Geometric View of Machine Learning Nearest Neighbor Classification

Slides adapted from Prof. Carpuat

What we know so far

Decision Trees

• What is a decision tree, and how to induce it from data

Fundamental Machine Learning Concepts

- Difference between memorization and generalization
- What inductive bias is, and what is its role in learning
- What underfitting and overfitting means
- How to take a task and cast it as a learning problem
- Why you should never ever touch your test data!!

Linear Algebra

- Provides compact representation of data
 - For a given example, all its features can be represented as a single **vector**
 - An entire dataset can be represented as a single **matrix**
- Provide ways of manipulating these objects
 - Dot products, vector/matrix operations, etc
- Provides formal ways of describing and discovering patterns in data
 - Examples are points in a **Vector Space**
 - We can use **Norms and Distances** to compare them
- Some are valid for feature data types
- Some can be made valid, with generalization ...

Mathematical view of vectors

- Ordered set of numbers: (1,2,3,4)
- Example: (*x*,*y*,*z*) coordinates of a point in space.
- The 16384 pixels in a 128×128 image of a face
- List of choices in the tennis example
- Vectors usually indicated with bold lower case letters.
 Scalars with lower case
- Usual mathematical operations with vectors:
 - Addition operation **u** + **v**, with:
 - Identity **0 v** + **0** = **v**
 - Inverse **V** + (-**V**) = **0**
 - Scalar multiplication:
 - Distributive rule: $\alpha(\mathbf{U} + \mathbf{V}) = \alpha(\mathbf{U}) + \alpha(\mathbf{V})$

 $(\alpha + \beta)\mathbf{U} = \alpha\mathbf{U} + \beta\mathbf{U}$

Dot Product

• The *dot product* or, more generally, *inner product* of two vectors is a scalar:

 $\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$ (in 3D)

- Useful for many purposes
 - Computing the Euclidean length of a vector: length(v) = sqrt(v v)
 - Normalizing a vector, making it unit-length
 - Computing the angle between two vectors:
 - $\mathbf{u} \bullet \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$
 - Checking two vectors for orthogonality
 - Projecting one vector onto another
- Other ways of measuring length and distance are possible

Vector norms

$$v = (x_1, x_2, \dots n_n)$$

Two norm (Euclidean norm)

$$\|v\|_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$$

If $||v||_2 = 1$, v is a unit vector

Infinity norm

$$\|v\|_{\infty} = \max(|x|_1, |x|_2, \dots)$$

One norm ("Manhattan distance")

$$\left\| v \right\|_{1} = \sum_{i=1}^{n} \left| x_{i} \right|$$

For a 2 dimensional vector, write down the set of vectors with two, one and infinity norm equal to unity

Nearest Neighbor

- Intuition points close in a feature space are likely to belong to the same class
 – Choosing right features is very important
- Nearest Neighbors (NN) algorithms for classification
 - K-NN, Epsilon ball NN
- Fundamental Machine Learning Concepts

 Decision boundary

Intuition for Nearest Neighbor Classification

- Simple idea
 - Store all training examples
 - Classify new examples based on label for K closest training examples
 - Training may just involve making structures to make computing closest examples cheaper

2 approaches to learning

Eager learning (eg decision trees)

- Learn/Train
 - Induce an **abstract model** from data
- Test/Predict/Classify
 - Apply learned model to new data

Lazy learning (eg nearest neighbors)

- Learn
 - Just store data in memory
- Test/Predict/Classify
 - Compare new data to stored data
- Properties
 - Retains all information seen in training
 - Complex hypothesis space
 - Classification can be very slow

Components of a k-NN Classifier

- Distance metric
 - How do we measure distance between instances?
 - Determines the layout of the example space
- The k hyperparameter
 - How large a neighborhood should we consider?
 - Determines the complexity of the hypothesis space

Distance metrics

- We can use any distance function to select nearest neighbors.
- Different distances yield different neighborhoods

K=1 and Voronoi Diagrams

- Imagine we are given a bunch of training examples
- Find regions in the feature space which are closest to every training example
- Algorithm if our test point is in the region corresponding to a given input point – return its label

Decision Boundary of a Classifier

- It is simply the line that separates positive and negative regions in the feature space
- Why is it useful?
 - it helps us visualize how examples will be classified for the entire feature space
 - it helps us visualize the complexity of the learned model

Decision Boundaries for 1-NN

knn (K=1):12 Distance

Decision Boundaries change with the distance function

knn (K=1):12 Distance

knn (K=1): linf Distance

Decision Boundaries change with K

knn (K=1):12 Distance

knn (K=3):12 Distance

The k hyperparameter

- Tunes the complexity of the hypothesis space
 - If k = 1, every training example has its own neighborhood
 - If k = N, the entire feature space is one neighborhood!
- Higher k yields smoother decision boundaries
- How would you set k in practice?