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Abstract

Large language models are often compared to
human learners based on the amount of train-
ing data required or the end state capabilities
of a learner, yet less attention has been given
to differences in their language learning pro-
cess. This study uses determiner acquisition
as a case study to characterize how LLMs and
children differ in their learning processes. By
analyzing annotated speech samples from spec-
ified age ranges of four children and interme-
diate training checkpoints of the Pythia-70m
language model, we trace the learners’ learning
paths of definite and indefinite determiner use.
Our results reveal a divergence: the children
first produce the indefinite determiner, while
the model first produces the definite determiner.
This difference reflects underlying differences
in the learning goals and mechanisms of mod-
els and children. Framing language learning as
movement over distributions of linguistic fea-
tures makes the learning process visible and
offers an alternative approach for comparing
humans and language models.

1 Introduction

Researchers have often looked to human language
learning to quantify progress in language model-
ing. However, most of the existing evidence for
these comparisons comes from two sources: sam-
ple efficiency and end-state benchmarks. Sample
efficiency measures the linguistic input required to
learn language. Large language models (LLMs)
are considerably less sample efficient than human
language learners. While a child of age 12 will
hear less than 100 million tokens in their language
environment, language models are trained on data
containing billions to trillions of tokens (Warstadt
et al., 2023). To compare how language models’
learning compares to that of human learners, re-
searchers often rely on benchmarks that character-
ize the end state of the model. For example, LLMs
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now achieve high accuracy on evaluating grammat-
ical well-formedness (Papadimitriou et al., 2022),
yet they still show weakness in handling certain
syntactic dependencies compared to humans (Mar-
vin and Linzen, 2018). Additionally, some models
fail to generalize grammatical knowledge to novel
contexts that require knowledge of structural rela-
tionships (e.g. the relationship between the subject
and object of a verb) (Wilson et al., 2023). Al-
though these approaches clearly demonstrate that
models are different from humans, they provide
little insight into what is different in the learn-
ing process. Examining the learning process itself
could reveal possible disparities between models
and humans such as whether linguistic knowledge
is acquired under different initial conditions, at dif-
ferent speeds, in different orders, or with varying
consistency. How best to quantify these differences
remains an open question.

In this paper, we take a new approach to charac-
terizing the differences in learning between LLMs
and humans, by looking at the learning trajectory
for the acquisition of determiners. Specifically, we
examine the definite article the and the indefinite
article a that occur before a noun to specify its
referent.

While prior work on language models has fo-
cused on sample efficiency and end-state bench-
marks, comparing model behavior to child lan-
guage acquisition provides a complementary per-
spective on models’ determiner acquisition. Some
elicitation studies on children’s determiner acquisi-
tion suggest that children overuse the in indefinite
contexts (Wexler, 2011; Maratsos, 1976). How-
ever, other developmental research shows that chil-
dren acquire singular definite determiners like the
rapidly and in adult-like ways in naturalistic pro-
duction from as early as 1.5–2 years of age (Ying
et al., 2024). These findings suggest that children’s
determiner acquisition is guided by both linguistic
input and emerging pragmatic competence, high-



lighting the importance of examining learning tra-
jectories rather than just end-state performance. In-
cluding child data allows us to situate model learn-
ing in relation to human acquisition and provides
a benchmark for evaluating not only what models
learn, but also how learning unfolds over time.

In our data, we find that children first produce
the indefinite article, whereas the model we test
first produces the definite article. This difference
is not only about which forms are produced, but
also about the order and pattern of acquisition over
time. By analyzing these trajectories, we can see
that models and children may prioritize different
aspects of language and acquire determiners in dif-
ferent sequences. We argue that this divergence
reflects fundamental differences in how LLMs and
children approach language learning, offering in-
sight into the mechanisms underlying the language
learning process.

2 Methods

To investigate the way language models build their
linguistic knowledge, we use determiner acquisi-
tion as a case study. We define determiner use as a
multinomial distribution where for each determiner
phrase produced, one of three events can occur: a
definite article like the is used, an indefinite article
like a or an is used, or the required determiner is
omitted.

We annotated samples of both children’s and a
model’s determiner use, detailed in Sections 2.1
and 2.2, to trace each learner’s learning trajectory.
We outline the annotation processes for the child
and model data in Section 2.3. We define a learning
trajectory as the distributional shifts in determiner
usage over time. For example, a learner might
initially omit all determiners and then progress to a
roughly equal distribution of definite and indefinite
determiners. The learning trajectory captures this
shift from the initial to the final distribution by
tracing distributions of determiner use throughout
the acquisition process.

To visualize a learning trajectory, we plot points
representing the learner’s determiner use on a sim-
plex which maps three points on a 2D triangular
plane. Each trajectory begins with the learner’s ini-
tial distribution of determiner use and progresses
toward a defined target distribution, specified sepa-
rately for the child and model data in Sections 2.1
and 2.2, respectively. Figure 1 illustrates the tra-
jectory of a learner who starts with an equal use

of the definite, indefinite, and omitted determiners
and gradually shifts toward a balanced distribution
of definite and indefinite determiners.

Figure 1: Learning trajectory moving from one-third
event distribution to equal distribution of definite and
indefinite determiners.

2.1 Child Data
We sampled the child data from the Braunwald and
Providence Eng-NA CHILDES corpora (Braun-
wald, 1997; Demuth et al., 2006; Fernandez et al.,
2024). These samples were taken from speech be-
tween children and adults, so the children’s input
is adult speech. We annotated cases where a re-
quired determiner was omitted in samples of four
children’s speech throughout early childhood. For
Child 1, we annotated a sample of 4443 lines that
spanned across the child’s early childhood from 18
months-old to 40 months-old. For the other three
children, we annotated 6 samples of their speech,
one sample for each age range. For these three
children’s samples, we aimed to annotate 100 deter-
miner uses per sample, although, in some samples,
fewer than 100 determiner uses occurred. We also
annotated samples of each child’s parent’s speech.
We sampled and annotated the parent’s speech in
the same way as we did the children’s speech. To
check the reliability of the annotations, two annota-
tors independently annotated a sample of the data,
yielding a Kappa score of 0.99. One of the two an-
notators, whose reliability we measured, annotated
the child data.

After we annotated the data, we used the deter-
miner counts to plot the children’s learning trajec-
tories. We used the children’s determiner distri-



butions at the 18.0–22.0 age range as their initial
determiner distributions. We defined the children’s
target distributions based on the distributions cal-
culated from their parents’ determiner use.

2.2 Model Data

The model used throughout this study is the Pythia-
70m model from the Pythia Suite (Biderman et al.,
2023). We chose to use a Pythia model because
it contains 154 intermediate training checkpoints.
This allows us to probe the model’s language use
throughout training. Pythia-70m is an autoregres-
sive causal model trained to predict the next token
given all previous tokens in the context. Pythia-
70m was trained on the Pile dataset. The model
saw approximately 300 billion tokens in total, and
each intermediate checkpoint of the model pro-
cessed a batch of approximately 2 billion tokens.
These checkpoints include a checkpoint at every
1000 training steps from 0 to 143000. Addition-
ally, the checkpoints include 10 log-spaced check-
points ranging from 1 to 512. We sampled linguis-
tic output from the following checkpoints: 128,
256, 512, 1000, 2000, 3000, 4000, 5000, 10000,
17000, 35000, 53000, 71000, 107000, and 143000.

To parallel the input children received, we
prompted the model with adult speech. Just as
children hear and respond to adult speech, the
model’s input consisted of adult utterances. For
every checkpoint we tested, the model received the
same 100 lines sampled from a parent’s speech in
the Braunwald corpus. These lines were randomly
selected and contained more than three words. Af-
ter each prompt, the model generated a response of
up to 20 tokens using a greedy-decoding strategy,
selecting the token with the highest probability at
each step. Each response included a repetition of
the prompt followed by the newly generated tokens.
This design ensures that the differences we observe
between child and model trajectories reflect the
learners’ processes rather than characteristics of
the input.

After counting the uses of determiners at each
checkpoint, we calculated the learning trajectory.
We used the determiner distribution at checkpoint
128 as the initial determiner distribution. We chose
this as the initial distribution because checkpoint
128 was the earliest checkpoint to consistently pro-
duce language. The target distribution used to de-
termine the learning trajectory of the model was
the model’s distribution of determiner use after

training. This is the distribution found at the final
checkpoint, checkpoint 143000.

2.3 Annotations

To find the learning trajectories of the model and
children, we annotated the samples to find the learn-
ers’ productions of definite, indefinite, and omitted
determiners. This study tracked the definite deter-
miner the and the indefinite determiners a and an.
We did not track other determiners like these and
which.

We annotated the children’s determiners in the
stem and gloss fields included in the CHAT format
of the corpora. The stem field corresponds to the
base form of the utterances, while the gloss field
corresponds to the utterances’ intended meanings.
We annotated determiner omissions by marking the
omission with a 0 preceding the omitted determiner
in the stem field and the determiner occurring in the
gloss field. We annotated appropriate determiner
uses with the determiner occurring in both the stem
and gloss fields. Table 1 illustrates examples of
these annotations.

Next, we annotated the model’s output for deter-
miner use, tracking definite, indefinite, and omitted
determiners across its linguistic output. Because
the model’s production was restricted to 20 tokens,
it occasionally cut off its response on a determiner.
This type of determiner use was annotated as an
End of Response Use. Additionally, the model oc-
casionally cut itself off and started a new line of its
response. In the cases where the model cut itself
off on a determiner and started a new line of its
response, we annotated these determiners as Cut
Off Uses. We counted End of Response Uses and
Cut Off Uses toward the total number of determin-
ers produced by the model in order to accurately
calculate the distributions of determiner uses. This
is because these incomplete productions still indi-
cate the model’s choice to use a determiner in that
context, and excluding them would underestimate
the determiner frequency. Because the model first
repeated the prompt and then generated new tokens
in its response, the model may repeat determiners
from the prompt in its response. We did not count
these determiner occurrences as determiner produc-
tions by the model. Table 2 contains examples of
these annotations.

For both the model and the children, each con-
secutive use of the same determiner counted toward
the total definite and indefinite uses. For example,



Type Use Stem Gloss
Definite I saw the dog I saw the dog I saw the dog
Indefinite She is not a toy She is not a toy She is not a toy
Omission It has book inside it It has 0a book inside it It has a book inside it

Table 1: Examples of annotations for the child data.

Prompt Response Definite Indefinite Omission End of
Response

Cut
Off

It’s a dangerous toy if you
can’t abide by the rules

It’s a dangerous toy if you
can’t abide by the rules.

"I’m not going to be a toy
that I’m not going to be a"

0 2 0 1 0

Okay here you go Okay here you go to the
"I’m not sure what you’re

going to do," he said. "

1 0 0 0 1

Table 2: Examples of annotations for the model data.

the the ball counts as two definite determiner uses.

3 Learning Trajectories

Figure 2 shows the learning trajectory of the model
and the average learning trajectory of the children,
accompanied by the children’s individual trajecto-
ries for reference. We assume that before any learn-
ing occurs, children would produce a 100% omis-
sion distribution, because without having learned
determiners, they would never use one in a required
context. This represents an unobserved portion of
the trajectory, with a hypothetical point at 100%
omissions preceding our first measurement. We
do not assume the same hypothetical point for the
model, and instead expand on the model’s pre-
learning distribution in Section 4.

At the first measured point, the model exhibits a
100% definite, 0% indefinite, 0% omission distribu-
tion. Over the course of training, the model shifts
toward a more balanced distribution of the definite
and indefinite determiners while never producing
omissions. The model’s trajectory indicates that the
model first produces the definite determiner before
the indefinite determiner. In contrast, the children’s
initial distributions favor the indefinite determiner
over the definite, showing that they produce the in-
definite determiner first. These differences in initial
determiner production reflect that the model and
children acquire determiners in different sequences,
and this difference in order of acquisition indicates
that their learning processes operate differently.

Despite these different sequences of acquisition,
both the model and children converge near approxi-
mately equal distributions of definite and indefinite
determiners by the end of their trajectories. This

convergence suggests that despite differing orders
of acquisition, both the children and the model ulti-
mately reach a similar endpoint in determiner use.
This highlights that different learning processes can
produce comparable outcomes, and that the learn-
ing trajectory may be an informative measure of
language learning.

One way to interpret the comparison is to focus
on the portion of the trajectory after children start
leaning toward determiner production instead of
omission. From this perspective, the model and
children behave similarly in how they approach the
target distributions, and this can be quantified by
measuring their distance from the target at each
point in time. This measure captures how far a
learner’s determiner use is from the expected dis-
tribution and allows us to examine how quickly
that distance decreases relative to the amount of
observed data. Figure 3 plots the children’s dis-
tances and the average distance to the target at each
age range and shows the model’s distance to the
target at each checkpoint on a log scale. The dis-
tances were calculated using KL divergence. These
figures illustrate how the gap between learner out-
put and the target narrows over time in both the
model and children, while also showing that the
model’s trajectory accelerates more quickly over
the course of learning than the children’s. Examin-
ing whether the trajectory accelerates or slows at
different points provides a way to compare learning
patterns.

The behavior of the model first producing the
definite determiner and then the indefinite deter-
miner can potentially be explained based on the
model’s language objectives. The objective of



Figure 2: Children’s individual and average trajectories (left) and model’s learning trajectory (right).

Figure 3: Children’s individual and average distances from target at each age range (left) and model’s distance from
target at each training checkpoint.

Pythia-70m is to generate language by predicting
the next word based on the linguistic context. To
do this, the model generates the word with a high
probability of occurring next based on the prior
linguistic context. In early stages of training, the
model may generate the definite determiner more
often than the indefinite determiner due to the high
frequency of the definite determiner occurring in
language. For example, data from the Corpus of
Contemporary American English (COCA) show
that the occurs roughly twice as often as a or an
(Davies, 2008). It may be the case that, when learn-
ing from the frequencies in its input, the model
may initially gravitate toward the more frequent
option before it has enough exposure to produce
the indefinite determiner.

What this does not explain is why the model does
not probability match by the end of training. We
should not expect to see the model reach an equal
distribution of definite and indefinite determiners
at the end of training if the definite determiner is

more likely to occur than the indefinite determiner
in its training data. Though this is puzzling, it is not
inconsistent with the children’s target distributions
which also approximate equal distributions of the
definite and indefinite determiners. This pattern
suggests that factors other than data frequencies
may contribute to shaping the model’s final deter-
miner distribution.

While the model’s initial behavior aligns with
the fact that the frequency of the definite determiner
is higher than the frequency of the indefinite de-
terminer in language input, the children’s behavior
does not. Despite the definite determiner occur-
ring twice as often as the indefinite determiner in
language input, children appear to first produce
the indefinite determiner before they produce the
definite determiner. One possible reason for this
could be that it is easier for children to grasp the
meaning of the indefinite determiner than the defi-
nite determiner. The meaning of the definite deter-
miner is connected to concepts of uniqueness and



specificity. There is a difference between saying
I have the ball and I have a ball. The ball refers
to a specific object that is salient to the speaker.
It may be the case that children do not yet under-
stand these concepts. Supporting this, a study on
infants’ perspective-taking in language comprehen-
sion found that 14-month-olds do not demonstrate
an understanding of specificity, while 19-month-
olds do (Choi et al., 2018). In this experiment, two
agents and a participant interacted with an appara-
tus containing two identical balls. The participant
and Agent 1 could see both of the balls while Agent
2 could only see one of the balls. When Agent 2
requested the ball from Agent 1, 19-month-olds ex-
pected Agent 1 to hand over the specific ball visible
to Agent 2, showing sensitivity to the uniqueness
and saliency of the ball. In contrast, 14-month-
olds accepted either ball as a valid referent. This
developmental gap between 14-month-olds and 19-
month-olds suggests that younger children have not
yet grasped concepts of uniqueness and specificity
that are required to appropriately use the definite
determiner. A lack of understanding of uniqueness,
despite a high frequency of the definite determiner
in language input, offers a possible explanation for
why children’s production patterns diverge from
frequency-based expectations.

4 Qualitative Analysis

To better understand the model’s early behavior, we
conducted a qualitative analysis of its determiner
use at early training checkpoints. This approach
allows us to examine unexpected patterns that quan-
titative measures might not capture. One such pat-
tern is the model’s 100% definite distribution at the
first checkpoint we measured.

To investigate the model’s frequent production
of the definite determiner in early stages of training,
we turned to examine the content of the model’s
responses at checkpoint 128. We found that the
model never appropriately uses either determiner
despite frequently producing the definite deter-
miner. This is because after repeating the prompt,
the model looped its responses ending with de-
terminers. Table 3 demonstrates some of these
responses.

The model’s behavior at checkpoint 128 leads
us to ask why the model repeats the determiner
and loops phrases like and the that end in a deter-
miner. One possible explanation for this behavior
is that the words that the model loops are the only

words the model has learned at that point. This
would explain why the model only generates the
same words—specifically the words and and the.
This explanation also suggests that these are the
first words the model learns throughout training.
Under this explanation, the model’s distribution of
determiner use prior to our observing its behavior
may not exist. If the first words the model pro-
duces are the and and, then there is never a time
when the model omits a required determiner before
determiner-learning begins. This is because lan-
guage learning for the model begins with learning
the definite determiner. While the model behaves
this way early on in training, we do not see the
same behavior from the children. This qualitative
difference again suggests that the model and chil-
dren learn determiners in different ways.

5 General Discussion

This study provides a comparison of determiner
acquisition between children and a large language
model, highlighting how learning trajectories re-
veal differences in the sequencing of language
learning. Our results show that the model and
children differ primarily in where each begins its
trajectory: the model initially exhibits a strong pref-
erence for the definite determiner, whereas children
start with a higher proportion of indefinite deter-
miner use. Over time, both learners converge to-
ward a roughly balanced distribution of definite and
indefinite determiners. These findings go beyond
prior work by examining not just the end state of
language learning or the amount of linguistic input
needed to learn, but also the learning process itself,
illustrating how sequences of acquisition can differ
across humans and models.

While we assume that children begin with a
relatively high level of omissions of determiners
and learn toward the indefinite determiner once
determiner-learning begins, we find that the model
begins with 100% use of the definite determiners.
These differing starting points raise questions about
the underlying mechanisms driving early behavior.
Two possible ideas explored in Sections 5.1 and 5.2
could account for this divergence.

In addition to these differences in starting points,
a factor shaping the model’s learning trajectory is
the decoding strategy used. We used greedy decod-
ing, the model’s default decoding strategy, which
deterministically selects the most probable token at
each step. This approach may exaggerate early pref-



Prompt Response
okay here you go okay here you go, and the, and the the the the the

the the the the the the the the the the
we’re recording our voices we’re recording our voices and the the the the the

the the the the the the the the the the the the the
the

I did wanna hear why don’t you sing it together I did wanna hear why don’t you sing it together,
and the, and the, and the, and the, and the, and the,
and

Table 3: Examples of responses at checkpoint 128.

erences, such as the model’s strong initial bias to-
ward the definite determiner. Alternative decoding
strategies could have produced more variable de-
terminer distributions, potentially smoothing or de-
laying the observed trajectory. While our findings
show how determiner use unfolds under greedy de-
coding, future work should explore whether other
decoding strategies alter the model’s trajectory or
reveal additional stages of learning.

Another observation from our findings is the
disconnect between the child data and prior devel-
opmental work noted in Section 1. While our re-
sults show that children’s productions include rela-
tively frequent use of the indefinite determiner early
on, prior developmental research has demonstrated
children’s tendency to overuse definite determiners
in experimental contexts. One way to reconcile this
discrepancy is to consider differences in experimen-
tal and naturalistic contexts. Experimental tasks
may introduce pressures that favor definite deter-
miners, whereas naturalistic production data, like
the data analyzed here, capture children’s baseline
use more directly. This comparison emphasizes
the importance of context in shaping conclusions
about early determiner use and highlights the value
of including child data in our comparison with the
model. The child data not only illustrates how the
model diverges from human learners, but also re-
veals how different methodological perspectives
can yield distinct views of children’s developmen-
tal trajectory.

5.1 Children and Models Are Different Types
of Learners

One possible explanation for the difference be-
tween the model and children’s learning processes
is that children and models are different types of
language learners. The model used in this study
generates language by predicting the next word

based on the probability of the word occurring in
a specific context. The model forms these prob-
abilities based on the frequencies of words in its
training data, per its training objective. Because
the definite determiner occurs frequently in En-
glish, the model may have a preference for learning
it before learning the indefinite determiner. This
would explain why the model starts its learning
trajectory with a higher probability of using the
definite determiner than using the indefinite deter-
miner. In contrast, these same frequency distri-
butions in children’s linguistic environments may
not be sufficient on their own to make it easier for
children to produce the definite determiner, given
underlying conceptual challenges involved in its
appropriate use (Arunachalam and Waxman, 2010;
Booth et al., 2005). One such conceptual challenge
may be understanding the concepts of uniqueness
and specificity, discussed in Section 3. If it is the
case that language learning is impacted by concep-
tual challenges, then children may not be able to
overcome the challenge of appropriately using the
definite determiner over the indefinite determiner
using frequencies alone.

5.2 Children and Models Use Language
Differently

Another explanation for the difference between
learning trajectories of the model and children is
that language models and children use language
differently. The objective of our language model is
to generate language by predicting the next word.
In order to complete this goal, the model chooses
the word with a high probability of occurring next
in the sentence. The goal of a child is different
from the goal of a language model. A child’s goal
is not to predict the next word. Rather, their goal is
to communicate (Tomasello, 2003). One possible
explanation which would require further research



is that children may tolerate certain errors, includ-
ing omissions of determiners, in order to efficiently
communicate. For example, research has found dis-
sociation between production and comprehension
in language use, suggesting that speakers some-
times produce ungrammatical utterances because
they cannot retrieve the appropriate form in the
moment (Harmon and Kapatsinski, 2017). This
could explain why the children in our study omit
determiners. The meaning of a child’s message is
likely not affected by the omission of a determiner,
so children may tolerate those mistakes depending
on other production challenges they face. For ex-
ample, a child asking for their bottle may correctly
say I want the bottle or incorrectly say I want bot-
tle. In this case, though omitting a determiner is
ungrammatical, the omission does not impact the
meaning of the message the child is attempting to
communicate.

6 Conclusion

This study examined differences in language learn-
ing between models and children by exploring their
learning trajectories. We found that models and
children behave differently throughout determiner
acquisition in regards to their learning processes.
The model and the children appear to produce the
definite and indefinite determiners in opposite or-
der: the model beginning with the definite deter-
miner and the children beginning with the indefinite
determiner. These learning differences reflect dis-
parity in the goals and learning processes that shape
language models and humans. It appears that next-
word prediction objectives and probabilistic opti-
mization drive determiner use for the model, while
communicative needs and learning milestones drive
determiner use for children.

The approach of framing acquisition as move-
ment over distributions makes the underlying pro-
cess of acquisition visible and provides a nuanced
basis for comparing language models to human
learners. Learning trajectories provide a way of
measuring how the learning process unfolds for
different learners. This study shows a difference in
the sequencing of determiner acquisition in mod-
els and children, and additional data could reveal
further differences such as differences in speed or
consistency. Future work could also extend this
approach to other aspects of grammar and work
to build a broader map of learning differences be-
tween models and humans.

By comparing models and humans through their
learning trajectories rather than end state learn-
ing or the quantity of training data, this approach
uncovers fundamental differences in how LLMs
and humans learn language over time. Comparing
learning processes makes visible the paths and in-
termediate steps of language learning which offers
insights into the mechanisms driving the learning
process. This perspective emphasizes the impor-
tance of studying how learning unfolds, not just
what is learned or how much data is needed. Ulti-
mately, this process-oriented approach provides an
alternative way to evaluate and improve LLMs.

Limitations

While this study provides insights into the differ-
ences between LLMs and children’s determiner
acquisition processes, several limitations should
be noted. First, the analysis is based on a single
large language model and a relatively small set of
child learners. The findings may not generalize
across other models with different architectures or
optimization objectives, nor across child learners
with varying linguistic backgrounds. Second, the
study focuses exclusively on the articles the, a, and
an which represent only a subset of English deter-
miners. Examining a broader range of determiners
could reveal different learning trajectories. Third,
we measured the model’s behavior through its pro-
ductions, and did not probe its logits or embeddings.
This limits our ability to interpret aspects of the
model’s behavior, such as repeatedly producing the
definite determiner. While inspecting the model’s
generation function and examining the logits for
all vocabulary items could clarify this behavior,
such an analysis was not completed in this study.
Therefore, the early dominance of the should be
interpreted cautiously. Finally, greedy decoding
may amplify the model’s early preference for the
definite determiner, and future work should exam-
ine whether alternative decoding strategies yield
different developmental patterns in the model.
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