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Abstract—A new efficient measure for predicting estimation ac-
curacy is proposed and successfully applied to multistream-based
unsupervised adaptation of ASR systems to address data uncer-
tainty when the ground-truth is unknown. The proposed measure
is an extension of the M-measure, which predicts confidence in the
output of a probability estimator by measuring the divergences
of probability estimates spaced at specific time intervals. In
this study, the M-measure was extended by considering the
latent phoneme information, resulting in an improved reliability.
Experimental comparisons carried out in a multistream-based
ASR paradigm demonstrated that the extended M-measure yields
a significant improvement over the original M-measure, especially
under narrow-band noise conditions.

I. INTRODUCTION

Automatic speech recognition (ASR) systems and other
stochastic machines simply make their best guess on the basis
of the data on which they were trained when attempting
to recognize data during test time. Perfect learning could
theoretically be achieved using infinitely large samples of data
that cover all possible types of unexpected harmful variables
that could be encountered during run-time of the recognizers,
but in practice such an ideal learning is impossible. Creating
ASR systems that adapt to the environmental changes provides
a way to address this fundamental machine learning weakness.

Human listeners are able to estimate their confidence in
their decisions when perceiving degraded speech data, whereas
ASR systems would poorly perform, even when the answer
is not known a priori [1], [2]. Techniques for predicting the
accuracy of an estimator based on its output (e.g., estimates of
phoneme posterior probabilities) have played an important role
in the unsupervised adaptation of ASR systems. For example,
confusion networks [3] have been used to predict the accuracy
of each phoneme or word [4], [5]. Other measures that are
computed over several seconds of speech (e.g., an utterance)
can yield more reliable predictions of the estimation accuracy.

The mean temporal distance (denoted as the “M-
measure”) [6], which evaluates the averaged dissimilarities in
the probability estimates spaced over several time spans, is one
such measure that has been proven to be effective in predicting
the estimation accuracy. This method makes use of the fact
that the vectors of the phoneme probability estimates should
be dissimilar between the distant frames of speech, which

are likely to belong to different phonemes. However, the M-
measure does not explicitly consider more detailed information
about the phonemic structure of speech.

The present study builds on the M-measure to develop
improved confidence measures for use in the multistream-
based adaptation of recognizers that are robust against noise.
A new version of the M-measure is proposed that explicitly
takes into account the probability that distant frames have
different phoneme labels, providing a more accurate indicator
of the estimator’s ability to distinguish between phonemes. The
proposed technique for the confidence estimation is evaluated
using a multistream-based adaptation paradigm [7], which is
directly applicable to the current DNN-based ASR systems.

The paper is organized as follows. Section II gives an
overview of the relevant previous work on the prediction of
the estimation accuracy and the multistream-based paradigm
in ASR. Section III describes M-delta, our extension of the
M-measure. Sections IV and V demonstrate that this M-delta
measure is effective for use as an accuracy predictor and
can be successfully applied to two types of multistream-based
adaptation of ASR systems. Section VI concludes this paper.

II. RELEVANT PREVIOUS WORK

A. Prediction of estimation accuracy

Several attempts have been made to predict the estimation
accuracy of ASR systems. We refer to these predictors as
“performance monitors.” Okawa et al. [8] used the entropy
of the estimator outputs as a performance monitor. Ikbal et
al. [9] and Kubo et al. [10] used this measure for combining
results from multiple ASR systems for noise robust ASR.
Mesgarani et al. [11] and Badiezadegan et al. [12] computed
the distance in the autocorrelation of the phoneme posterior
probabilities between training and testing data. In addition,
Variani and Hermansky [13] used the Mahalanobis distance
on the logarithmic posterior space between training and testing
data. The experimental results indicated that these criteria as
a performance monitor worked reasonably well but required
a minimum of four seconds to obtain stable estimates of
the probability distribution for posterior data. Ogawa et al.
[14] demonstrated that the likelihoods computed from the
Gaussian mixture model of the classifier outputs could be
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Fig. 1. Schematic diagram of multistream-based adaptation paradigm.
Uncorrupted streams are selected from all band-limited streams on basis of
performance monitor and then fused.

applied for predicting the estimation accuracy frame-by-frame.
This criterion worked better than the aforementioned criteria
with even less than four seconds of speech. Another recently-
proposed technique evaluates the averaged dissimilarities in
the probability estimates spaced several time apart, which has
been named the “M-measure” [6], [15]. This measure is simple
but has proven to be effective in predicting the estimation
accuracy [6]. The present work is an attempt to improve this
measure and was extensively studied in 2014 Frederick Jelinek
Memorial Workshop in Prague [16], [17].

B. Multistream-based unsupervised adaptation of ASR

Figure 1 depicts a schematic diagram of multistream-based
adaptation paradigm, in which reliable band-limited streams
are chosen on the basis of the performance monitor and
then fused. In the multistream-based adaptation paradigm,
reliable band-limited streams are chosen on the basis of the
performance monitor and then fused [7]. The first stage of
the parallel processing estimates the posterior probabilities of
phonemes in the band-limited streams. This is followed by
a fusion stage that integrates the classification results from
the band-limited streams on the basis of the performance
monitor. Sharma [18] proposed a prototype multistream ASR
system in which the full frequency was divided into seven
bands to emulate the parallel processing that was hypothesized
in human speech recognition, and to selectively deal with
corrupted streams. All 127 non-empty combinations of these
seven band-limited streams were formed and the second stage
MLP classifier was trained for each of these 127 combinations.
Our work is also based on multistream ASR, but the full
frequency is divided into five bands.

The key to the success of the multistream-based unsuper-
vised adaptation of ASR systems lies in the performance
monitor, which predicts the estimation accuracies of indi-
vidual streams without requiring any knowledge about the
correct answers. Several unsupervised techniques using the
aforementioned measures have been proposed and investigated
for selecting the least corrupted streams [11], [12], [13], [15],
[19], [20].

Audio-visual ASR is an alternative multistream approach to
creating noise robust ASR systems [21]. This is not the focus
in the present study, but unsupervised adaptation based on the
performance monitoring is also applicable to this approach.

III. EXTENSION OF M-MEASURE

An attempt has been made to extend the M-measure. The
original M-measure evaluates the divergences in probabil-
ity estimates across times without any consideration of the
phoneme contexts. The extension of this measure, which was
inspired by the segmentation algorithm proposed in [22],
computes the difference in divergences coming from the same
phoneme as well as different phonemes. This section briefly
explains the original M-measure and describes the extended
M-measure in detail.

A. M-measure

The M-measure accumulates the divergences of probability
estimates spaced over several time-spans. It is defined as

M(∆t) =
1

T −∆t

T∑
t=∆t

D(pt−∆t,pt), (1)

where ∆t denotes the time interval between the phoneme
posterior probabilities at t−∆t and t, pt−∆t and pt, and
D(p,q) denotes the symmetric KL divergence between the
posteriors,

D(p,q) =
K∑

k=0

p(k) log
p(k)

q(k)
+

K∑
k=0

q(k) log
q(k)

p(k)
, (2)

where p(k) denotes the k-th element of a posterior vector
p ∈ RK . It has been found that if an ASR system is
developed using clean speech, this M-measure is higher for
clean speech utterances (i.e., known data) and lower for noisy
speech utterances (i.e., unknown data). In addition, as the
SNR of noisy speech decreases, the M-measure lowers. This
means that the M-measure could be effective in determining
whether the input data are known or unknown for a system.
In multistream ASR, the stream (or system) with the highest
M-measure can be selected as the most reliable stream (or
system) [15].

The M-measures in Eq. (1) are averaged over several time
intervals ∆t and the result is used as the confidence measure,

M = mean
{∆t}

[M(∆t)], (3)

where {∆t} consists of 10, 15, 20, · · · , 80 frames (15
intervals).

B. M-delta measure

An extension of the M-measure, which is denoted as the
“M-delta measure,” computes the probability in each time
span of two frames being an instance of the same phoneme.
During testing, it estimates the M-measures for the same
versus different phonemes by solving a redundant set of linear
equations.

The original M-measure assumes that the distance between
probability estimates over several time-spans should be large
for known data (mainly for clean speech). However, this is not
always accurate. If two posteriors are from the same phoneme
class, the distance between them should be small, irrespective



of the time intervals. This means that the original M-measure
ignores the effect of the posterior pairs that are separated by
large time intervals but belong to the same phoneme class. It
accumulates a symmetric KL divergence between the posteri-
ors without considering this kind of phoneme dependency.

Therefore, we introduce the idea of within-class and across-
class M-measures, Mwc and Mac, to represent the accumu-
lated KL-divergence computed from a data pair from the same
phoneme class and that from a data pair from different classes,
respectively. The new M-delta measure is defined using these
within- and across-class M-measures as

Mdelta = Mac −Mwc. (4)

We assume that the M-measure can be decomposed into

M(∆t) = pwc(∆t) ·Mwc + pac(∆t) ·Mac + ϵ∆t, (5)

where M(∆t) denotes the original M-measure defined using
Eq. (1), which is determined for each utterance; pwc(∆t) and
pac(∆t) denote the probability of a pair of frames separated
by ∆t being instances from the same and different phonemes,
respectively; and Mwc and Mac, the within- and across-class
M-measures being estimated for each utterance. pwc(∆t) and
pac(∆t) are determined from the training data transcriptions.

The error term ϵ∆t is included because Eq. (5) is an approx-
imate representation of the M-measure. Although pwc(∆t)
and pac(∆t), which are computed from the training data,
are reliably estimated, these probabilities actually differ from
those computed from the test utterances, because the variety
of phonemes in a test utterance is limited. The redefined M-
measure described using Eq. (5) can be written redundantly
with several ∆t values to minimize the overall error of the
within- and across-class M-measures. Assume that y, A, x,
and ϵ are given as

y =
[
M(∆t1) · · · M(∆tN )

]T ∈ RN (6)

A =

 pwc(∆t1) pac(∆t1)
· · · · · ·

pwc(∆tN ) pac(∆tN )

 ∈ RN×2 (7)

x =
[
Mwc Mac

]T ∈ R2 (8)

ϵ =
[
ϵt1 · · · ϵtN

]T ∈ RN (9)

Then, Eq. (5) can be written as

y = Ax+ ϵ. (10)

In this case, the within- and across-class M-measures can be
estimated as a least square solution:

x = (ATA)−1ATy. (11)

The experiments below used the values (∆t1,∆t2, · · · ,∆tN )
= (1, 2, 3, 4, 5, 10, 15, 20, · · · , 75, 80) and N = 20, which
were determined by conducting preliminary experiments.

IV. MULTISTREAM-BASED UNSUPERVISED ADAPTATION

OF ASR SYSTEM

The techniques for predicting the estimation accuracy were
evaluated as a performance monitor in the multistream-based
unsupervised adaptation of DNN ASR systems [7].

TABLE I
TYPES AND SNRS OF NOISE USED.

item noise type SNR [dB]
clean
sub15 subway 15
bab15 babble 15
fac10 factory 10
res10 restaurant 10
exh5 exhibition hall 5
str5 street 5
car5 car 5
exh0 b2 exhibition hall (band 2 corrupted) 0
exh0 b4 exhibition hall (band 4 corrupted) 0

A. Multistream ASR system based on band-limited streams

The multistream-based adaptation paradigm used was in-
troduced in [20]. The full frequency of the speech signal is
divided into five band-limited streams, each of which covers
about three barks along the auditory frequency. Then, the
processing streams are formed for all the non-empty combina-
tions of the five band-limited streams, yielding 31 processing
streams. The most reliable processing stream was selected
using performance monitors and the posterior probabilities
from the DNN for that stream were used for determining
the final recognition results. This adaptation paradigm yields
advantages in terms of the band-limited noise corruption by
using a stream that does not contain the corrupted band.

The temporal modulation information in each band-limited
stream was extracted from 250ms temporal envelopes using
frequency domain linear prediction (FDLP) analysis [23]. A
DNN-based probability estimator was trained for each band-
limited stream with inputs as the FDLP features and triphone
states used as the targets. The DNNs have four hidden layers of
1024 units, an input layer of 576 nodes, and 1951 output units.
These band-limited DNNs were used to yield 39-dimensional
phoneme posterior probabilities. The DNN-based probability
estimators were developed for the 31 processing streams in
the latter stage. The features were determined by stacking the
phoneme posterior probabilities from the band-limited DNNs.

B. Confidence measures for performance monitor

Experimental comparisons were conducted for three mea-
sures:

• Entropy: accumulated negative entropy of phoneme pos-
terior probabilities

• M: original M-measure
• Mdelta: M-delta measure with Mwc and Mac

These measures were computed based on a single sentence to
predict the accuracy for that sentence.

C. Speech materials

All the models described in IV-A and the probabilities
pwc and pac in Eq. (5) were trained on 3696 clean speech
utterances from the TIMIT training set, and the evaluation
was conducted using 400 speech utterances from the TIMIT
development set under several types of noise. The types and
SNRs of the noise are listed in Table I. There were 61
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Fig. 2. Correlations with phoneme accuracy in multistream-based adaptation
for several types of noise. “ave” bars represent correlations averaged over ten
conditions.

phonemes in the TIMIT transcriptions that were compacted
into 48 phonemes for training and 39 phonemes for evaluation,
as proposed in [24]. Note that in principle, the multistream-
based adaptation paradigm enables an ASR system to be more
robust against stream-specific noise, such as the exh0 b2 and
exh0 b4 noises.

D. Experimental results

The evaluation criteria were:

• How well the scores from the performance monitor
correlated with the actual recognition accuracies

• The phoneme error rate of an ASR system with
multistream-based unsupervised adaptation.

The aim of multistream-based unsupervised adaptation is
selecting the most reliable processing stream from the 31
streams for each sentence. Ideally, the confidence measures
determined from the 31 processing streams should highly
correlate with the corresponding phoneme accuracies. The
correlations with the actual phoneme accuracy were therefore
individually calculated for each utterance across the 31 pro-
cessing streams, and then, averaged over the 400 utterances
in the TIMIT development set. The phoneme error rates
were determined from the processing stream estimated by the
performance monitor for each utterance, and averaged over the
400 utterances.

1) Evaluation by correlations with phoneme accuracy:
Figure 2 shows the correlation between the confidence measure
and the actual phoneme accuracy for several types of noise.
This figure shows that the M-delta measure yielded a signif-
icant improvement over the existing measures, such as the
negative entropy and original M-measure, under the narrow-
band noise conditions, i.e., exh0 b2 and exh0 b4, while it
yielded similar results to those for the original M-measure and
did not yield an advantage over the entropy in the broad-band
noise corruptions.

2) Evaluation by selecting stream in multistream ASR:
The stream that yielded the highest confidence was selected
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Fig. 3. Phoneme error rates determined using multistream-based unsupervised
adaptation for several types of noise. “ave” bars represent error rates averaged
over ten conditions.

from the 31 recognizers, using the accuracy prediction. The
phoneme error rate was calculated from the recognizer outputs
of the selected stream. The comparisons were as follows:

• Oracle: selecting the stream with the best error rate by
hand

• w/o PM: including all the individual band-limited
streams [25]

• random: selecting a stream at random
• w/ PM: selecting a stream with the performance monitor

The negative entropy, original M-measure, and M-delta mea-
sure were used for the systems w/ PM.

Figure 3 shows the phoneme error rates for several types of
noise. This figure proves that the multistream-based unsuper-
vised adaptation with the performance monitor (w/ PM) can
reduce the amount of phoneme errors from a system without
the performance monitor (w/o PM) and that based on the ran-
dom selection of a processing stream (random). In particular,
the M-delta measure yielded a small but consistent advantage
in the broad-band noise corruptions and more significant gains
under the narrow-band noise conditions.

3) Use of broad phoneme class probability estimator:
The techniques for predicting the estimation accuracy were
modified using the estimates of the probabilities of broad
phoneme classes instead of the estimates of standard phoneme
probabilities. Using the broad phoneme classes can dete-
riorate the accuracy of the M-measures but improve their
reliability by increasing the coverage of the classes. The
seven broad phoneme classes used were defined in [26], i.e.,
plosives, fricatives, nasals, semi-vowels, vowels, diphthongs,
and silence. The posterior probabilities pt for computing the
negative entropy and M-measure are determined by merging
the phoneme posteriors corresponding to a broad phoneme
class. Note that such broad phoneme classes are used only for
computing the confidence measures (i.e., stream selection) and
the posterior probabilities for the triphone states are calculated
during the recognition of the selected stream.

Figure 4 shows the correlation with the phoneme accuracy
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Fig. 4. Correlation with phoneme accuracy in multistream-based adaptation
for several types of noise when using broad phoneme class (Entropy-bc, M-
bc, and Mdelta-bc) and standard phoneme class probabilities (Entropy, M, and
Mdelta).

for several types of noise when broad phoneme classes are
used. Using the broad phoneme class probability estimator
yielded significant improvement, irrespective of the measures,
under the narrow-band noise conditions, but did not help for
the broad-band noise corruption.

The M-delta measure and use of broad phoneme class
probabilities were extensively studied in 2014 Frederick Je-
linek Memorial Workshop in Prague. During this workshop,
the proposed techniques were compared to the traditional
confidence measures, such as the acoustic and language model
likelihood along with lattice and posterior probabilities in con-
fusion sets accumulated for a single sentence. This comparison
demonstrated that the M-delta measure yielded the best results
under the narrow-band noise conditions [17].

V. MULTISTREAM ASR BASED ON SELECTION OF NOISE

SPECIFIC STREAMS

In the experiments described in Section IV, the DNNs
for all possible combinations of band-limited streams were
trained with only the clean speech, and the developed multi-
stream framework was robust against the band-limited noise
corruption. In this section, another type of multistream-based
unsupervised adaptation is discussed. In each stream, the DNN
is trained on a specific noise condition. This results in a
multistream framework where each stream performs well on
a specific noise condition. For a given test utterance, selecting
posterior estimates from the stream having the most similar
acoustic property, results in the lowest error rate.

A. Experimental setup

We used 3696 utterances from the TIMIT training set
and 400 utterances from the TIMIT development set for the
purpose of testing. Ten types of original training set are created
by corrupting the clean training speech with nine types of
additive noise, at various signal-to-noise ratios (SNRs) ranging
from 0 dB to 20 dB. We used babble, buccaneer1, buccaneer2,

car, destroyerops, exhall, f16, factory1, and factory2 noises
from NOISEX database.

The original clean training set and nine noisy training sets
are combined to create a multi-condition training set, the
amount of which is ten times as much as other sets. The eleven
types (one clean, nine noisy, and one multi-condition) of
training sets are used to train eleven different DNNs, where ten
of them are trained on a specific acoustic condition, and one
DNN is trained on multi-condition data. The DNNs used have
a depth of six hidden layers, and each hidden layer consist of
1024 sigmoidal units. We used 40 dimensional Mel filter-bank
energy features. The DNNs are pre-trained using RBM [27]
and fine-tuned using the cross-entropy cost function. The
targets used for fine-tuning are context dependent triphone
states, generated using a GMM/HMM system.

Similar to the training set, we corrupted the development
set with the nine types of noise at SNRs of 0, 5, 10, 15 and
20 dB. The whole development set (clean and noisy versions)
is referred to as the test set from here on.

B. Experimental result

Table II shows the results of the test set in various streams.
For the purpose of showing the upper limit of performance, the
oracle selection technique is defined as selecting the stream
that has the most similar acoustic condition of given test data.
In the present study, we used two types of oracle stream
selection techniques as follows:

• Utterance oracle: We select a stream with the lowest
error rate for each utterance by hand.

• Matched condition: We select a stream trained on the
same noise for a test utterance.

We can infer that error rates of the condition-level oracle
streams (i.e., Matched condition) are always less than those
of individual streams (i.e., clean, car, babble, and so on). In
addition, the utterance-level oracle streams performs better
than the condition-level oracle streams.

Uncertainty measures for stream selection are as follows:
• Entropy: Stream selection based on entropy minimiza-

tion
• M: Stream selection based on M value maximization
• Mdelta: Stream selection based on M-delta maximization
Table II shows that the entropy of posterior probability,

obtained at the output of DNN is erroneous. The M measure
performs better than the entropy, which suggests measures that
look at temporal dynamics of posteriors are better than those
looking at a single frame. The M-delta measure yields the
improvement over the M measure and multi-condition training.
In addition, integration of two best streams selected by the M-
delta measure (Mdelta-top2), in which the geometric mean of
two DNN posteriors is used for decoding, matches with the
condition-level oracle stream. This results show that the M-
delta measure successfully selects condition specific streams.

VI. CONCLUSION

The M-measure was extended and successfully applied to
the multistream-based unsupervised adaptation in ASR. The



TABLE II
PHONEME ERROR RATES (%) FROM STREAM-SELECTION SYSTEM USING UNCERTAINTY MEASURES AND INDIVIDUAL SYSTEMS.

Train \Test clean bab buc1 buc2 car des exh f16 fac1 fac2 Ave
clean 20.7 59.2 65.7 64.9 34.2 59.5 57.4 62.9 62.0 53.3 54.0
babble 29.2 35.6 47.0 49.9 32.0 43.6 37.2 41.5 42.8 32.4 39.1
bucc1 31.9 54.2 35.6 43.6 40.0 52.6 53.0 40.8 49.1 40.6 44.1
bucc2 35.8 58.7 43.8 35.2 44.4 51.9 56.0 44.8 51.3 46.8 46.9
car 23.7 58.0 64.8 64.2 22.7 55.9 54.2 62.7 60.5 48.6 51.5
destroyerops 28.4 47.9 44.1 43.3 31.7 33.7 45.5 42.1 44.0 36.4 39.7
exhall 29.5 40.3 46.1 48.4 31.7 42.1 33.7 42.0 43.0 32.5 38.9
f16 29.8 49.2 40.8 44.7 37.0 48.7 48.1 33.2 46.6 36.4 41.5
factory1 29.8 46.1 39.1 40.8 33.9 43.6 44.0 37.7 36.5 32.9 38.4
factory2 27.0 44.7 43.7 48.0 29.1 45.3 42.8 41.0 43.3 29.3 39.4
Multi-condition 22.8 36.8 38.7 39.6 25.0 34.8 34.3 36.2 36.3 28.9 33.3
Matched condition 20.7 35.6 35.6 35.2 22.7 33.7 33.7 33.2 36.5 29.3 31.6
Utterance oracle 17.6 31.8 30.9 31.5 20.0 30.0 29.7 29.1 31.7 24.4 27.7
Entropy 22.5 38.0 39.8 43.2 24.9 36.5 35.2 36.6 37.7 29.2 34.4
M 22.8 39.7 34.4 36.2 25.0 35.4 36.5 32.5 39.5 29.5 33.2
Mdelta 22.8 38.5 34.4 36.2 25.0 33.3 35.5 32.5 38.7 29.1 32.6
Mdelta-top2 20.1 37.6 34.2 35.3 21.6 33.6 34.7 32.5 38.5 28.3 31.6

within- and across-class M-measures were introduced to take
the phoneme class information that was ignored in the original
M-measure into consideration and determined by solving a
redundant set of equations. This extension (M-delta measure)
yielded significant gains over the original M-measure, espe-
cially when there was narrow-band noise, in selection of band-
limited streams trained on clean speech. The improvement was
made also in selection of streams formed on specific noise
conditions. Both of these cases suggest that taking into account
what is known about the structure of the phonemes in speech
can lead to the creation of better adaptive speech technologies.
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