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Abstract

Children acquiring languages with noun classes (grammatical gender) have ample statistical

information available that characterizes the distribution of nouns into these classes, but their use

of this information to classify novel nouns differs from the predictions made by an optimal Baye-

sian classifier. We use rational analysis to investigate the hypothesis that children are classifying

nouns optimally with respect to a distribution that does not match the surface distribution of statis-

tical features in their input. We propose three ways in which children’s apparent statistical insensi-

tivity might arise, and find that all three provide ways to account for the difference between

children’s behavior and the optimal classifier. A fourth model combines two of these proposals

and finds that children’s insensitivity is best modeled as a bias to ignore certain features during

classification, rather than an inability to encode those features during learning. These results pro-

vide insight into children’s developing knowledge of noun classes and highlight the complex ways

in which statistical information from the input interacts with children’s learning processes.
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1. Introduction

Language learners are surrounded by statistical information. Considerable evidence sug-

gests that they can make use of this information to learn about their linguistic environment.

For example, when acquiring artificial languages, children track distributional cues that

allow them to discover phonetic categories (Maye, Werker, & Gerken, 2002), word
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boundaries (Saffran, Aslin, & Newport, 1996), grammatical categories (Mintz, 2003;

Reeder, Newport & Aslin, 2009, 2010), grammatical dependencies (Gomez & Maye, 2005;

Saffran, 2001), and phrase structure (Takahashi, 2009). The apparent abundance of statisti-

cal information, combined with children’s ability to draw inferences from distributional

information, leads to a common approach in the language acquisition literature to study lan-

guage acquisition by examining the way in which a perfect statistical learner would acquire

language (e.g., Elman et al., 1996; Frank, Goodman, & Tenenbaum, 2009; Goldwater, Grif-

fiths, & Johnson, 2009; Perfors, Tenenbaum, & Regier, 2011). This parallel depends on chil-

dren being able to track statistical information reliably and use available and relevant

information to draw inferences about the language being acquired. If children cannot track

all of the available information, or do not use the right information to solve a given problem,

their inferences could cause them to look like less than perfect statistical learners.

When children are tested on their ability to generalize aspects of their native language

in experimental settings, their linguistic knowledge does not always reflect the distribu-

tion of statistical information in the input. Work by Hudson-Kam and Newport (2009),

for example, suggests that children are not perfectly veridical learners, at least in an artifi-

cial language context, in that they sometimes override statistical patterns in the service of

amplifying some other facet of the language they are acquiring. Singleton and Newport

(2004) show a similar pattern wherein a child exposed exclusively to non-native input

regularized and hence amplified certain statistical patterns in the input. We also see cases

of overgeneralization, for example with regular past tense morphology, which can be seen

as a temporary amplification of the pattern of regular past tense found in the input

(Brown, 1973). Lidz, Gleitman, and Gleitman (2003) found that Kannada acquiring chil-

dren rely more on argument number than causative morphology to learn about novel

verbs, even though the causative morphology is a more statistically reliable cue. This type

of pattern, where the inferences children make do not match the distributional information

in the environment, allows us to learn more about how children draw inferences, and

what kinds of biases they bring to the task of language acquisition.

Here, we investigate this type of pattern by examining the acquisition of noun class

(grammatical gender) in a natural language, Tsez, where children acquiring noun classes

do not appear to make optimal use of the statistical information available. We use com-

putational modeling as a probe into the source of this pattern. We review evidence show-

ing that children exhibit behavior that is inconsistent with the statistical information

available in the input when assigning novel nouns to noun classes (Gagliardi & Lidz,

2014). This inconsistent behavior suggests that there is more to language acquisition than

a simple mapping of external statistical information to an internal representation of this

distribution. In particular, it suggests that properties of the learner shape the statistical

information in the input into the subset of information that is used to guide inferences in

language acquisition: the intake (Fodor, 1998; Gagliardi & Lidz, 2014). This work high-

lights the need to separate the input available in the environment from the intake, or the

information learners make use of in language acquisition.

We use a Bayesian model of noun classification to probe what underlies the difference

between the measureable input and the intake that children use to acquire noun classes. We
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adopt the approach of rational analysis (Anderson, 1990), building a formal model that makes

minimal assumptions about computational costs and then revising this model based on detailed

comparisons with children’s behavior. As a general characterization of the problem, we assume

that optimal performance in an experimental task involves the following four components:

1. Accumulation of knowledge of the statistical distribution of features relating to

some phenomenon.

2. Observation of features in a novel experimental item.

3. Knowledge of which features are relevant for the statistical computation.

4. Computation to determine how to generalize the phenomenon in question to the

novel instance.

Building a model with all of these components intact allows us to characterize the behav-

ior of a learner with minimal constraints. As the use of a statistical cue for learning depends

on the learner’s ability to perceive it, and on the ability of their computational system to deem

it relevant for learning, we can revise (1)–(3) to probe how learners’ behavior is optimized

with respect to the environment, given the constraints of the learner (c.f. Pearl, Goldwater, &

Steyvers, 2011). (1) depends on the learner’s ability to observe and encode a statistical distri-

bution of features pertaining to some phenomenon. (2) is similar to (1), but refers to encoding

these features given a situation where the learner will be performing a computation to clas-

sify or otherwise deal with a novel instance. (3) requires the learner to know which features

are relevant for a computation and is by no means trivial, as not every feature related to every

phenomenon is relevant to the associated computation. (4) is an assumption that we are mak-

ing about the kind of computations that learners use distributional information for. While step

(4) is often assumed to be the culprit when subjects show suboptimal performance in experi-

mental tasks (Sternberg & McClelland, 2011; Tversky & Kahneman, 1974; Wason, 1968), in

principle steps (1) through (3) can also contribute to suboptimal performance. That is, when

people behave suboptimally, we must ask whether they have some problem with parts (1)–
(3), yet are generalizing optimally with respect to whatever they have available, or whether

(1)–(3) are non-problematic but they are not inferring the optimal solution.1

Our case study on Tsez noun classification examines how each of these pieces could

result in a behavioral pattern that on the surface appears to be suboptimal use of the statisti-

cal information in the input. We begin with an outline of the distributional information that

characterizes Tsez noun classes. We then compare children’s use of this information in clas-

sification with that of a naive Bayesian classifier. Finally, we build four models that explore

what classification would look like if uncertainty were introduced into levels (1)–(3) from
above, in an effort to determine what underlies the difference between children’s perfor-

mance and predictions made by an optimal Bayesian model.

2. Tsez noun classes

Many languages treat subclasses of nouns differently for the purposes of grammatical

agreement and concord processes. The presence and number of these noun classes2
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(sometimes called genders), as well as the distribution of individual nouns into classes,

vary greatly across languages, but several features remain constant. All noun class sys-

tems are characterized by distributional information, both internal and external to the

noun (Corbett, 1991). Noun internal distributional information consists of commonalities

among the nouns in a class, such as semantic or phonological features. Noun external dis-

tributional information is made up of class-defining information that is separate from the

noun, such as agreement morphology that is contingent on noun class. We will look at

noun class acquisition in Tsez as a case study.

Tsez, a Nakh-Dagestanian language spoken by about 6,000 people in the Northeast

Caucasus (Bokarev, 1959; Comrie & Polinsky, 1998; Comrie, Polinsky, & Rajabov,

1998; Polinsky, 2000), has four noun classes. These classes can be characterized based

on noun external distributional information (e.g., prefixal agreement on vowel initial

verbs and adjectives) (Table 1), and noun internal distributional information (semantic

and features on the nouns themselves) (Table 2). The existence of these noun internal fea-

tures, and in particular, the fact that these features differ in their reliability as cues to

noun class, make Tsez an ideal language in which to study differences between the input

available in the linguistic environment and the intake that children make use of. This

combination of data from an understudied language and computational modeling

techniques allows us to probe not only children’s acquisition of Tsez but also the role of

statistical information in language acquisition.

Gagliardi and Lidz (2014) measured noun internal distributional information by tak-

ing all nouns from a corpus of Tsez child-directed speech, tagging them for potentially

relevant semantic and morphophonological cues, and using decision tree modeling to

determine which features were most predictive of class (cf. Plaster, Polinsky, & Hariza-

nov, 2009). The features shown in Table 2 are only a selection of the most predictive

Table 1

Noun external distributional information

Class 1 Class 2 Class 3 Class 4

∅-igu u¥i j-igu kid b-igu k’et’u r-igu t�orpa
I-good boy II-good girl III-good cat IV-good soup

good boy good girl good cat good soup

Table 2

Most predictive noun internal distributional information

Feature Value

Class

Predicted

Probability of

Feature Given Class

Probability of Class

Given Feature

Semantic male 1 1 1

Semantic female 2 .22 1

Semantic animate 3 .13 1

First Segment b- 3 .10 .51

First Segment r- 4 .09 .61

Last Segment -i 4 .34 .54

A. Gagliardi, N. H. Feldman, J. Lidz / Cognitive Science 41 (2017) 191



features of class, with only the most predictive values of these features shown.3 The

full structure of each feature that we assume in our model is given in Table 3. Each

feature has specified values that are highly predictive of some class and an unspecified

value that ranges over all other possible values that are not predictive.

In this paper, we use a Bayesian model of noun classification to investigate how chil-

dren use noun internal distributional information. In particular, we look at whether a child

can make use of the predictive phonological and semantic information when classifying

novel nouns, how they perform when a noun has two features that make conflicting pre-

dictions, and what factors could underlie seemingly suboptimal behavior. A Bayesian

model requires us to make explicit what information is available for a learner to use, and

demonstrates what optimal use of this information would look like. If we see divergences

between children’s performance and the predictions of the Bayesian model, we can revise

our model to ask whether some disturbance in the input (causing a difference between

the input and the encoded intake) would predict results in line with children’s perfor-

mance. This allows us to examine what an optimal solution given suboptimal encoding of

the input would look like. Returning to the four components of statistical learning out-

lined above, we will be looking at:

1. Whether Tsez children have knowledge of the noun internal distributional informa-

tion.

2. Whether they can observe these features on novel nouns.

3. Whether they assume all features are relevant for classification.

We assume for the purposes of our analysis that the computation they make based on

this information is Bayesian.

3. Classifying novel nouns in Tsez

To assess whether children can use the statistics of noun internal information available

in their input, we compare classification of novel nouns by Tsez-acquiring children to the

classification behavior that is predicted by a Bayesian model trained on the input data

from our corpus. Below, we describe the experimental data reported in Gagliardi and

Lidz (2014), and then describe our model.

Table 3

Structure of features

Feature Specified Values Unspecified Value

Semantic male, female, animate other

First Segment r-, b- other

Last Segment -i other
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3.1. Classification by Tsez children

To determine whether or not children classified novel nouns consistently with the pre-

dictions made by the probabilities associated with their noun internal features, Gagliardi

and Lidz tested 10 native Tsez-speaking children (mean: 6 years, range: 4–7 years) in a

classification task. Here, we give an overview of the experiment; for further details, see

Gagliardi and Lidz (2014).

Children were presented with unfamiliar items labeled with novel nouns by a native

Tsez speaker. They were instructed to first tell a character to begin eating and then tell

the character whether or not to eat the other labeled items. In Tsez, prefixal verbal agree-

ment with noun class is visible only on vowel initial stems. As both the intransitive (eat)

and transitive (eat it) forms for eat are vowel initial in Tsez (–is and –ac’o, respectively),
classification of the novel word could be seen on the agreement prefix. Furthermore,

intransitive verbs in Tsez agree with the agent (the eater) and transitive verbs obligatorily

agree with the patient (the thing eaten). An example trial is schematized in Table 4.

The test items had either a single noun internal distributional feature from Table 2,

or a combination of these features that made conflicting predictions (e.g.,

Table 4

Example experimental trial

A. Gagliardi, N. H. Feldman, J. Lidz / Cognitive Science 41 (2017) 193



semantic = [animate] and initial = [r]). The exact feature combinations used in the exper-

iment, along with the classes each feature predicts, are shown in Table 5. While these

only represent a selection of the most predictive features, we focus on them here as they

are a representative set of predictive semantic and phonological features.

The proportion of nouns that children assigned to each class is shown in Fig. 1. When

nouns had no conflicting features, children assigned more nouns to the class most

strongly predicted by the feature than to any other class. For example, a novel noun with

the [animate] feature, whose label had the [other] values for both phonological features

(e.g., a depiction of an invented animal with octopus legs and a duck head called a zamil)
was likely to be put in Class 3. Similarly, a novel noun with the semantic feature [other]

that was labeled with an r-initial label (e.g., a novel inanimate object called a rega), was
most likely to be put classified as Class 4. However, when nouns had more than one

Table 5

Features used in experiment and simulations

Feature Label Feature Value Class Predicted

f1 Semantic male 1

f1 Semantic female 2

f1 Semantic animate 3

f2 First Segment b 3

f2 First Segment r 4

f3 Last Segment i 4

f1 & f2 Semantic & First Segment male & b 1 and 3

f1 & f2 Semantic & First Segment female & r 2 and 4

f1 & f2 Semantic & First Segment animate & r 3 and 4

f1 & f3 Semantic & Last Segment animate & i 3 and 4
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Fig. 1. Proportion of novel nouns assigned to each class (by cue type) in the experimental task by children.
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feature that made conflicting predictions (e.g., a novel animal that was labeled resu), chil-
dren relied more heavily on the phonological features ([b-], [r-], and [-i]) than on the

semantic feature. This is not likely to be predicted by the distribution of these features in

the input, where nouns with the [female] and [animate] values of the semantic features

never occur in Class 4, and those with the [male] feature do not occur in Class 3.

Gagliardi and Lidz also tested adult Tsez speakers in the same paradigm. Their results

are shown in Fig. 2. While the data are again somewhat noisy, we can see that adults,

unlike children, appear to rely on the statistically strongest cue. That is, when phonologi-

cal and semantic cues make conflicting predictions, adults reliably classify the novel noun

according to the semantic (and statistically stronger) cue. The only exception to this is

when the phonological cue [b-] conflicts with the semantic one [male], where it looks as

though speakers rely on the phonology rather than the semantics. However, it looks as

though speakers do this with all nonce words with the feature [male], not only those with

conflicting phonological information, suggesting that there is more factoring into their

classification than the mere combination of probabilities associated with features. This

behavior differs from children, who do assign nonce words with the feature [male] to

Class 1 when there is no conflicting feature. The reasons for not assigning items that have

both a semantic cue [male] and a phonological cue [b-] to Class 1 may therefore differ

between children and adults. Due to its heavily constrained semantic space, Class 1 may

behave almost like a closed class to adults, and new members would be very unexpected.

Children, however, may not have formed this generalization yet. This difference is impor-

tant to keep in mind throughout the paper. While we are investigating the effect that the

probabilities of a noun’s features have on classification, we do not pretend that these are

the only factors that influence noun classification. In the discussion below, we will return

to both the fact that there was some overall noise in the adult classification behavior, as
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Fig. 2. Proportion of novel nouns assigned to each class (by cue type) in the experimental task by adults.
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well as their reluctance to put new nouns in Class 1. For now, we simply state that the

process is undoubtedly more complex, and our goal in the paper is to understand how

one component of it works.

3.2. Classification by an optimal Bayesian classifier

Given these experimental data, we can evaluate our intuition that children are not opti-

mally using the statistics in their input by examining how a Bayesian model would clas-

sify each novel noun. That is, what would an ideal learner do when asked to classify

novel words, if exposed to input reflecting the distribution of these features in the corpus

of child-directed Tsez speech?

Our model is shown in Eq. 1. We use this model to calculate the posterior probability of

each class for a noun, given the features on that noun (Pðcjf Þ). This way we can see how the

model would classify a noun with certain features, based on the probability of finding a noun

in any class (the prior) and the distribution of features across classes (the likelihood). The

prior probability of a class PðcÞ corresponds to its frequency of occurrence (by types), and

the likelihood terms Pðf jcÞ for each of n independent features f can be computed from

smoothed feature counts in the lexicon.4 For example, the posterior probability of a novel

noun being in Class 3 given the feature values (f1 ¼ ½animate�, f2 ¼ ½r-initial� and

f3 ¼ ½other�, (Pðcjf1; f2; f3Þ) is proportional to the size of Class 3 (PðcÞ) and the number of

nouns in Class 3 with each of these feature values (Pðf1jcÞ, Pðf2jcÞ, Pðf3jcÞÞ. This formula-

tion of the model relies on the assumption that each of the features used by the model is

independent. To investigate the independence of these features, we calculated the marginal

entropy of each feature on nouns in each class, and compared the sum of this to the joint

entropy of all features on nouns in a given class. We found the numbers to be comparable,

supporting our assumption that the features are independent.5

Pðcijf1. . .fnÞ ¼ Pðf1jciÞ. . .PðfnjciÞ � PðciÞP

cj2fall classesg
Pðf1jcjÞ. . .PðfnjcjÞ � PðcjÞ ð1Þ

The results of classification with this model are shown in Fig. 3. Just as we did with

children, we tested the model on classification with each semantic and phonological fea-

ture from Table 2 individually, as well as cases where these features were in conflict with

one another. With only one predictive feature (e.g., f1 ¼ ½animate�, f2 ¼ ½other� and

f3 ¼ ½other�, or f1 ¼ ½other�, f2 ¼ ½r � initial� and f3 ¼ ½other�), the model assigns most

of the probability to the class predicted by the predictive feature value (Class 3 with the

value animate, Class 4 with the value r-initial). Of course, depending on the strength of

the feature (Table 2), the amount of probability that the model assigns to each class var-

ies: it assigns more probability for Class 3, given f1 ¼ ½animate�, than to Class 4 given

f2 ¼ ½r-initial�. As would be expected based on the relative strength of these features

(Table 2, when semantic and phonological features make conflicting predictions, the

model classifies in line with the predictions made by the semantic feature, which is
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stronger. For example, when f1 ¼ ½animate�, f2 ¼ ½r-initial� and f3 ¼ ½other�, most of the

probability is assigned to Class 3, as predicted by the feature value animate.

Crucially, the model’s classification differs from that of the children, in that when fea-

tures made conflicting predictions, the model relies on the statistically strongest cue (the

semantic feature), while the children did not rely so heavily on this. This can be seen espe-

cially well in the following cases: the model puts the vast majority of probability in Class 1

for b-initial males while children put more nouns in Class 3; the model puts most of the

probability in Class 2 for r-initial females while children split their classification between

Classes 2 and 4; and the model puts the majority of probability in Class 3 for both r-initial

and i-final animates, but children split the classification between Classes 3 and 4. Addition-

ally, when the model had “no cue” (that is, when all values of all features were set to

“other”), the model put the most probability mass in Class 3, while children tended to assign

nouns to Class 4 (but did not do so exclusively). Returning to the theme of rational analysis,

we can see that the model, when given no limitations, does not seem to match children’s

behavior. From this point forward we will iterate, building models that incorporate one or

more limitations that children might bring to the task of noun classification, to see if we can

find a closer fit between model predictions and children’s behavior.

At this point, it is necessary to return briefly to adult behavior as well. Comparing their

data from the experimental task to the ideal learner, it looks as though they are perform-

ing suboptimally as well. While this is in some sense true, in that there is a great deal of

noise in the classifications elicited from adult speakers for novel nouns, there is one

major difference between adults and children—namely their treatment of nouns with con-

flicting cues. In the adult case, we see that adults generally use the semantic cue (with

the exception of novel males which we attribute to other factors), while children seem to

prefer the phonological one. It is this qualitative shift, which is mirrored when comparing
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children to both adults and the ideal learner that we seek to capture in our models. There

are many more factors at work in both noun classification and participation in an experi-

mental task than we include in our model, meaning we do not expect to find a perfect fit

to adults in the ideal learner, nor to children in any one of our models.

4. Predicting seemingly suboptimal performance

While children roughly align with the model when classifying based on one highly pre-

dictive feature, they diverge when features make conflicting predictions. Children appear

to use phonological features out of proportion with their statistical reliability. That is,

children appear to prefer the weaker predictions made by the phonological feature to the

stronger ones made by the semantic feature. In order to determine the source of this

asymmetry, it is useful to first consider what kinds of differences between semantic and

phonological features could lead to this kind of behavior, and then to determine where

and how these factors could affect our model.

There are several differences between semantic and phonological features that could

affect their use in noun classification, but here we will focus on a fundamental difference

in how reliably perceived and encoded each feature type may be during early acquisition.

Every time a word is uttered (or most of the time, allowing for noisy conditions and fast

speech), phonological features are present. However, especially during the early stages of

lexical acquisition, the meaning of a word, and thus the associated semantic features, is

much less likely to be available or apparent (cf. Bloom, 2000; Carey & Bartlett, 1978;

Gillette, Gleitman, & Gleitman, 1999; Gleitman, 1990). Below, we will consider how this

sort of asymmetry could lead to a disparity in the way children end up using them in

novel noun classification.

The difference between semantic and phonological features could affect each of the

three components from the schema of noun classification in different ways. In this sec-

tion, we investigate several hypotheses concerning where the uncertainty in noun classifi-

cation could lie. By building uncertainty into different components of noun classification,

we are able to see how well each hypothesis predicts children’s behavior, as well as what

kind of assumptions we need to make about noun classification in order for the model to

work well.

4.1. Hypothesis 1: Misrepresentation

An asymmetry in the reliability with which semantic and phonological features of

nouns are perceived and encoded during word learning could lead to a disparity in the

way phonological and semantic features are represented as compared with how they are

distributed in the input. That is, if children represent phonological features of nouns

more reliably than semantic ones, and their classification reflects the intake, what is

represented in the child’s lexicon (as opposed to what is measureable in the input), their
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classification may look like it relies more heavily on phonological features than

semantic ones.

In our first manipulation (the Misrepresentation hypothesis), we wanted to see how

classification by the model would be affected if the learner was misrepresenting some

proportion of the features that they should have encoded on nouns in their lexicon. We

predict that a model with a lexicon where phonological features are represented faithfully,

but semantic features are represented fairly unreliably, will best fit the children’s data.

We assume that learners classify the remaining proportion of nouns as predicted (accu-

rately observing features during the experiment and assuming that both semantic and

phonological features were relevant in classification), but in doing so, rely on a lexicon

that does not accurately represent the features on the nouns in the input.

We assume that learners’ beliefs about which features are predictive of which class are

built up as they observe different feature values on words belonging to different classes.

One way of quantifying this is by modeling the learner’s belief about the likelihood terms

Pðf jcÞ from Eq. 1. Recall that we assumed that these beliefs are derived from the counts

that a learner accumulates of nouns in each class that contain a given feature. We assume

learners use a multinomial model with a uniform Dirichlet prior distribution to estimate

the proportion of items each class c that contain a particular value k for feature f. Under
this assumption, each likelihood term is equal to:

Pðf ¼ kjcÞ ¼ Nc; f¼k þ 1

Nc þ K
ð2Þ

where Nc denotes the number of nouns in the class, Nc; f¼k denotes the number of nouns

in the class for which the feature has value k, and K is the number of possible values for

the feature. The 1 added to each feature count is a smoothing parameter denoting a uni-

form prior distribution over the probabilities of different feature values.

We introduce misrepresentation of features into this model by manipulating the number

of observations of a noun with a certain feature value in each class. Since the Misrepre-

sentation hypothesis posits that children misrepresent feature values some proportion of

the time, we use a discounting parameter to reduce the count of nouns in each class that

contain the relevant features, changing them to the underspecified “other” feature value.6

For each feature type (semantic and phonological), we have a parameter that indexes how

likely that feature type is to be misrepresented. We then compute the posterior probability

of noun class membership using the adjusted feature counts. By finding the best fitting

values of the two discounting parameters, we can see how the feature counts would have

to shift in order for children’s behavior to be optimal with respect to their beliefs. As

mentioned above, we predict that more inaccurate representation of semantic features (as

opposed to phonological ones) will best fit the children’s data, as children appear to put

less weight on the semantic features.7

We found the best fitting value of these two parameters using a built-in Matlab opti-

mization procedure (fminsearch). The best fitting value of the semantic parameter was

quite high (0.95), while the best fitting value of the phonological parameter was 0. This

means that the best fitting model heavily discounted semantic information and did not
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discount phonological information, in line with our hypothesis that children are underus-

ing semantic information. We evaluated the model with these parameter values by com-

paring its behavior to children’s behavior from the classification task. This model

produced a closer fit to the data in each condition than the model with no misrepresenta-

tion (Fig. 4). This is in line with our prediction that children’s behavior could stem from

semantic features being less reliably encoded than phonological ones. The log likelihood

of the model with its best fitting parameter given the experimental data was �538, com-

pared to a log likelihood of �746 from the classifier that was constructed from the true

empirical probabilities of the feature values. A generalized likelihood ratio test demon-

strates that our semantic incompetence model significantly outperforms the optimal naive

Bayesian classifier (v2ð2Þ ¼ 416, p < .0001).

Although introducing misrepresented features into the model yields a closer fit to the

children’s data, it is not a perfect fit. In particular, the Misrepresentation model still pre-

dicts that children would put the vast majority of novel nouns with the feature [male] into

Class 1, even when these have the word initial feature [b-]. Additionally, while we see

some shift toward Class 4 in the nouns with [animate] and [r- initial] or [-i final], the pat-

tern is not as strong as what we see in the children’s data. Similarly, this model does not

capture the pattern that we see in children’s classification when all feature values are

[other]. Importantly, while these patterns are not well-fit by the simple model we have

proposed, this model captures what we take as the basic pattern of interest in the data:

the reliance on phonological over semantic cues when the two conflict. We return below

to a discussion of children’s overuse of Class 4 relative to the model predictions.

Additionally, although this model produces a fairly close fit to the empirical data, it

predicts an extremely high degree of misrepresentation. To understand why this is the

case, consider that using likelihood terms for each class that are proportional to the true
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Fig. 4. Classification of novel nouns as predicted by a Naive Bayes Classifier with 95% of predictive

semantic features misrepresented as [other].
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empirical counts would yield optimal noun classification performance, regardless of the

exact proportion of time children are misrepresenting features. That is, substituting

ð1 � bÞ � Pðf1jcÞ for each term Pðf1jcÞ in Eq. 1, where b is a constant denoting the

degree of misperception, does not result in any change in the posterior probability distri-

bution. This analysis suggests that changes in model predictions under this account of

feature misrepresentation occur primarily for low empirical feature counts, when the

model relies heavily on the smoothing parameter from the Dirichlet prior distribution.

When enough nouns are represented correctly in the lexicon so that the actual counts are

much larger than the smoothing parameter, lexical misrepresentations of this sort are not

predicted to have a substantial effect on children’s behavior.

Due to the high level of misrepresentation necessary to get a close fit to the children’s

data, misrepresentation is unlikely to be the driving factor behind children’s suboptimal

performance. While it is no doubt possible that children have a higher proportion of

semantic features misrepresented than phonological ones, and that semantic incompetence

makes some contribution to children’s performance, it does not seem likely that at this

age, these basic semantic features would be so regularly misrepresented. That is, it seems

unreasonable that 4- to 7-year-old children would not know that 95% of animates are ani-

mate, 95% of females are female, and 95% of males are male. There are several reasons

that these numbers seem high. First, children have been shown to use animacy as a cue

in verb learning at as early as 2–3 years (Becker, 2007; Bunger & Lidz, 2006). Second,

while reliable knowledge of natural gender appears to come online later than animacy,

children do appear to make some gender based distinctions by 2 years (Martin, Ruble, &

Szkrybalo, 2002). Even if children’s somewhat delayed knowledge of natural gender were

behind the effect we see, we might expect it to be limited to natural gender, and that the

usefulness of non-human animacy as a cue would not be affected. We do not see such a

difference, however. To summarize, while it is entirely possible that children misrepresent

some proportion of semantic features, it does not seem likely that they misrepresent them

to the degree predicted by Model 1. Because of this unreasonable level of semantic mis-

perception, we move on from this hypothesis to look at other ways in which uncertainty

could affect noun classification.

4.2. Hypothesis 2: Misperception

A second possibility for explaining why children appear to use phonological informa-

tion out of proportion with its statistical reliability is that children have little trouble per-

ceiving, encoding, and representing features on the words in their lexicon, but that the

features (importantly, the semantic features) on the experimental items (which are pre-

sented as flat pictures in a book) are unreliably perceived and encoded. We call this the

Misperception hypothesis.

In this manipulation, we investigate what would happen if a learner had a lexicon that

faithfully represented the predictive features as they were distributed in the input and

assumed both semantic and phonological features were relevant to classification, but did

not reliably encode features on experimental items. To do this, we use a mixture model
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with two parameters bs and bp, which specify the proportion of semantic and phonologi-

cal features, respectively, that are misperceived. The quantities (1 � bs) and (1 � bp)
specify the proportion of classification decisions made with semantic and phonological

features having their correct values, consisting of either specified values ([male], [female],

[animate], [r initial], [b initial], [i final]), or the [other] value. This correct value is

denoted as [correct] in the equation below. Conversely, bs and bp specify the proportion

of decisions made with the semantic or phonological feature correctly or incorrectly hold-

ing the [other] value. This yields the following mixture model:

Pðcijf1; f2; f3Þ ¼ ð1� bsÞð1� bpÞPðcijf1 ¼ ½correct�; f2 ¼ ½correct�; f3 ¼ ½correct�Þ
þ ðbsÞð1� bpÞPðcijf1 ¼ ½other�; f2 ¼ ½correct�; f3 ¼ ½correct�Þ
þ ð1� bsÞðbpÞPðcijf1 ¼ ½correct�; f2 ¼ ½other�; f3 ¼ ½other�Þ
þ ðbsÞðbpÞPðcijf1 ¼ ½other�; f2 ¼ ½other�; f3 ¼ ½other�Þ

ð3Þ

As with the Misrepresentation model, we found the best-fitting value for each of

the two b parameters and evaluated the model by comparing it to children’s behavior.

This model again produced a close fit for all feature values (Fig. 5). The model

showed a consistent degree of misperception across all semantic features and feature

combinations. The best fitting level value of bs (semantic parameter) was 0.61, mean-

ing that children would be misperceiving semantic features on 61% of the experimen-

tal items. The best fitting value of bp (phonological parameter) was 0. The log

likelihood of the model given the experimental data was �507. A generalized likeli-

hood ratio test indicates that the Misperception model also significantly outperforms

the optimal naive Bayesian Classifier (v2ð2Þ ¼ 478, p < .0001).
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Fig. 5. Classification of novel nouns as predicted by a model that misobserves semantic features on experi-

mental items 61% of the time, and correctly observes phonological ones.
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As is reflected in the log likelihood favoring the Misperception model, overall, in some

conditions, we can see how it appears to fit the children’s data slightly better than the

Misrepresentation model. This is most apparent in the predicted classification for words

that are both [male] and [b- initial]. The Misperception model accurately captures the

strong shift toward using the phonological cue for Class 3 when it conflicted with the

semantic cue for Class 1. Like the Misrepresentation model, it does not fully capture the

extent to which children shifted to Class 4 when phonological cues for Class 4 ([r- ini-

tial], [-i final]) conflicted with semantic cue for Class 3 ([animate]), nor the preference

for classifying nouns with all values [other] as Class 4.

Again, we can consider the reasonableness of the best fitting parameters. Anecdo-

tally, it seems as though misencoding 61% of experimental items is quite high, given

participants’ reactions to the items (children made comments about the novel animals,

for example, and found it funny when it was suggested that these, or the novel humans,

might be edible). Of course, further experimentation could show how reliably children

can infer animacy of such items. Additionally, children appear to do reasonably well

classifying items based on semantic features when no phonological feature conflicts

with this prediction. This model predicts that children’s performance with these items

would be somewhat worse than it actually is. For example, on experimental items that

were male or female humans, with no phonological cues, the model predicts a higher

proportion of Class 3 responses than actually occur in the children’s data. A final piece

of evidence that points toward a deeper factor than misperception of semantic features

during the experiment is children’s performance with classifying real words. Gagliardi

and Lidz (2014) present data where children make more errors when classifying real

words with conflicting cues than those without. That is, a word like “recenoj” (ant), is

r- initial but animate, and is a Class 3 word. Children mix up classification of words

like this just the way they do with experimental items, putting a higher proportion than

expected in Class 4, consistent with the phonological feature, but inconsistent with ani-

macy and the actual class of the word. Thus, it looks as though children’s preferential

use of phonological information extends more deeply than an encoding problem during

the experiment.

4.3. Hypothesis 3: Featural preference

The asymmetry between the reliability of perceiving and encoding phonological as

compared to semantic features could also engender a bias to prefer phonological informa-

tion for classification decisions, either because phonological information has been reliably

available for a longer period of time or because children have a bias that privileges infor-

mation when tracking morphophonological dependencies.

Our third model, embodying the Featural Preference hypothesis, therefore looked at

what would happen if we had a learner that was biased to only use one type of feature in

classifying some proportion of the time, even if these features were represented just as

distributed in the input and accurately perceived during the experimental task. We used a

second mixture model, this time looking at the mixture of a Bayesian classifier that used
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both semantic and phonological features, one that only used phonological features, one

that only used semantic features, and one that used neither kind of feature. The crucial

difference between this model and the Misperception model is that in the Misperception

model, all features are always used, but are encoded as the wrong value some proportion

of the time, whereas in the Featural Preference model, some features do not factor into

the calculation at all some proportion of the time (again, where bs is the semantic param-

eter and bp is the phonological one). The model can be seen in Eq. 4.

Pðcijf1; f2; f3Þ ¼ ð1� bsÞð1� bpÞPðcijf1; f2; f3Þ þ ðbsÞð1� bpÞPðcijf2; f3Þ
þ ð1� bsÞðbpÞPðcijf1Þ þ ðbsÞðbpÞPðciÞ

ð4Þ

Again, we evaluated the model against the children’s classification data and found a

closer fit than the ideal learner (Fig. 6). The best fitting value of bs was 0.64, meaning

that children would be choosing not to use semantic features on 64% of classification

decisions. The best fitting value of bp was 0.07 meaning phonological information was

not used on 7% of classification decisions. The log likelihood of the model given the data

was �512. A generalized likelihood ratio test showed that this model also significantly

outperformed the optimal naive Bayesian classifier (v2ð2Þ ¼ 468, p < .0001). Although

the best fitting value of the phonological parameter was non-zero, adding the phonologi-

cal parameter resulted in only 0.733 increase in the log likelihood compared to a model

with only the semantic parameter. This difference in log likelihood did not reach signifi-

cance (v2ð1Þ ¼ 1:47, p = .23). This indicates that the model of the children’s data that

achieves the best trade-off between high likelihood and few free parameters would be

one that discounts only semantic information.
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Fig. 6. Classification as predicted by a model biased not to use semantic information 64% of the time and

not to use phonological information 7% of the time.
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Like the Misperception model, this model captures children’s behavior quite well for

most noun types, but underpredicts the extent to which children prefer Class 4 when a

phonological cue predicts it and contrasts with the semantic cue for Class 3, or when all

features are [other]. This continuously prevalent pattern will be discussed below. While

this model did not use phonological information as faithfully as it is present in the input,

it still followed the general pattern that we saw in the other models, where the match to

children’s data was driven primarily by less use of semantic information in the model. As

with the Misrepresentation and Misperception models, we can consider the “reasonable-

ness” of the best-fitting parameter estimates (not using semantic information in 64% of

classification decisions and not using phonological information on 7%). Whether or not

these parameters are reasonable greatly depends on what underlies this preference. The

preference could stem from the fact that phonological information has been more reliably

available throughout development, and children only slowly move away from this source

of information to incorporate semantic information. Future modeling work looking at

how children move away from a phonologically based system once semantic information

is reliably available could shed light on how quickly we might expect this to happen.

Alternatively, children could prefer to use (morpho)phonological information when deter-

mining the distribution of a (morpho)phonological dependency due to an expectation that

only information in one domain will matter within that domain. Given that agreement

appears as morphophonological information on the verb, this could bias children to attend

to phonological cues for noun classification. Again, depending on the process by which

the learner revises this hypothesis and begins to track and rely on information from

another domain (semantics), we might be able to see whether ignoring semantic informa-

tion 64% of the time seems reasonable or not.

4.4. Comparing the models

It is not immediately obvious how to best evaluate the alternative models with respect

to one another. Model comparison methods such as AIC, BIC, and so on trade off the log

likelihood of the models against the number of free parameters. Because the models pro-

posed above all have the same number of free parameters, this amounts to a comparison

of their log likelihoods. These log likelihoods were �538 for the Misrepresentation

model, �507 for the Misperception model, and �512 for the Featural preference model.

While a comparison of the log likelihoods of the models favors Model 2, the Mispercep-

tion model, it’s not clear that this metric alone is enough to say that this is the best model

of children’s performance. It is important to consider what assumptions go into these

models. For example, each model yielded a different set of best-fitting parameters, corre-

sponding to different degrees of misrepresentation or bias. While these best-fitting param-

eters may differ in terms of their “reasonableness” (i.e., misrepresenting 95% of semantic

features in the lexicon at age 6 seems quite high), it is not immediately clear how to mea-

sure reasonableness, or how to compare it across models. Despite these limitations, some

discussion of the merits of each model, in addition to the “reasonableness” of the best-fit-

ting parameters and the premises of the models in general, can be enlightening.
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The best-fitting parameters for Model 1, the Misrepresentation model, suggest that

95% of semantic features are misrepresented. As discussed above, for children 4 years

old and older, this number seems quite high. Moreover, as mentioned above, with the

overall best-fitting semantic parameter, Model 1 fails to capture children’s shift away

from classifying males as Class 1 when they are b-initial. To best capture children’s per-

formance in this condition, the model needs 99% misrepresentation of the semantic fea-

ture male. What seems like an extremely high level of misrepresentation necessary to

counteract such a strongly predictive feature makes the model even less plausible.

Model 2, the Misperception model, predicts that children have difficulty encoding

semantic features of experimental items 61% of the time, with the range of parameters

that give high likelihood being fairly tightly clustered around that best-fitting value

(Fig. 5). Again, we have some doubts with respect to the reasonableness of such a per-

centage, given that children show similar patterns when classifying real words, can use

both semantic and phonological features in isolation and are generally good at perceiving

features like animacy. One possibility that might merit further consideration is that chil-

dren are sensitive to the degree of animacy of different items (e.g., something fluffy with

eyes might be “more animate” than something like a bug), and that systematically manip-

ulating this degree of animacy during the experiment could shed light on whether all ver-

sions of animacy are discounted by the learners, or if just the less canonically animate

items are affected. Unfortunately, there is not enough variability in the experimental

items used by Gagliardi and Lidz to investigate this hypothesis. Even with this being a

possible contributor to children’s behavior, it looks as though children’s preferential use

of phonological information extends more deeply than an encoding problem during the

experiment.

Model 3, the Featural Preference model, is perhaps the most difficult to evaluate with

respect to the reasonableness of the best-fitting parameters. Overall, it provides what

looks like the most reasonable fit to the children’s data, though like all models it under-

predicts the degree to which children will assign nouns to Class 4 when no cues (and

conflicting phonological cues) are present. Evaluating the reasonableness of the 64%

semantic parameter is difficult, however, without a better understanding of where this

preference could come from. Moreover, we need to consider the fact that the best-fitting

parameters of this model did not always use all available phonological information. This

may be more similar to children’s behavior (if they indeed do not use phonological infor-

mation 100% of the time), but a more targeted inquiry into their behavior would be nec-

essary to confirm this. Below, we will further explore the Featural Preference Model and

discuss how we might model its source.

Finally, it is possible that a combination of all three of these processes (and perhaps

more that we have not considered here) is influencing children’s classification decisions.

This is what we explore in the next section, by building a model that combines the possi-

bilities of misrepresentation and featural preference (Models 1 and 3). By combining

these two models, we can square off a degradation of featural representation in the lexi-

con with a preferences for one type of information over another in classification.8
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4.5. Uncertainty in more than one place

The last possibility we will consider in this paper is that there is some combination of

the above processes that leads to children’s classification behavior. To explore this, we

combined Models 1 and 3, looking at whether some level of misrepresentation of features

combined with a preference to use some information over other could predict children’s

behavior. As the best fitting values for all parameters consistently favored discounting

semantics, rather than phonology, across all models, we omit the phonological discount-

ing parameter here and only look at values of parameters for misrepresenting and not

using semantic information in classification,

Pðcijf1; f2; f3Þ ¼ ð1� bs3ÞPðcijf1; f2; f3Þ þ ðbs3ÞPðcijf2; f3Þ ð5Þ

where Pðf1 ¼ kjcÞ is based on the counts of words with feature f1 reduced at a rate of

bs1
As in all other cases, we evaluated the best fit parameters for the model using a built-

in optimization procedure in MATLAB (fminsearch). The process showed the best-fitting

parameters to be equivalent to Model 3. The best-fitting parameter for misrepresentation

of features in the lexicon was zero, indicating that semantic information was fully repre-

sented. The best-fitting parameter for omission of the semantic feature during classifica-

tion was 0.64, indicating that semantic information was not used on 64% of classification

decisions (this is equivalent to the reduction in the use of semantic information found in

Model 3). In case this was a case of finding a local maximum, a grid search was also

employed to look for the best-fitting parameter, testing all values between 0 and 1, by

increments of 0.01 for both parameters. This procedure confirmed that the best-fitting val-

ues of these parameters was indeed as reported. Fig. 7 shows how the likelihood of each

model changed throughout the parameter space, searched incrementally in the same way

as Model 4.

4.6. More exhaustive models

It is of course possible to imagine more exhaustive models. For example, one might

differentiate the probability of misperceiving or misrepresenting different semantic cues

(perhaps animacy is easier to perceive that natural gender, for example). When exploring

such models, we found that the high number of free parameters (e.g., 12 for the semantic

feature alone in Model 1) needed to build such a model was large compared to the num-

ber of datapoints in the children’s data. Moreover, finding the optimal solution to such a

model may not be important in answering the question we asked at the outset—we are

mainly interested in distinguishing between Models 1, 2, and 3, as these illustrate three

different ways in which learners’ computations may be constrained, and it is not clear

how examining tiny variants of each type of constraint will help us answer that question.

While it is of course possible that a model with more parameters would be able to better
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fit the data, this is problematic for two reasons. First, we run the risk of overfitting. Sec-

ond, focusing on minutia can lead to a loss of the bigger picture questions which we set

out to investigate.

We did conduct one additional simulation to rule out an alternative account of the data

that appeals to children’s prior distribution over classes. All the models considered above

underpredict the extent to which children assign nouns to Class 4. The fact that we see

this shift only when we have nouns with conflicting cues (i.e., not when we have nouns

with semantic cues to other classes) suggests that the bias for Class 4 is not due to simple

shifts in the prior distribution over classes. Nevertheless, it is important to ensure that the

overall pattern of phonological preference seen in the children’s data cannot be attributed

to a simple preference for particular classes. To examine this quantitatively, we imple-

mented a version of our naive Bayes model that treats the class priors as free parameters

(Fig. 8). The priors that best fit the children’s data are pðc1Þ ¼ 0:0027, pðc2Þ ¼ 0:0296,
pðc3Þ ¼ 0:2686, and pðc4Þ ¼ 0:6991 (as compared with those based on the corpus esti-

mation: pðc1Þ ¼ 0:053, pðc2Þ ¼ 0:184, pðc3Þ ¼ 0:491, and pðc4Þ ¼ 0:272). These

parameters do indeed favor Class 4. However, despite having three free parameters, this

model gives a log likelihood of �572, substantially lower than any of the log likelihoods
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of the models with two free parameters explored above, and would be disfavored by

model evaluation metrics such as the BIC that trade off model likelihood against the

number of free parameters. Thus, a simple preference for particular classes does not ade-

quately account for the phonological preference that is the focus of this paper.

5. Discussion

Tsez noun classes are characterized by both semantic and phonological features. Chil-

dren have been shown to be able to use these features when classifying novel nouns.

Here, we showed that their classification patterns differ from those of an optimal Baye-

sian classifier when nouns have semantic and phonological features that make conflicting

predictions. We then presented models exploring three ways in which the difference

between semantic and phonological features could lead to children’s apparent preference

to use the less reliable phonological features. These models examined how classification

would look if a learner had (a) misrepresented features in the lexicon, (b) misperceived

features during the classification experiment, or (c) developed a bias to use phonological

information in noun classification due to its higher reliability in the early stages of lexical

acquisition. In each of these cases, the children’s data were best fit by a model that used

degraded semantic information, together with intact phonological information. We also

explored what would happen if semantic information could be degraded in both the lexi-

con and during classification (Model 4), and saw that it is most likely a bias during clas-

sification, rather than a severe misrepresentation of features that leads to the behavior we
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have seen in children. All four models fit children’s data significantly better than the opti-

mal naive Bayesian classifier did, though no model fit the children’s data perfectly. The

improvement in fit found with some version of filtered input suggests that although origi-

nally children did not look as though they were behaving optimally with respect to the

input, they may well be behaving optimally with respect to their intake, that is, the input

as they have represented it, and their beliefs about which features of their input are rele-

vant.

5.1. Behind the featural preference

As noted above, before we can determine whether the best fitting parameter values for

the featural preference model are reasonable ones, we need to know more about where

this preference comes from. It could originate from several sources: the asymmetry

between phonological and semantic cues across development, the asymmetry between

these cues in novel word learning, and the fact that phonological, but not semantic, cues

appear to occupy the same linguistic domain as the agreement morphology they (or the

noun classes they predict) trigger.

First, the availability of phonological and semantic cues is unbalanced throughout

development. Phonological segments are differentiated and encoded earlier than word

meanings (Gervain & Mehler, 2010; Kuhl, Williams, Lacerda, Stevens, & Lindblom,

1992; Werker & Tees, 1984) and thus dependencies among phonological segments should

be available earlier than those between semantic features or between feature types. In

fact, infants have been shown to be able to track (morpho)phonological dependencies at

as early as 7 months (Gonzalez & Nazzi, 2012), earlier than they have been shown to

have attached detailed meanings to phonological strings.9 This could mean that infants

build up some system of noun classification that relies fully on morphophonological

information and that it takes some time, once the semantic features are reliably available,

to revise the reliance on only morphophonological cues.

Second (and perhaps relatedly), it could be the case that once infants are learning some

nouns and begin dividing them into classes, the phonology of the nouns is going to be

more reliably available to the learner for a given token of a word than the semantics.

That is, when learning a new word, the learner might be relatively certain early on of

what the phonology of this word is, but may take several instances to become certain of

the precise meaning and what semantic feature values would go along with this. Again,

the learner might then develop a system that relies more heavily on phonology as s/he is

still uncertain about word meanings, and consequently less certain about their correlation

with noun classes.

Finally, agreement results in overt morphophonological information being expressed on

the verb. It could be that the learner has some expectation that information in one domain

(say morphophonology) is going to matter for dependencies within that domain (i.e.,

agreement), and it might take more time to realize that information from another domain

(semantics) is also relevant. This type of expectation could be specifically related to lin-

guistic knowledge (e.g., it could be an expectation that certain domains of the grammar
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will be more likely to relate to one another than others), or it could be a general cognitive

principle (e.g., that for any given phenomenon, features or information from within the

domain of that phenomenon are more likely to be relevant to learning that features or

information from another domain) (cf. Moreton, 2008; Warker & Dell, 2006).

Additionally, it could be that phonology is a useful cue for making classification distinc-

tions elsewhere in the language and that children have formed an overhypothesis (Good-

man, 1955; Kemp, Perfors, & Tenenbaum, 2007) about phonological features being useful.

If phonology were supported as a feature that often factored into computations in other

domains, this overhypothesis could give children a bias to use phonology in noun classifica-

tion as well. To determine whether this would be the case, we would have to look at other

domains that children would control better or earlier than noun classification and see if

phonology can predict classification there (for example, in declension class or lexical cate-

gory), and if children seem aware of the phonology class correspondence. Unfortunately, at

this time, we do not have the relevant data to say whether or not this is true.

Whatever the cause, the phonological preference appears to be a developmental step,

and not the characterizing feature of noun classes. This is apparent in the fact that

Gagliardi and Lidz show both older children and adults overcoming this preference and

relying more on semantic cues at older ages. Additionally, it is apparent in the fact that

semantic features such as natural gender and animacy are present in virtually every noun

class system found cross linguistically (Corbett, 1991), and remain robust parts of these

systems even when phonological regularities are found as well. The fact that these fea-

tures are so heavily relied on in noun classification systems suggests that there may be a

prior bias linking these types of features and classification, but that this bias can only

begin to show its effects once the learner begins to reliably track semantic information

and overcome the learned preference for phonological information.

5.2. An unaccounted preference for Class 4

While all of our models of uncertainty captured some shift by children to classify nov-

els nouns as Class 4 when a phonological cue for Class 4 ([r- initial], [-i final]) conflicted

with a semantic cue for Class 3 ([animate]), none of the models were able to fully cap-

ture children’s preferences. Additionally, no model accurately predicted children’s behav-

ior when classifying nouns with all feature values set to [other]. Children preferred to put

these in Class 4 (with some in Classes 2 and 3), while the model predicted most would

be in Class 3 (with some in Classes 2 and 4). What both of these observations share is

that children appear to have some preference for classifying nouns in Class 4 that is not

captured by our models. It appears that some other factor must be influencing children’s

classification.

This behavior resembles what has traditionally been called a “default” class: a class

that is chosen for a word when all else fails. However, this notion of a default is some-

what unsatisfying from a classification standpoint. First, while the majority of nouns with

these [other] values are put in Class 4, not all of them are (and not all speakers are put-

ting the same ones there). Second, this sort of “default” label fails to characterize the
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process by which speakers are actually classifying nouns, doing little more than providing

a concise label for their behavior. In this section, we explore several possibilities as to

where this behavior might stem from.

One possibility is that the priors we used for the classes do not accurately reflect class

size (these were taken from the sample of child-directed speech from Gagliardi and Lidz

(2014)). If Class 4 is significantly larger in the child’s lexicon than we have represented

it, and because this class consists solely of nouns with the semantic feature [other], some

of this effect could be due to a misrepresentation of class size in the model. As men-

tioned above, we built a model that included free parameters for class size, in effect test-

ing this hypothesis. This model did not do a better job of capturing children’s data

overall. However, it did appear to predict a shift to Class 4 in items where all feature val-

ues are set to [other], and it is possible that this model could capture the shift to Class 4

in relevant conflicting cue conditions if combined with a model that discounts semantic

information. However, this still leaves open the question of if and why children assign a

higher prior probability to Class 4. As Gagliardi and Lidz point out, while other measures

of class size (corpus tokens and dictionary types) show a higher proportion of nouns in

Class 4 than we have represented, they do not appear to show enough nouns in Class 4

to predict this effect.

A second possibility is that Class 4 is seen by the learner as having a more diverse

makeup, making it more likely that any new noun would be in this class than in any of

the other, possibly more well defined, classes (cf. Hare, Elman, & Daugherty, 1995;

O’Donnell, 2011). Evaluating this possibility requires specifying on what level we might

want look at features and decide if their distribution in a class is heterogeneous or not. In

particular, we are required to look into the [other] value of the semantic feature. If it is

just treated as [inanimate], then Class 4 looks very homogenous (whereas Classes 2 and 3

have heterogeneity on this level with a mix of [female]-[inanimate] or [animate]-[inani-

mate] feature values). However, if it is the case that learners are looking for structure

beyond this rather coarse level of feature coding (taking into account more semantic fea-

tures such as shape, function, material, etc), then they may not find it in Class 4. This

would mean that Class 4 could look highly heterogeneous, and thus a speaker with a bias

to maintain the relative makeup of the classes would tend to assign words denoting novel

objects to this class. At this point, it is also useful to remember one aspect of adult classi-

fication behavior that our model did not probe. Recall that adult speakers were somewhat

unwilling to put any novel noun into Class 1, whether it had conflicting phonological

information or not. We suspect that this may also be related to speakers’ expectations

about a classes makeup and productivity. As Class 1 is unique in that all nouns in the

class are males, it may be seen as the least heterogeneous, and end up being the class that

is most closed to new assignment. Further experimentation and modeling would be neces-

sary to determine if this is indeed what lies behind speakers’ preferences for Class 4, and

their relative reluctance to put any novel nouns into Class 1.

A third possibility, following Baayen (1992), is that the frequency distribution of

words differs across classes. That is, while Class 3 is larger (both in terms of tokens and

types), perhaps if Class 4 had a higher proportion of single token types (hapax legomena),
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then a novel word would be more likely to fall in Class 4 (as, by this metric, it appears

to be made up of mostly novel words). However, an analysis of the distribution of word

frequency across classes shows that Class 3 in fact has the highest proportion of hapax

legomena, meaning that if this were the sort of information children were using, then they

should be more likely to classify “no cue” words as being in Class 3.

A final possibility is that the use of Class 4 agreement morphology is indeed a “default,”

but of a particular kind. In many languages with classifier systems (e.g., Mandarin), different

classifiers are used with different semantic- or shape-based classes of nouns, but a default

classifier exists as well. That is, there is a classifier that can be used with any noun, regardless

of its semantic or shape properties. It is possible that Tsez speakers have some view of Class 4

as this sort of default, thinking that many nouns, while they might have a best class based on

their featural content, can also be used as if they were in Class 4. When we consider the fact

that plural morphology for all nouns (with the exception of plurals of nouns from Class 1, or

groups containing nouns from Class 1) is the same as that for Class 4 (the prefix [r]), it looks

like this kind of default-like system could be learnable from a mistaken encoding of the input.

That is, if a learner heard a noun in any given class, and also heard it in the plural (but did not

realize it was plural), he/she might infer that while the noun could be used with agreement

from Class 2 (or 3), it could also be used with morphology from Class 4. Seeing enough nouns

in the plural and also in Class 2 or 3 (and consistently missing the singular/plural distinction)

might lead children to believe that Class 4 was a catch all, even when nouns could also be

assigned to other classes. This means that if a novel word has no cue, the child/speaker might

not have a good guess about what class it belongs to, but would think that putting it in Class 4

was fine no matter what. To test this, we looked at the distribution across classes of nouns that

were found in the plural. If we were to find that many nouns from Classes 2 and 3 were seen in

the plural (where the agreement is ambiguous between Class 4 and plural), this could be a

source of confusion about the classes of these nouns. However, we found very few instances

of plural nouns altogether (only 15 noun types out of 114 total appear in the plural). Out of

these 15 types, one was from Class 1, two were from Class 2, four were from Class 3, and

eight were from Class 4 (when looking at noun tokens, the numbers vary but the general pat-

tern remains the same). While this is just a small amount of data, it does not appear to support

this hypothesis, as the majority of nouns seen in the plural were in Class 4, meaning it is unli-

kely that what is driving the preferences for putting nouns into Class 4 stems frommisanalysis

of plural agreement.

Overall, it remains somewhat unclear where the preference to classify “no cue” words

as Class 4 comes from. Here, we have outlined several possible geneses for this prefer-

ence, and leave it to further research to determine which of these best fits both the data

available to the learner and the system that appears to be learned.

6. Conclusions

This work has several important implications for research on statistical learning and

language acquisition. First, we identified an area where children’s behavior does not
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appear to reflect the ideal inferences licensed by the statistical patterns in the input. This

sort of pattern is important in the study of language acquisition, as it bears on the ques-

tion of what constrains children’s generalization of the linguistic input. By building a

model that insufficiently captured the empirical data and iterating through possible ways

to constrain this model, we were able to investigate the source of the asymmetry in chil-

dren’s behavior. While each model differed in where the asymmetry came from, all

appeared to employ a weakening of the statistical import of semantic features. This is a

distinct pattern from the finding that children learning an artificial language amplify an

already strong statistical tendency (Hudson-Kam & Newport, 2009), but these patterns

could be related. That is, if children find that phonological information is somewhat use-

ful in the input (perhaps before they know enough word meanings to determine that

semantic information is also useful), they may make some generalization that amplifies

the import of phonological behavior. This finding demonstrates that we need to be careful

when determining whether a statistical learner could or could not draw some kind of

inference. It shows that in investigating language acquisition, we need to consider more

than just the kind of computation being performed, as what data the computation is per-

formed over is also critical.

Next, our models showed that it is plausible that these children are indeed behaving

optimally with respect to some statistical distribution, just not one that includes all of the

information available in the input. This point is crucial as researchers extend accounts of

statistical learning to a greater range of problems, highlighting the fact that the critical

question is not whether or not children are using statistics to acquire language, but what

statistics they are using. Even though children were not behaving optimally with respect

to the data in principle available, our models allowed us to see that they may be behaving

optimally with respect to either a filtered version of the input (Pearl & Lidz, 2009), or

the input combined with their own biases (Lidz et al., 2003; Viau & Lidz, 2011). This

observation allows us to make hypotheses about what kinds of biases children might

entertain, and these hypotheses can be tested in future work.

Finally, and most broadly, by combining experimental data from children acquiring an

understudied language with computational modeling techniques, we found a better under-

standing of both children’s acquisition of Tsez, and the role of statistical cues in language

acquisition. Tsez was an ideal language to look at, as different types of features differed

in their reliability as cues to noun class. However, we expect that these results will be

generalizable across languages, as the relative difficulty of acquiring semantic, as com-

pared to phonological features of words has been found consistently across languages.
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Notes

1. Moreton (2008) proposed similar factors to account for phonologization, with his

channel bias mapping most closely onto (1) and (2) above and his analytic bias
being most closely related to (3).

2. Here, we talk about “noun classes” to refer to what is often called grammatical

gender. One of the cues to noun class is often natural gender, but this is only one

of several cues, and many other nouns are normally in each class that do not have

this (or potentially any) cue predicting their class.

3. In our subsequent models, we use this set of features as well, as we can only com-

pare model predictions with behavior on the features used in the behavioral experi-

ment, and that those were chosen selectively, as severe limitations on subject

availability meant that only a small number of features could be tested.

4. Smoothed feature counts were computed by adding one to each raw feature count.

5. The joint entropy and sum of marginal entropies for each class were as follows:

Class 1 Joint = 0.87, Sum = 0.90; Class 2 Joint = 1.04, Sum = 1.21; Class 3

Joint = 1.25, Sum = 1.25; Class 4 Joint = 0.98, Sum = 0.99.

6. Another way to introduce misrepresentation would be to simply omit the features

on some proportion of the nouns that should have them represented. We tried this

as well, and we do not include the results here as they are effectively identical to

those generated by the method we outline above.

7. The predictions of this model (as well as the next one) could change if children had

some way of estimating their own rates of misrepresentation and misperception. How-

ever, it is unclear that children would have a way to estimate this information.

8. We selected Model 3 over Model 2 because we believe the considerations noted

above provide evidence against the types of misperceptions assumed by Model

2. However, combining Model 1 and Model 2 yields a comparable result

9. Bergelson and Swingley (2012) showed that children as young as 6 months associate

some meaning with phonological strings. However, it is not clear how detailed these

representations are, or what kinds of semantic features they might rely on, thus we

believe that it is still possible that children have some knowledge of phonological

strings and dependencies prior to developing detailed semantic representations.
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