B policy: they indeed have
a very high B score, but are far removed from the
translations preferred by the model; thus they would
cause violent updates to w. Local updating would
select the topmost point labeled µ = 1. Our scheme
would select one of the µ = 0.5 points, which have
B scores almost as high as the max-B transla-
tions, yet are not very far from the translations pre-
ferred by the model.

2.4 Selecting hypothesis translations

What is the set {ei j} of translation hypotheses? Ide-
ally we would let it be the set of all possible transla-
tions, and let the objective function (1) take all of
them into account. This is the approach taken by
Taskar et al. (2004), but their approach assumes that
the loss function can be decomposed into local loss
functions. Since our loss function cannot be so de-
composed, we select:

• the 10-best translations according to the model;

we then rescore the forest to obtain

• the 10-best translations according to equation
(11) with µ = 0.5, the first of which is the oracle
translation, and

• the 10-best translations with µ = ∞, to serve as
negative examples.

The last case is what Crammer et al. (2006) call
max-loss updating (where “loss” refers to the gener-
alized hinge loss) and Taskar et al. (2005) call loss-
augmented inference. The rationale here is that since
the objective (1) tries to minimize max j(`i j − ∆hi j ·

w′), we should include the translations that have the
highest (`i j − ∆hi j · w) in order to approximate the
effect of using the whole forest.

See Figure 1 again for an illustration of the hy-
potheses selected for a single sentence. The max-
B points in the upper left are not included (and
would have no effect even if they were included).
The µ = ∞ points in the lower-right are the negative
examples: they are poor translations that are scored
too high by the model, and the learning algorithm
attempts to shift them to the left.

To perform the forest rescoring, we need to use
several approximations, since an exact search for
B-optimal translations is NP-hard (Leusch et al.,
2008). For every derivation e in the forest, we calcu-
late a vector c(e) of counts as in Section 2.2 except
using unclipped counts of n-gram matches (Dreyer
et al., 2007), that is, the number of matches for an n-
gram can be greater than the number of occurrences
of the n-gram in any reference translation. This can
be done efficiently by calculating c for every hyper-
edge (rule application) in the forest:

• the number of output words generated by the
rule

• the effective reference length scaled by the frac-
tion of the input sentence consumed by the rule

• the number of n-grams formed by the applica-
tion of the rule (1 ≤ n ≤ 4)

• the (unclipped) number of n-gram matches
formed by the application of the rule (1 ≤ n ≤
4)

We keep track of n-grams using the same scheme
used to incorporate an n-gram language model into
the decoder (Wu, 1996; Chiang, 2007).

To find the best derivation in the forest, we tra-
verse it bottom-up as usual, and for every set of al-
ternative subtranslations, we select the one with the
highest score. But here a rough approximation lurks,
because we need to calculate B on the nodes of the
forest, but B does not have the optimal substructure
property, i.e., the optimal score of a parent node can-
not necessarily be calculated from the optimal scores
of its children. Nevertheless, we find that this rescor-
ing method is good enough for generating high-B
oracle translations and low-B negative examples.

2.5 Parallelization
One convenient property of MERT is that it is em-
barrassingly parallel: we decode the entire tuning set
sending different sentences to different processors,
and during optimization of feature weights, differ-
ent random restarts can be sent to different proces-
sors. In order to make MIRA comparable in effi-
ciency to MERT, we must parallelize it. But with
an online learning algorithm, parallelization requires
a little more coordination. We run MIRA on each



processor simultaneously, with each maintaining its
own weight vector. A master process distributes dif-
ferent sentences from the tuning set to each of the
processors; when each processor finishes decoding
a sentence, it transmits the resulting hypotheses,
with their losses, to all the other processors and re-
ceives any hypotheses waiting from other proces-
sors. Those hypotheses were generated from differ-
ent weight vectors, but can still provide useful in-
formation. The sets of hypotheses thus collected are
then processed as one batch. When the whole train-
ing process is finished, we simply average all the
weight vectors from all the processors.

Having described our training algorithm, which
includes several practical improvements to Watan-
abe et al.’s usage of MIRA, we proceed in the re-
mainder of the paper to demonstrate the utility of the
our training algorithm on models with large numbers
of structurally sensitive features.

3 Soft syntactic constraints

The first features we explore are based on a line
of research introduced by Chiang (2005) and im-
proved on by Marton and Resnik (2008). A hi-
erarchical phrase-based translation model is based
on synchronous context-free grammar, but does not
normally use any syntactic information derived from
linguistic knowledge or treebank data: it uses trans-
lation rules that span any string of words in the input
sentence, without regard for parser-defined syntac-
tic constituency boundaries. Chiang (2005) exper-
imented with a constituency feature that rewarded
rules whose source language side exactly spans a
syntactic constituent according to the output of an
external source-language parser. This feature can
be viewed as a soft syntactic constraint: it biases
the model toward translations that respect syntactic
structure, but does not force it to use them. However,
this more syntactically aware model, when tested in
Chinese-English translation, did not improve trans-
lation performance.

Recently, Marton and Resnik (2008) revisited
the idea of constituency features, and succeeded in
showing that finer-grained soft syntactic constraints
yield substantial improvements in B score for
both Chinese-English and Arabic-English transla-
tion. In addition to adding separate features for dif-

ferent syntactic nonterminals, they introduced a new
type of constraint that penalizes rules when the
source language side crosses the boundaries of a
source syntactic constituent, as opposed to simply
rewarding rules when they are consistent with the
source-language parse tree.

Marton and Resnik optimized their features’
weights using MERT. But since MERT does not
scale well to large numbers of feature weights, they
were forced to test individual features and manu-
ally selected feature combinations each in a sepa-
rate model. Although they showed gains in trans-
lation performance for several such models, many
larger, potentially better feature combinations re-
mained unexplored. Moreover, the best-performing
feature subset was different for the two language
pairs, suggesting that this labor-intensive feature se-
lection process would have to be repeated for each
new language pair.

Here, we use MIRA to optimize Marton and
Resnik’s finer-grained single-category features all at
once. We define below two sets of features, a coarse-
grained class that combines several constituency cat-
egories, and a fine-grained class that puts different
categories into different features. Both kinds of fea-
tures were used by Marton and Resnik, but only a
few at a time. Crucially, our training algorithm pro-
vides the ability to train all the fine-grained features,
a total of 34 feature weights, simultaneously.

Coarse-grained features As the basis for coarse-
grained syntactic features, we selected the following
nonterminal labels based on their frequency in the
tuning data, whether they frequently cover a span
of more than one word, and whether they repre-
sent linguistically relevant constituents: NP, PP, S,
VP, SBAR, ADJP, ADVP, and QP. We define two
new features, one which fires when a rule’s source
side span in the input sentence matches any of the
above-mentioned labels in the input parse, and an-
other which fires when a rule’s source side span
crosses a boundary of one of these labels (e.g., its
source side span only partially covers the words in
a VP subtree, and it also covers some or all or the
words outside the VP subtree). These two features
are equivalent to Marton and Resnik’s XP= and XP+

feature combinations, respectively.



Fine-grained features We selected the following
nonterminal labels that appear more than 100 times
in the tuning data: NP, PP, S, VP, SBAR, ADJP,
WHNP, PRT, ADVP, PRN, and QP. The labels that
were excluded were parts of speech, nonconstituent
labels like FRAG, or labels that occurred only two
or three times. For each of these labels X, we added
a separate feature that fires when a rule’s source side
span in the input sentence matches X, and a second
feature that fires when a span crosses a boundary of
X. These features are similar to Marton and Resnik’s
X= and X+, except that our set includes features for
WHNP, PRT, and PRN.

4 Structural distortion features

In addition to parser-based syntactic constraints,
which were introduced in prior work, we introduce
a completely new set of features aimed at improv-
ing the modeling of reordering within Hiero. Again,
the feature definition gives rise to a larger number of
features than one would expect to train successfully
using MERT.

In a phrase-based model, reordering is per-
formed both within phrase pairs and by the phrase-
reordering model. Both mechanisms are able to
learn that longer-distance reorderings are more
costly than shorter-distance reorderings: phrase
pairs, because phrases that involve more extreme re-
orderings will (presumably) have a lower count in
the data, and phrase reordering, because models are
usually explicitly dependent on distance.

By contrast, in a hierarchical model, all reordering
is performed by a single mechanism, the rules of the
grammar. In some cases, the model will be able to
learn a preference for shorter-distance reorderings,
as in a phrase-based system, but in the case of a word
being reordered across a nonterminal, or two non-
terminals being reordered, there is no dependence in
the model on the size of the nonterminal or nonter-
minals involved in reordering.

So, for example, if we have rules

X→ (il dit X1, he said X1) (12)

X→ (il dit X1,X1 he said) (13)

we might expect that rule (12) is more common in
general, but that rule (13) becomes more and more

→
→

→
→→

→
→

→
Figure 2: Classifying nonterminal occurrences for the
structural distortion model.

rare as X1 gets larger. The default Hiero features
have no way to learn this.

To address this defect, we can classify every
nonterminal pair occurring on the right-hand side
of each grammar rule as “reordered” or “not re-
ordered”, that is, whether it intersects any other word
alignment link or nonterminal pair (see Figure 2).
We then define coarse- and fine-grained versions of
the structural distortion model.

Coarse-grained features Let R be a binary-
valued random variable that indicates whether a non-
terminal occurrence is reordered, and let S be an
integer-valued random variable that indicates how
many source words are spanned by the nonterminal
occurrence. We can estimate P(R | S ) via relative-
frequency estimation from the rules as they are ex-
tracted from the parallel text, and incorporate this
probability as a new feature of the model.

Fine-grained features A difficulty with the
coarse-grained reordering features is that the gram-
mar extraction process finds overlapping rules in the
training data and might not give a sensible proba-
bility estimate; moreover, reordering statistics from
the training data might not carry over perfectly into
the translation task (in particular, the training data
may have some very freely-reordering translations
that one might want to avoid replicating in transla-
tion). As an alternative, we introduce a fine-grained
version of our distortion model that can be trained
directly in the translation task as follows: define



a separate binary feature for each value of (R, S ),
where R is as above and S ∈ {?, 1, . . . , 9,≥10} and ?
means any size. For example, if a nonterminal with
span 11 has its contents reordered, then the features
(true,≥10) and (true, ?) would both fire. Grouping
all sizes of 10 or more into a single feature is de-
signed to avoid overfitting.

Again, using MIRA makes it practical to train
with the full fine-grained feature set—coincidentally
also a total of 34 features.

5 Experiment and results

We now describe our experiments to test MIRA and
our features, the soft-syntactic constraints and the
structural distortion features, on an Arabic-English
translation task. It is worth noting that this exper-
imentation is on a larger scale than Watanabe et
al.’s (2007), and considerably larger than Marton
and Resnik’s (2008).

5.1 Experimental setup
The baseline model was Hiero with the following
baseline features (Chiang, 2005; Chiang, 2007):

• two language models

• phrase translation probabilities p( f | e) and
p(e | f )

• lexical weighting in both directions (Koehn et
al., 2003)

• word penalty

• penalties for:

– automatically extracted rules
– identity rules (translating a word into it-

self)
– two classes of number/name translation

rules
– glue rules

The probability features are base-100 log-
probabilities.

The rules were extracted from all the allow-
able parallel text from the NIST 2008 evalua-
tion (152+175 million words of Arabic+English),
aligned by IBM Model 4 using GIZA++ (union of
both directions). Hierarchical rules were extracted

from the most in-domain corpora (4.2+5.4 million
words) and phrases were extracted from the remain-
der. We trained the coarse-grained distortion model
on 10,000 sentences of the training data.

Two language models were trained, one on data
similar to the English side of the parallel text and
one on 2 billion words of English. Both were 5-
gram models with modified Kneser-Ney smoothing,
lossily compressed using a perfect-hashing scheme
similar to that of Talbot and Brants (2008) but using
minimal perfect hashing (Botelho et al., 2005).

We partitioned the documents of the NIST 2004
(newswire) and 2005 Arabic-English evaluation data
into a tuning set (1178 sentences) and a develop-
ment set (1298 sentences). The test data was the
NIST 2006 Arabic-English evaluation data (NIST
part, newswire and newsgroups, 1529 sentences).

To obtain syntactic parses for this data, we tok-
enized it according to the Arabic Treebank standard
using AMIRA (Diab et al., 2004), parsed it with
the Stanford parser (Klein and Manning, 2003), and
then forced the trees back into the MT system’s tok-
enization.1

We ran both MERT and MIRA on the tuning
set using 20 parallel processors. We stopped MERT
when the score on the tuning set stopped increas-
ing, as is common practice, and for MIRA, we used
the development set to decide when to stop train-
ing.2 In our runs, MERT took an average of 9 passes
through the tuning set and MIRA took an average of
8 passes. (For comparison, Watanabe et al. report de-
coding their tuning data of 663 sentences 80 times.)

5.2 Results

Table 1 shows the results of our experiments with
the training methods and features described above.
All significance testing was performed against the
first line (MERT baseline) using paired bootstrap re-
sampling (Koehn, 2004).

First of all, we find that MIRA is competitive with
MERT when both use the baseline feature set. In-

1The only notable consequence this had for our experimen-
tation is that proclitic Arabic prepositions were fused onto the
first word of their NP object, so that the PP and NP brackets
were coextensive.

2We chose this policy for MIRA to avoid overfitting. How-
ever, we could have used the tuning set for this purpose, just as
with MERT: in none of our runs would this change have made
more than a 0.2 B difference on the development set.



Dev NIST 06 (NIST part)
Train Features # nw nw ng nw+ng
MERT baseline 12 52.0 50.5 32.4 44.6

syntax (coarse) 14 52.2 50.9 33.0+ 45.0+

syntax (fine) 34 52.1 50.4 33.5++ 44.8
distortion (coarse) 13 52.3 51.3+ 34.3++ 45.8++

distortion (fine) 34 52.0 50.9 34.5++ 45.5++

MIRA baseline 12 52.0 49.8− 34.2++ 45.3++

syntax (fine) 34 53.1++ 51.3+ 34.5++ 46.4++

distortion (fine) 34 53.3++ 51.5++ 34.7++ 46.7++

distortion+syntax (fine) 56 53.6++ 52.0++ 35.0++ 47.2++

Table 1: Comparison of MERT and MIRA on various feature sets. Key: # = number of features; nw = newswire, ng =

newsgroups; + or ++ = significantly better than MERT baseline (p < 0.05 or p < 0.01, respectively), − = significantly
worse than MERT baseline (p < 0.05).

deed, the MIRA system scores significantly higher
on the test set; but if we break the test set down by
genre, we see that the MIRA system does slightly
worse on newswire and better on newsgroups. (This
is largely attributable to the fact that the MIRA trans-
lations tend to be longer than the MERT transla-
tions, and the newsgroup references are also rela-
tively longer than the newswire references.)

When we add more features to the model, the two
training methods diverge more sharply. When train-
ing with MERT, the coarse-grained pair of syntax
features yields a small improvement, but the fine-
grained syntax features do not yield any further im-
provement. By contrast, when the fine-grained fea-
tures are trained using MIRA, they yield substan-
tial improvements. We observe similar behavior for
the structural distortion features: MERT is not able
to take advantage of the finer-grained features, but
MIRA is. Finally, using MIRA to combine both
classes of features, 56 in all, produces the largest im-
provement, 2.6 B points over the MERT baseline
on the full test set.

We also tested some of the differences between
our training method and Watanabe et al.’s (2007); the
results are shown in Table 2. Compared with local
updating (line 2), our method of selecting the ora-
cle translation and negative examples does better by
0.5 B points on the development data. Using loss-
augmented inference to add negative examples to lo-
cal updating (line 3) does not appear to help. Never-
theless, the negative examples are important: for if

Setting Dev
full 53.6
local updating, no LAI 53.1−

local updating, LAI 53.0−−

µ = 0.5 oracle, no LAI failed
no sharing of updates 53.1−−

Table 2: Effect of removing various improvements in
learning method. Key: − or −− = significantly worse than
full system (p < 0.05 or p < 0.01, respectively); LAI =

loss-augmented inference for additional negative exam-
ples.

we use our method for selecting the oracle transla-
tion without the additional negative examples (line
4), the algorithm fails, generating very long transla-
tions and unable to find a weight setting to shorten
them. It appears, then, that the additional negative
examples enable the algorithm to reliably learn from
the enhanced oracle translations.

Finally, we compared our parallelization method
against a simpler method in which all processors
learn independently and their weight vectors are all
averaged together (line 5). We see that sharing in-
formation among the processors makes a significant
difference.

6 Conclusions

In this paper, we have brought together two existing
lines of work: the training method of Watanabe et al.
(2007), and the models of Chiang (2005) and Marton



and Resnik (2008). Watanabe et al.’s work showed
that large-margin training with MIRA can be made
feasible for state-of-the-art MT systems by using a
manageable tuning set; we have demonstrated that
parallel processing and exploiting more of the parse
forest improves MIRA’s performance and that, even
using the same set of features, MIRA’s performance
compares favorably to MERT in terms of both trans-
lation quality and computational cost.

Marton and Resnik (2008) showed that it is pos-
sible to improve translation in a data-driven frame-
work by incorporating source-side syntactic analy-
sis in the form of soft syntactic constraints. This
work joins a growing body of work demonstrating
the utility of syntactic information in statistical MT.
In the area of source-side syntax, recent research
has continued to improve tree-to-string translation
models, soften the constraints of the input tree in
various ways (Mi et al., 2008; Zhang et al., 2008),
and extend phrase-based translation with source-
side soft syntactic constraints (Cherry, 2008). All
this work shows strong promise, but Marton and
Resnik’s soft syntactic constraint approach is par-
ticularly appealing because it can be used unobtru-
sively with any hierarchically-structured translation
model. Here, we have shown that using MIRA to
weight all the constraints at once removes the cru-
cial drawback of the approach, the problem of fea-
ture selection.

Finally, we have introduced novel structural dis-
tortion features to fill a notable gap in the hierar-
chical phrase-based approach. By capturing how re-
ordering depends on constituent length, these fea-
tures improve translation quality significantly. In
sum, we have shown that removing the bottleneck
of MERT opens the door to many possibilities for
better translation.
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