
Much of cognition and perception involves inference 
under uncertainty, using limited data from the world to 
evaluate underdetermined hypotheses. Probabilistic 
models provide a way to characterize rational solutions 
to these problems, with probability distributions encod-
ing the beliefs of agents and Bayesian inference updating 
those distributions as data become available. As a conse-
quence, probabilistic models are becoming increasingly 
widespread in both cognitive science and neuroscience, 
providing explanations of behavior in domains as diverse 
as motor control (Körding & Wolpert, 2004), reasoning 
(Oaksford & Chater, 1994), memory (Anderson & Mil-
son, 1989), and perception (Yuille & Kersten, 2006). How-
ever, these explanations are typically presented at Marr’s 
(1982) computational level, with the focus being on the 
abstract problem being solved and on the logic of that so-
lution. Unlike many other formal approaches to cognition, 
probabilistic models are usually not intended to provide 
an account of the mechanisms underlying behavior—how 
people actually produce responses consistent with optimal 
statistical inference.

Understanding the mechanisms that could support 
Bayesian inference is particularly important, since proba-
bilistic computations can be extremely challenging. Rep-
resenting and updating distributions over large numbers 
of hypotheses is computationally expensive, a fact that 
is often viewed as a limitation of rational models (e.g., 
Gigerenzer & Todd, 1999; Kahneman & Tversky, 1972). 
The question of how people could perform Bayesian in-
ference can be answered on at least two levels (as was 
suggested by Marr, 1982). One kind of answer is focused 
on the neural level, on exploring ways in which systems 
of neurons could perform probabilistic computations. 
The language of such answers is that of neurons, tuning 
curves, firing rates, and so forth, and several researchers 
have recently explored ways in which systems of neurons 
could perform probabilistic computations (e.g., Ma, Beck, 
Latham, & Pouget, 2006; Zemel, Dayan, & Pouget, 1998). 
A second kind of answer is at the level of psychological 
processes, showing that the Bayesian inference can be per-
formed with mechanisms that are no more complex than 
those used in psychological process models. The language 
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generalize beyond the solutions to specific optimization 
problems, or schemes for handicapping specific models, 
and provide a new way to look at the mechanistic or heu-
ristic accounts that psychologists have developed in order 
to explain aspects of human behavior.

The plan of the article is as follows. We first introduce 
the mathematical formulation of exemplar models and 
Bayesian inference. We then discuss how exact Bayesian 
inference can be approximated, focusing on Monte Carlo 
methods. The Monte Carlo method known as importance 
sampling is discussed in detail, and its connection to ex-
emplar models is established. In the remainder of the ar-
ticle, we explore the capacity of exemplar models to per-
form Bayesian inference in various tasks. These include a 
range of cognitive tasks from perception, generalization, 
prediction, and concept learning. We also use simulations 
of performance on these tasks to investigate the effects of 
different kinds of capacity limitations and ongoing stor-
age of exemplars in memory.

Exemplar Models
Human knowledge is formed by observing examples. 

When we learned the concept dog, we were not taught to 
remember the physiological and anatomical characteris-
tics of dogs but, instead, saw examples of various dogs. 
On the basis of the large inventory of examples of dogs 
that we have seen, we are able to reason about the prop-
erties of dogs and to make decisions about whether new 
objects that we encounter are likely to be dogs. Exemplar 
models provide a simple explanation for how we do this, 
suggesting that we do not form abstract generalizations 
from experience but, rather, store examples in memory 
and use those stored examples as the basis for future judg-
ments (e.g., Medin & Schaffer, 1978; Nosofsky, 1986).

An exemplar model consists of stored exemplars, X*  
{x*

1, x*
2, . . . , x*

n}, and a similarity function, s(x,x*), mea-
suring how closely a new observation x is related to x*.1 
When x is observed, all exemplars are activated in pro-
portion to s(x,x*). The use of the exemplars depends on 
the task (Nosofsky, 1986). In an identification task, where 
the goal is to identify the x* of which x is an instance, the 
probability of selecting x*

i is
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where pr(.) denotes the response distribution resulting 
from the exemplar model, and we assume that participants 
use the Luce–Shepard rule (Luce, 1959; Shepard, 1962) in 
selecting a response, with no biases toward particular ex-
emplars. In a categorization task, in which each exemplar, 
x*

j, is associated with a category, cj, the probability that the 
new object, x, is assigned to category c is given by
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of such answers is representations, similarity, activation, 
and so forth, and some preliminary work has been done 
in this direction (Kruschke, 2006; Sanborn, Griffiths, & 
Navarro, 2006).

Our focus in this article is on a familiar class of psy-
chological process models known as exemplar models. 
These models assume that people store many instances 
(exemplars) of events in memory and evaluate new events 
by activating stored exemplars that are similar to those 
events (Medin & Schaffer, 1978; Nosofsky, 1986). It is 
well known that exemplar models of categorization can 
be analyzed in terms of nonparametric density estima-
tion and implement a Bayesian solution to this problem 
(Ashby & Alfonso-Reese, 1995). Here, we show that ex-
emplar models can be used to solve problems of Bayesian 
inference more generally, providing a way to approximate 
expectations of functions over posterior distributions. Our 
key result is that exemplar models can be interpreted as a 
sophisticated form of Monte Carlo approximation known 
as importance sampling. This result illustrates how at least 
some cases of Bayesian inference can be performed using 
a simple mechanism that is a common part of psychologi-
cal process models.

Our analysis of Bayesian inference with exemplar 
models is also an instance of a more general strategy for 
exploring possible psychological mechanisms for imple-
menting rational models. Importance sampling is one of 
a variety of methods used for approximating probabilistic 
computations in computer science and statistics. These 
methods are used because they provide efficient approxi-
mate solutions to problems that might be intractable to 
solve exactly. If we extend the principle of optimality un-
derlying rational models of cognition to incorporate con-
straints on processing, we might expect to see similarities 
between the approximation schemes used by computer 
scientists and statisticians and the mechanisms by which 
probabilistic computations are implemented in the human 
mind. In some cases, as for importance sampling and ex-
emplar models, the resulting rational process models pro-
vide a way to connect the abstract level of analysis used 
in many probabilistic models of cognition with existing 
ideas about psychological processes.

Establishing a stronger connection between rational 
models of cognition and psychological mechanisms has 
been a goal of cognitive scientists at least since Simon 
(1957) introduced the notion of bounded rationality. Sev-
eral different strategies for taking into account the effects 
of information-processing constraints have been consid-
ered, including incorporating those constraints into the 
optimization process involved in rational analysis (e.g., 
Anderson, 1990), handicapping rational models to pro-
duce behavior closer to that of human participants (e.g., 
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003), and 
rejecting the principle of optimization altogether in favor 
of finding simple but effective heuristics (e.g., Gigerenzer 
& Todd, 1999). The idea of developing rational process 
models shares characteristics with all of these strategies, 
with its focus being on finding psychologically plausible 
processes that can be justified as approximations to ra-
tional statistical inference. Such processes will ideally 
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where H is the set of hypotheses under consideration (the 
hypothesis space), and p(d | h) is a distribution indicating 
the probability of seeing d if h were true, known as the 
likelihood.

Although our analysis applies to Bayesian inference in 
the general case, we will introduce it using a specific ex-
ample that is consistent with several of the psychological 
tasks that we consider later in the article. We will return 
to the general case after working through this specific ex-
ample. Assume that we observe a stimulus, x, which we 
believe to be corrupted by noise and potentially missing 
associated information, such as a category label. Let x* 
denote the uncorrupted stimulus, and let z denote the miss-
ing data. Often, our goal is simply to reconstruct x, finding 
the x* to which it corresponds. In this case, z can be empty. 
Otherwise, we seek to infer both x* and the value of z that 
corresponds to x. We can perform both tasks using Bayes-
ian inference.

The application of Bayes’ rule is easier to illustrate in 
the case in which z is empty and in which we simply wish 
to infer the true stimulus x* from noisy x. We use the prob-
ability distribution p(x | x*) to characterize the noise pro-
cess, indicating the probability with which the stimulus x* 
is corrupted to x, and we use the probability distribution 
p(x*) to encode our a priori beliefs about the probability 
of seeing a given stimulus. We can then use Bayes’ rule to 
compute the posterior distribution over the value of the 
uncorrupted stimulus, x*, which might have generated the 
observation x, obtaining
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where p(x | x*) is the likelihood, and p(x*) is the prior.
This analysis is straightforward to generalize to the 

case in which z contains missing data, such as the label 
of the category from which x was generated. In this case, 
we need to define our prior as a distribution over both x* 
and z, p(x*,z). We can then use Bayes’ rule to compute 
the posterior distribution over the uncorrupted stimulus, 
x*, and missing data, z, which might have generated the 
observation x, obtaining
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where we also assume that the probability of observing x 
is independent of z, given x*, so p(x | x*,z)  p(x | x*).

Evaluating Expectations by Monte Carlo
Posterior distributions on hypotheses, given data, can 

be used to answer a variety of questions. To return to the 
example above, a posterior distribution on x* and z can be 
used to evaluate the properties of x* and z, given x. A stan-
dard way to do this is to use the expectation of a function 
over the posterior distribution. For any function f (x*,z), 
the posterior expectation of that function, given x, is

 E[ f (x*,z) | x]  f (x*,z)p(x*,z | x)  dx* dz, (7)

being the average of f (x*,z) over the posterior distribution. 
Since f (x*,z) can pick out any property of x* and z that 

where, again, we assume a Luce–Shepard rule without 
biases toward particular categories.

Although exemplar models have been most prominent 
in the literature on categorization, the same basic princi-
ples have been used to define models of function learning 
(DeLosh, Busemeyer, & McDaniel, 1997), probabilistic 
reasoning (Juslin & Persson, 2002), and social judgment 
(Smith & Zarate, 1992). In these models, a similar ap-
proach to models of categorization is pursued, but each 
exemplar is associated with a quantity other than a cat-
egory label. For example, in function learning, each exem-
plar is associated with the value of a continuous variable, 
rather than with a discrete category index. The procedure 
for generating responses remains the same as that used in 
Equations 1 and 2: The associated information is averaged 
over exemplars, weighted by their similarity to the stimu-
lus. Thus, the predicted value of some associated informa-
tion, f, for a new stimulus, x, is
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where fj denotes the information associated with the jth 
exemplar. The identification and categorization models 
can be viewed as special cases, corresponding to different 
ways of specifying fj. Taking fj  1 for j  i and 0 oth-
erwise yields Equation 1, whereas taking fj  1 if cj  c 
and 0 otherwise yields Equation 2. Equation 3 thus pro-
vides the general formulation of an exemplar model that 
we will analyze.

Bayesian Inference
Many cognitive problems can be formulated as evalua-

tions of a set of hypotheses about processes that could have 
produced observed data. For example, perceiving speech 
sounds requires considering what sounds might be con-
sistent with an auditory stimulus (Feldman, Griffiths, & 
Morgan, 2009), generalizing a property from one object to 
another involves considering the set of objects likely to pos-
sess that property (Shepard, 1987), predicting the duration 
of an ongoing event necessitates reasoning from its cur-
rent duration to a hypothetical future endpoint (Griffiths & 
Tenenbaum, 2006), and learning a concept from examples 
means evaluating a space of possible concepts (Tenenbaum 
& Griffiths, 2001). Even reconstructing information from 
memory can be analyzed as an inference about the nature of 
that information from the data provided by a noisy memory 
trace (Huttenlocher, Hedges, & Vevea, 2000).

Bayesian inference provides a solution to problems of 
this kind. Let h denote a hypothesis and d the data, and as-
sume that a learner encodes his or her degrees of belief re-
garding the hypotheses before seeing d using a probability 
distribution, p(h), known as the prior distribution. Then, 
the degrees of belief after seeing d are given by the poste-
rior distribution, p(h | d ), obtained from Bayes’ rule:

 
p h d

p d h p h
p d h p h dhH

( | ) ( | ) ( )
( | ) ( )

,
 

(4)



446    SHI, GRIFFITHS, FELDMAN, AND SANBORN

of 1. However, when the values of yj are sampled from sur-
rogate distribution q( y), they bear nonuniform importance 
weights because of the difference between p( y) and q( y). 
Samples with higher probability under p( y) than under 
q( y) occur less often than they would if we were sampling 
from p( y) but receive greater weight, counterbalancing 
the lower sampling frequency, with the opposite apply-
ing to samples with higher probability under q( y) than 
under p( y).

Importance sampling is a useful method for approxi-
mating expectations when simple Monte Carlo cannot be 
applied because generating samples from the target distri-
bution is difficult. However, using an importance sampler 
can make sense even in cases in which simple Monte Carlo 
can also be applied. First, it allows a single set of samples 
to be used to evaluate expectations with respect to a range 
of distributions, through the use of different weights for 
each distribution. Second, the estimate of  produced by 
the importance sampler can have lower variance than the 
estimate produced by simple Monte Carlo, if the surrogate 
distribution is chosen to place high probability on values 
of y for which both p( y) and the contribution of g( y) to the 
expectation are large.2

Both simple Monte Carlo and importance sampling can 
be applied to the problem of evaluating the expectation of 
a function f (x*,z) over a posterior distribution on x* and 
z with which we began this section. Simple Monte Carlo 
would draw values of x* and z from the posterior distribu-
tion p(x*,z | x) directly. Importance sampling would generate 
from the surrogate distribution, q(x*,z), and then reweight 
those samples. One simple choice of q(x*,z) is the prior, 
p(x*,z). If we sample from the prior, the weight assigned to 
each sample is the ratio of the posterior to the prior
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where we use the assumption that p(x | x*,z)  p(x | x*). 
Substituting these weights into Equation 10 and canceling 
constants, we obtain
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where we assume that x*
j  and zj are drawn from p(x*,z). 

Because the weights on the samples are based on the like-
lihood, this approach is sometimes known as likelihood 
weighting.

Figure 1 provides a visual illustration of the approxi-
mation of Bayesian inference using importance sampling. 
Here, the goal is to recover the true value of a noisy obser-
vation x, which is done by computing the posterior expec-
tation E[x* | x]. This can be done by applying Equation 12 
with f (x*,z)  x*. First, exemplar values of x*

j  are drawn 
from prior distribution p(x*), producing the collection of 
sampled values shown in Figure 1A. Then, these exemplars 
are given weights proportional to the likelihood p(x | x*). In 
this case, the likelihood is a Gaussian distribution with its 

might be of interest, many problems of reasoning under 
uncertainty can be expressed in terms of expectations. For 
example, we could compute the posterior mean of x* by 
taking f (x*,z)  x* or calculate the posterior probability 
that z takes a particular value by taking f (x*,z) to be 1 
when z has that value and 0 otherwise.

Evaluating expectations over the posterior distribution 
can be challenging: It requires computing a posterior dis-
tribution, which is a hard problem in itself, because the 
integrals in Equation 7 can range over many values for 
x* and z. Consequently, Monte Carlo methods are often 
used to approximate expectations. Monte Carlo methods 
approximate the expectation of a function with respect to 
a probability distribution with the average of that func-
tion at points drawn from the distribution. Assume that 
we want to evaluate the expectation of a function, g( y), 
over the distribution p( y), Ep[g( y)] (where we use y as a 
generic random variable, instead of x* and z). Let  denote 
the value of this expectation. The law of large numbers 
justifies
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where the values of yj are all drawn from the distribution 
p( y).

This simple Monte Carlo method requires that we are 
able to generate samples from the distribution p( y). How-
ever, this is often not the case: It is quite common to en-
counter problems where p( y) is known at all points y but 
hard to sample from. If a surrogate distribution, q( y), is 
close to p( y) but easy to sample from, a form of Monte 
Carlo called importance sampling can be applied (see 
Neal, 1993, for a detailed introduction, and Robert & Ca-
sella, 1999, for a mathematical treatment). Manipulating 
the expression for the expectation of g gives
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The numerator and denominator of this expression are 
each expectations with respect to q( y). Applying simple 
Monte Carlo [with the same set of samples from q( y)] to 
both,
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where each value of yj is drawn from q( y). The values of 
the ratio p( yj) /q( yj) are importance weights on the sample 
values yj, correcting for having sampled from q( y) rather 
than from p( y). Intuitively, these weights capture how 
important each sampled value should be to calculating 
the expectation and give importance sampling its name. 
If the values of yj are sampled directly from p( y), they 
are given equal weight, each having an importance weight 
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overlap with the posterior, as in Figure 2B, few samples 
from the prior fall in the region with higher posterior prob-
ability, and these samples are given all the weight. The 
estimate is then solely dependent on these samples and is 
highly unstable. In intermediate cases, such as that shown 
in Figure 2C, in which the prior is a multimodal distribu-
tion and the posterior is one of the modes, stable results 
are obtained if enough samples are drawn from each of 
the modes. In cases in which there is not a close match 
between prior and posterior, a reasonably large number of 
samples needs to be drawn from the prior to ensure a good 
approximation.

Exemplar Models As Importance Samplers
Inspection of Equations 3 and 12 yields our main result: 

Exemplar models can be viewed as implementing a form of 
importance sampling. More formally, assume that X* is a 
set of m exemplar values of x* and associated information z 
drawn from the probability distribution p(x*,z), and fj  
f (x*

j ,zj) for some function f (x*,z). Then, the output of Equa-
tion 3 for an exemplar model with exemplar values of X* 
and similarity function s(x,x*) is an importance-sampling 
approximation to the expectation of f (x*,z) over the poste-
rior distribution on x* and z, as is given in Equation 12, if 
two conditions are fulfilled: The x*

j  and zj making up X* are 

mean at x*, and the same standard deviation for each value 
of x*. Since the Gaussian distribution is symmetric in its 
arguments (in this case, x and x*), the function used to as-
sign weights to each x*

j  is also Gaussian, with its mean at x, 
as is illustrated in Figure 1B. Finally, E[x* | x] is estimated 
by the weighted sum j x*

j p(x | x*
j ) normalized by j p(x | x*

j ). 
The posterior expectation moves the estimate of x* closer 
to the nearest mode of the prior distribution, as is shown in 
Figure 1C, appropriately combining prior knowledge with 
the noisy observation. This computation is straightforward, 
despite the complicated shape of the prior distribution.

The success of this importance-sampling scheme for ap-
proximating posterior expectations depends on how much 
probability mass the prior and posterior distribution share. 
This can be understood by considering how the variance 
of the importance weights depends on the relationship be-
tween the surrogate and target distributions. The variance 
of the importance weights determines the stability of the 
estimate produced by importance sampling: If only a few 
samples have high weights, the estimate of the expectation 
will be based only on those samples. Figure 2 provides 
some intuitions for this phenomenon. If the prior largely 
overlaps with the posterior, as in Figure 2A, the impor-
tance weights have little variance, and the estimate pro-
duced by the sampler is fairly stable. If the prior does not 

likelihood
p(x|x*)

prior p(x*)

noisy data x*

x*
j

A B E[x*|x]C

prior p(x*)

noisy data x* noisy data x*

prior p(x*)

likelihood
p(x|x*)

Figure 1. Approximating Bayesian inference by importance sampling using the prior p(x*) as the surrogate distribution. The true 
value of a stimulus x* is recovered from a noisy observation x. (A) Exemplar values x*

j  are sampled from the prior p(x*). Each bar marks 
the location of an exemplar, and the solid black line shows the prior. (B) The values of x*

j  are weighted by a Gaussian likelihood function 
p(x | x*

j ). Since the Gaussian is symmetric in x and x*, the weights assigned to the exemplars fall off as a Gaussian function around x, 
here plotted as a solid gray line. (C) The expectation is the weighted average of the x*

j. Compared with x, the estimate E[x*| x] is shifted 
toward a region that has higher probability under the prior.
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Figure 2. The variance of the importance weights in approximating posterior expectations depends on how much probability mass is 
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(B) nonoverlapping, or (C) partially overlapping. In these figures, the importance weights have been normalized to make it clear what 
proportion of the expectation depends on each sample. Greater overlap between prior and posterior results in lower variance in the 
importance weights, use of a larger set of samples, and consequently, a better approximation.
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specific problem. In the general case, an agent seeks to 
evaluate a hypothesis, h, in light of data, d, and does so by 
computing the posterior distribution p(h | d ) as specified 
by Equation 4. An expectation of a function f (h) over the 
posterior distribution can be approximated by sampling 
hypotheses from the prior, p(h), and weighting the sam-
ples by the likelihood, p(d | h). Formally, we have
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where hj is drawn from the prior, p(h).
Approximating Bayesian inference by importance 

sampling in this general case can also be interpreted as 
a kind of exemplar model, but here the stored exemplars 
correspond to hypotheses, rather than stimuli. As in a stan-
dard exemplar model, these hypotheses can be stored in 
memory as the consequence of previous learning events. 
Each hypothesis needs to be weighted by its likelihood, 
which no longer has a natural interpretation in terms of 
similarity but represents the degree to which a hypothesis 
is activated as a result of observing the data. Thus, all that 
is required for an agent to be able to approximate Bayesian 
inference in this way is to store hypotheses in memory as 
they are encountered and to activate those hypotheses in 
such a way that the hypotheses that best account for the 
data receive the most activation.

The theoretical properties of importance sampling sug-
gest that exemplar models of the kind considered in this 
and the preceding section may provide a way to approxi-
mate Bayesian inference in at least some cases. Specifi-
cally, we expect that importance sampling with a relatively 
small number of samples drawn from the prior should 
produce an accurate approximation of Bayesian inference 
in cases in which prior and posterior share a reasonable 
amount of probability mass. This can occur in cases in 
which the data are relatively uninformative, as a result 
of either small samples or high levels of noise. Despite 
this constraint, we anticipate that there will be a variety 
of applications in which exemplar models provide a good 
enough approximation to Bayesian inference to account 
for existing behavioral data.

In the remainder of the article, we present a series of 
simulations with which to evaluate exemplar models as 
a scheme for approximating Bayesian inference in five 
tasks. These tasks were selected to illustrate the breadth 
of this approach and to allow us to explore the effect 
of number of exemplars on performance, as well as the 
consequences of other variants on the basic importance-
 sampling scheme intended to reflect possible psycho-
logical or biological constraints. In general, we use the 
notation from the original source in describing these 
simulations. However, in each case, we formulate the un-
derlying problem to be solved by Bayesian inference and 
relate it back to either the specific or general problems of 
Bayesian inference that we have considered in establish-
ing the connection to exemplar models, identifying the 
correspondence between the relevant variables.

sampled from the prior p(x*,z), and the similarity function 
s(x,x*) is proportional to the likelihood p(x | x*). Returning 
to Figure 1, the x*

i  values are now exemplars, and the im-
portance weights reflect the amount of activation of those 
exemplars based on similarity to the observed data x.

The two conditions identified in the previous paragraph 
are crucial in establishing the connection between exem-
plar models and importance sampling. They are also rea-
sonably natural assumptions, if we assume that exemplars 
are stored in memory as the result of experience and that 
similarity functions are flexible and can vary from task to 
task. For most perceptual tasks of the kind that we have 
been considering here, the prior p(x*,z) represents the dis-
tribution over the states of the environment that an agent 
lives in. Thus, sampling x*

j  and zj from the prior is equiva-
lent to storing randomly generated events in memory. The 
second condition states that the similarity between x and 
x* corresponds to the likelihood function, subject to a ratio 
constant. This is straightforward when the stimulus x exists 
in the same space as x*, as when x is a noisy observation 
of x*. In this case, similarity functions are typically as-
sumed to be monotonically decreasing functions in space, 
such as exponentials or Gaussians, which map naturally 
to likelihood functions (Ashby & Alfonso-Reese, 1995; 
Nosofsky, 1986, 1990).

This connection between exemplar models and impor-
tance sampling provides an alternative rational justifica-
tion for exemplar models of categorization, as well as a 
more general motivation for these models. The justifica-
tion for exemplar models in terms of nonparametric den-
sity estimation (Ashby & Alfonso-Reese, 1995) provides 
a clear account of their relevance to categorization but 
does not explain why they are appropriate in other con-
texts, such as identification (Equation 1) or the general 
response rule given in Equation 3. In contrast, we can use 
importance sampling to provide a single explanation for 
many uses of exemplar models, such as categorization, 
identification, and function learning, viewing each as 
the result of approximating an expectation of a particular 
function f (x*,z) over the posterior distribution p(x*,z |x). 
For categorization, z is the category label, and the quantity 
of interest is p(z  c | x), the posterior probability that x 
belongs to category c. Hence, f (x*,z)  1 for all z  c and 
0 otherwise. For identification, the question is whether 
the observed x corresponds to a specific x*, so f (x*,z)  1 
for that x* and 0 otherwise, regardless of z. For function 
learning, z contains the value of the continuous variable 
associated with x*, and f (x*,z)  z. Similar analyses apply 
in other cases, with exemplar models providing a rational 
method for answering questions expressed as an expecta-
tion of a function of x* and z.

A General Scheme for  
Approximating Bayesian Inference

The equivalence between exemplar models and im-
portance sampling established in the previous section is 
focused on the specific problem of interpreting a noisy 
stimulus. However, the idea that importance sampling 
constitutes a psychologically plausible mechanism for ap-
proximating Bayesian inference generalizes beyond this 
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and optimally recover the phonetic detail of a speaker’s 
target production, marginalizing over all possible category 
labels.

The problem of inferring T from S is directly analogous 
to the problem of inferring a true stimulus x* from a noisy 
stimulus x that we considered when introducing impor-
tance sampling. To complete the analogy, the category c 
corresponds to the missing information z, and the expec-
tation E[T | S] corresponds to E[x* | x]. This expectation 
can thus be approximated by an importance sampler of 
the form given in Equation 12, with f (x*,z) x*. By the 
equivalence between importance sampling and exemplar 
models, this means that we can approximate the Bayesian 
solution to the problem of inferring T from S using an 
exemplar model.

An exemplar model derived through importance sam-
pling provides a psychologically plausible implementa-
tion of the model introduced by Feldman et al. (2009), 
allowing listeners to optimally recover speakers’ target 
productions using unlabeled exemplars. This imple-
mentation has two specific advantages over the original 
Bayesian formulation. First, there is evidence that infants 
as young as 6 months old show a language-specific per-
ceptual magnet effect, even though they are still forming 
phonetic categories (Kuhl et al., 1992), and importance 
sampling allows them to perform this computation with-
out any explicit category knowledge. Category labels are 
not required, and the distribution of exemplars need not 
follow any parametric distribution. Second, importance 
sampling directly parallels the neural network model of 
the perceptual magnet effect proposed by Guenther and 
Gjaja (1996), allowing the Bayesian model and the neural 
network model to be interpreted as convergent descrip-
tions of the same perceptual process.

To calculate the expected target production T using im-
portance sampling, listeners need to store their percepts 
of previously encountered speech sounds, giving them a 
sample from p(T ), the prior on target productions (Equa-
tion 14).3 Upon hearing a new speech sound, they weight 
each stored exemplar by its likelihood p(S |T ) (Equa-
tion 15) and take the weighted average of these exemplars 
to approximate the posterior mean as
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where Tj denotes the formant value of a stored target 
production.

We compared the performance of this exemplar model 
with multidimensional scaling data from Iverson and 
Kuhl (1995) on adult English speakers’ discrimination 
of 13 equally spaced stimuli in the / / and / / categories. 
The discrimination data were obtained through an AX task 
in which participants heard pairs of stimuli and pressed 
a button to indicate whether the stimuli were identical. 
Responses and reaction times were used in a multidimen-
sional scaling analysis to create a one-dimensional map 
of perceptual space, shown in Figure 3. The data show a 

SIMULATION 1 
The Perceptual Magnet Effect

Categorical perception of speech sounds was first dem-
onstrated by Liberman, Harris, Hoffman, and Griffith 
(1957), who showed that listeners’ discrimination of stop 
consonants was little better than would be predicted on the 
basis of categorization performance, with sharp discrimi-
nation peaks at category boundaries. Evidence has also 
been found in vowels for a perceptual magnet effect—
a language-specific shrinking of perceptual space specifi-
cally near category prototypes—presumably because of a 
perceptual bias toward category centers (Kuhl, Williams, 
Lacerda, Stevens, & Lindblom, 1992). However, percep-
tion of vowels differs from that of stop consonants in that 
it is continuous, rather than strictly categorical, with lis-
teners showing high levels of within-category discrimina-
tion (Fry, Abramson, Eimas, & Liberman, 1962). Because 
of the high level of within-category discriminability in 
vowels, the perceptual magnet effect has been difficult to 
capture through traditional labeling accounts of categori-
cal perception.

Feldman et al. (2009) argued that the perceptual mag-
net effect arises because listeners are trying to recover 
the phonetic detail (e.g., formant values) of a speaker’s 
target production from a noisy speech signal. Under this 
account, the listeners perform a Bayesian denoising pro-
cess, recovering the intended formant values of the noisy 
speech sounds that they hear. Speech sounds are assumed 
to belong to phonetic categories in the native language, 
and listeners can use their knowledge of these categories 
to guide their inferences of the speaker’s target produc-
tion. Because this account assumes that listeners are try-
ing to recover phonetic detail, it predicts a baseline level 
of within-category discrimination while still allowing cat-
egories to influence listeners’ perception.

The Bayesian model introduced by Feldman et al. (2009) 
assumes that speakers, in producing a speech sound, sam-
ple a phonetic value for their target production, T, from 
a Gaussian phonetic category, c, with category mean c 
and category variance 2

c. Listeners hear a speech sound S, 
which has been perturbed by articulatory, acoustic, and 
perceptual noise. This noisy speech sound S is normally 
distributed around the target production T with noise vari-
ance 2

S. The prior on target productions is therefore a mix-
ture of Gaussians representing the phonetic categories of 
the language,

 
p T p T c p c N T p cc c
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(14)

where N(T | c, 2
c) is the probability density at T, given a 

Gaussian distribution with mean c and variance 2
c. The 

likelihood function represents the noise process that cor-
rupts a target production T into a speech sound S, and is 
given by the Gaussian function representing speech signal 
noise,

 p(S |T )  N(S |T , 2
S ). (15)

Listeners hear the speech sound S and use Bayes’ rule to 
compute the posterior mean (i.e., the expectation E[T | S]) 
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preferences of a population of neurons come to mirror the 
distribution of speech sounds in the input. Upon hearing 
a speech sound, listeners recover a percept of that speech 
sound by taking a weighted average of firing preferences 
in the neural map. The weights, or neural activations, are 
determined by the similarity between a neuron’s firing 
preference and the speech sound heard. This perceptual 
mechanism implements an importance sampler: Firing 
preferences of individual neurons constitute samples from 
the prior, and the activation function plays the role of the 
likelihood. The activation function in the neural map dif-
fers from the Gaussian function assumed in the Bayesian 
model, but both implement the idea that exemplars with 
similar acoustic values should be weighted most highly. 
The correspondence between these two models suggests 
that Monte Carlo methods such as importance sampling 
may provide connections not just to psychological pro-
cesses, but also to the neural mechanisms that might sup-
port probabilistic computations. We return to this possibil-
ity in the General Discussion section.

SIMULATION 2 
The Universal Law of Generalization

In a celebrated article, Shepard (1987) showed that 
generalization gradients decrease exponentially with psy-
chological distance across many experimental situations. 

nonlinear mapping between acoustic space and perceptual 
space, with portions that are more nearly horizontal cor-
responding to areas in which perceptual space is shrunk 
relative to acoustic space. Sounds near phonetic category 
centers are closer together in perceptual space than sounds 
near category boundaries, despite being separated by equal 
psychophysical distances. We simulated the performance 
of exemplar models with 10 and 50 exemplars drawn from 
the prior, examining both the performance of individual 
simulated participants and the result aggregated across 
participants. The results of this simulation, shown with the 
multidimensional scaling data in Figure 3, suggest that a 
relatively small number of exemplars suffices to capture 
human performance in this perceptual task. Model per-
formance using 10 exemplars already demonstrates the 
desired effect, and with 50 exemplars, the model gives a 
precise approximation that closely mirrors the combined 
performance of the 18 participants in Iverson and Kuhl’s 
multidimensional scaling experiment.

In addition to giving a simple psychological mecha-
nism for approximating Bayesian inference in this task, 
importance sampling provides a link between the Bayes-
ian model and a previous account of the perceptual mag-
net effect. The exemplar model considered in this section 
is isomorphic to a neural mechanism proposed by Guen-
ther and Gjaja (1996) to create a bias toward category 
centers. In Guenther and Gjaja’s neural map, the firing 
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from a single hypothetical participant (open circles) and the middle 50% of hypothetical participants (solid lines) using 
an exemplar model in which perception is based on (A) 10 and (B) 50 exemplars. The labels / / and / / show the locations 
of category means in the model. Parameter values were those used by Feldman, Griffiths, and Morgan (2009).



EXEMPLAR MODELS AND BAYESIAN INFERENCE    451

tion that 0 is contained in some consequential region; and 
the function f (h) that we want the expectation of is the 
indicator function that takes the value 1 if x is in the con-
sequential region and 0 otherwise. The approximation to 
this expectation is then given by Equation 13.

The importance-sampling approximation to Equa-
tion 17 is thus obtained by assuming that a set of hy-
potheses parameterized by centers and sizes (cj,sj) are 
sampled from the prior and activated by the likelihood 
1[0 (cj,sj)]/m(sj), to give
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The numerator simplifies the product of the indicator 
function that we want the expectation of, 1[x (cj,sj)], 
with that in the likelihood, 1[0 (cj,sj)], to a single in-
dicator function that takes the value 1 when both x and 0 
are in the interval (cj,sj). Since c and s are independent 
under the prior, we can also draw m samples of each and 
then take the sum over all m2 pairs of c and s values, re-
ducing the number of samples that need to be taken from 
the prior.

The results of using this approximation with several 
different priors on the size of the consequential region 
are shown in Figure 4. The different priors that are used 
are those considered by Shepard (1987) in his original 
analysis of generalization behavior. The figure shows the 
generalization gradient—the probability of generalizing 
from 0 to x as a function of psychological distance—for 
these six prior distributions, together with approximations 
that vary the number of sampled hypotheses. In the one-
dimensional case, the psychological distance between 0 
and x is just the value of x (taking 0 as the origin), which 
is shown on the horizontal axis of each plot in the figure. 
Relatively small numbers of sampled hypotheses (20 and 
100) are sufficient to produce reasonable approximations 
to the generalization gradients associated with all of these 
prior distributions.

SIMULATION 3 
Predicting the Future

Remembering past events, like the local temperature 
in March in previous years or the duration of red traffic 
lights, can help us make good predictions in everyday life. 
Griffiths and Tenenbaum (2006) studied people’s predic-
tions about a variety of everyday events, including the 
grosses of movies and the time to bake a cake, and found 
that these predictions corresponded strikingly well with 
the actual distributions of these quantities. In each case, 
people were asked to predict the total extent or duration 
of a quantity on the basis of its current value, such as how 
much money a movie would make on the basis of how 
much it has made so far or how long a cake would be in the 
oven on the basis of how long it has currently been in the 

He then gave a probabilistic explanation for this phenom-
enon that was later formulated in a Bayesian framework 
(Myung & Shepard, 1996; Tenenbaum & Griffiths, 2001). 
Here, we use the notation originally introduced by Shep-
ard (1987). Assume that we observe a stimulus 0 that has 
a certain property (or consequence). What is the probabil-
ity that a test stimulus x has the same property? Shepard 
(1987) analyzed this problem by assuming that 0 and x 
were points in a psychological space, and the set of stimuli 
sharing a property defined a consequential region in the 
space. We know that the original stimulus 0 belongs to this 
region, and we want to evaluate whether the test stimulus x 
does. We thus want to compute the probability that the x 
falls into an unknown consequential region containing 0.

The first question that we can answer is which con-
sequential regions 0 could have come from. This is a 
problem of Bayesian inference, in which consequential 
regions are hypotheses and observing that 0 belongs to 
the region constitutes data. In the case of one-dimensional 
generalization, we might take consequential regions to be 
intervals along that dimension, parameterized by their 
center, c, and size, s. We then want to compute the poste-
rior distribution on intervals (c,s), given the information 
that 0 (c,s). This can be done by defining a prior p(c,s) 
and likelihood p(0 | c,s). Shepard (1987) assumed that all 
locations of consequential regions are equally probable, 
so the distribution of c is uniform, and the prior distribu-
tion p(c,s) is specified purely in terms of a distribution on 
sizes, p(s). The likelihood is obtained by assuming that 0 
is sampled uniformly at random from the interval given by 
(c,s), resulting in p(0 | c,s)  1/m(s) for all intervals (c,s) 
containing 0, where m(s) is a measure of the volume of a 
region of size s (in one dimension, the length of the in-
terval), and p(0 | c,s)  0 for all other intervals. Prior and 
likelihood can then be combined as in Equation 4 to yield 
a posterior distribution over consequential regions.

With a posterior distribution over consequential regions 
in hand, the probability that x belongs to one of the conse-
quential regions containing 0 is obtained by summing the 
posterior probabilities of the regions containing x. This 
can be expressed as the integral

 p(x | 0)  s,c 1[x (c,s)] p(c,s | 0) ds dc, (17)

where 1[x (c,s)] is an indicator function that equals 1 if 
x is in the region parameterized by (c,s) and 0 otherwise. 
This integral can also be viewed as an expectation of the 
indicator function 1[x (c,s)] over the posterior distribu-
tion p(c,s | 0).

By viewing Equation 17 as an expectation, it becomes 
clear that it can be approximated by importance sampling 
and, thus, by an exemplar model. Identifying a consequen-
tial region does not match the form of the simple stimulus 
denoising problem that we used in demonstrating equiva-
lence between importance sampling and exemplar mod-
els, requiring us to use the more general idea that Bayes-
ian inference can be approximated by storing hypotheses 
sampled from the prior and activating them on the basis of 
consistency with data. In this case, the hypotheses, h, are 
consequential regions; the data, d, consist of the observa-
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EXEMPLAR MODELS AND BAYESIAN INFERENCE    453

tion process into two steps, with the first being generating 
a set of values of ttotal from memory and the second being 
assigning those values of ttotal greater than t a likelihood 
of 1/ttotal and normalizing. In our simulations, we consid-
ered limitations that could apply to either of these steps. In 
the memory-limited case, the number of exemplars gener-
ated from memory is fixed. In the computation-limited 
case, the bottleneck is the number of exemplars that can 
be processed simultaneously, placing a constraint on the 
number of exemplars such that ttotal  t. In this case, we 
assume that exemplars are generated from memory until 
they reach this upper limit.

Figure 5 shows the results of applying these differ-
ent approximation schemes to predicting the future task, 
varying the number of exemplars. We examined perfor-
mance across seven prior distributions—corresponding to 
the baking times of cakes, human life spans, the grosses 
of movies, the durations of the reigns of pharaohs, the 
lengths of poems, the numbers of terms in the United 
States House of Representatives, and the runtimes of 
movies—and for 5, 10, and 15 exemplars. The prior dis-
tributions were those used by Griffiths and Tenenbaum 
(2006), who collected data from online databases for each 
of these different quantities. In each case, we simulated 
the performance of 50 participants using the appropriate 
number of exemplars sampled directly from the prior (for 
the memory-limited case) or sampled from the prior but 
constrained to be consistent with the observed value of t 
(for the computation-limited case). In the memory-limited 
case, if none of the exemplars is larger than the observa-
tion, the observed value t is taken as the only exemplar, 
which results in t*  t. The figure also shows the quality 
of the approximation produced by directly sampling ex-
emplars from the posterior distribution, rather than gen-
erating from the prior. For each approximation scheme, 
50 simulated participants’ responses were generated. The 
plot markers indicate the median and the 68% confidence 
interval on the median (i.e., the 16th and 84th percentiles 
of the sampling distribution), computed with a bootstrap 
with 1,000 samples drawn from the responses of these 
participants.

For a quantitative measure of the success of the ap-
proximation, we computed the sum of the absolute value 
of the deviations for each of the median results shown in 
Figure 5 (t*ML, t*CL, t*SA for memory-limited, computation-
limited, and sampling, respectively) to both the true func-
tion (t*Bayes) and to the median human responses (t*human). 
These error scores were then normalized by the difference 
in t*

Bayes for the lowest and highest values of t for each 
prior, in order to compensate for the different scales of 
these quantities, and then summed across priors to pro-
duce the scores shown in Table 1. This quantitative analy-
sis confirmed the trends evident from Figure 5. Approxi-
mation performance improved with more exemplars but 
was already fairly good with only five exemplars when 
compared against the performance of the full Bayesian 
model considered by Griffiths and Tenenbaum (2006). 
The memory-limited case tended to perform worse than 
the other approximations for a given number of exem-

oven. Predicting the future in this way can be analyzed as 
Bayesian inference, and approximated using an exemplar 
model.

As it was formulated in Griffiths and Tenenbaum 
(2006), the statistical problem that people solved is infer-
ring the total duration or extent of a quantity, ttotal, from 
its current duration or extent, t. The goal is to compute 
the posterior median of ttotal given t. Unlike the mean, the 
median gives a robust estimate of ttotal when the posterior 
distribution is skewed, which is the case for many of these 
everyday quantities. The posterior median t* is defined as 
the value such that p(ttotal  t* | t)  .5, where the posterior 
distribution is obtained by applying Bayes’ rule with an 
appropriate prior and likelihood. The prior p(ttotal) depends 
on the distribution of the everyday quantity in question, 
with temperatures and traffic lights being associated with 
different distributions. As in the previous example, the 
likelihood is obtained by assuming that the phenomenon 
is encountered at a random point drawn uniformly from 
the interval between 0 and ttotal, with p(t | ttotal)  1/ ttotal 
for all values such that ttotal  t.

Making correct predictions about everyday events 
requires knowing the prior distributions of the relevant 
quantities—the grosses of movies, the time taken to bake 
a cake, and so forth. Although it is unlikely that we store 
these distributions explicitly in memory, the posterior me-
dian can be approximated using stored exemplars that are 
sampled from the prior p(ttotal) using Equation 12. The 
posterior probability that a value of ttotal is greater than t* 
can be formulated as an expectation,

 p(ttotal  t* | t)  E[1(ttotal  t*) | t], (19)

where 1(ttotal  t*) is an indicator function taking the 
value 1 when its argument is true and 0 otherwise, as in 
the previous example. This problem fits the schema for 
the general approximation of Bayesian inference given by 
Equation 13, with the hypotheses h being values of ttotal, 
the data d being the observation t, and the function of in-
terest f (h) being the indicator function 1(ttotal  t*). Con-
sequently, the expectation given in Equation 19 can be ap-
proximated using an exemplar model in which exemplars 
ttotal, j are sampled from the prior p(ttotal) and activated by 
the likelihood 1/ttotal if they are greater than t. This gives 
the approximation
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The approximate median of the posterior distribution is the 
exemplar ttotal, j that has p(ttotal  ttotal, j | t) closest to .5.

Considering limitations in memory capacity and com-
putational power, we conducted two sets of simulations. In 
predicting the future, only values of ttotal that are greater 
than the observed value of t are plausible, with all other 
values having a likelihood of 0. Consequently, sampling 
directly from the prior can be inefficient, with many sam-
ples being discarded. We can thus break the approxima-
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knowledge of the appropriate prior, such as a handful of 
samples from that distribution. The original model con-
sidered by Mozer et al., which estimates t* as the mini-
mum of the set of exemplars greater than t, does not have 
an interpretation as importance sampling and degener-
ates, rather than improving, as an approximation as the 
number of exemplars increases. However, one of the vari-
ants on this model, called GTkGuess in their article, is 
equivalent to our memory-limited importance-sampling 
approximation, provided that at least one sampled exem-

plars, since some of the exemplars generated from the 
prior would not enter into the approximation for the rea-
sons detailed above.

The question of whether approximations based on a 
small number of exemplars might account for the results 
of Griffiths and Tenenbaum (2006) was independently 
raised by Mozer, Pashler, and Homaei (2008), who ar-
gued that a close correspondence to the posterior median 
could be produced by aggregating responses across a 
large number of participants who each had only limited 
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response across a population of 50 simulated participants. Error bars show a 68% confidence interval computed by 1,000-sample 
bootstrap.
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that correspond to continuous quantities (formant values, 
the size of consequential regions, the extent or duration 
of everyday phenomena). However, Bayesian inference is 
also carried out with hypothesis spaces in which each hy-
pothesis is discrete and qualitatively different from other 
hypotheses. The number game of Tenenbaum (1999; 
Tenenbaum & Griffiths, 2001) is a good example. This 
game is formulated as follows: Given natural numbers 
from 1 to 100, if a number or set of numbers x belongs 
to an unknown set C what is the probability that another 
number y also belongs to the same set? For example, if 
the numbers {59, 60, 61, 62} all belong to an unknown 
set, what is the probability that 64 belongs to that set? 
What about 16?

The problem of determining whether y belongs to the 
same set as x is another instance of the problem of gen-
eralization and can be answered using a similar Bayesian 
inference. Our data are the knowledge that x belongs to the 
set C, and our hypotheses concern the nature of C. Since C 
is unknown, we should sum over all possible hypotheses h 
in the hypothesis space H  when evaluating whether y be-
longs to C—that is,

 

p y C x p y C h p h x

y h p h x
h H

h H

( | ) ( | ) ( | )

( ) ( | )1 ,
 

(21)

where 1( y h) is the indicator function of the statement 
y h, taking value 1 if this is true and 0 otherwise. In the 
analysis presented by Tenenbaum (1999; Tenenbaum & 
Griffiths, 2001), the likelihood p(x | h) is proportional to 
the inverse of the size of h (the size principle), being 1/|h| 
if x h and 0 otherwise. This corresponds to the uniform 
sampling assumption made in the previous two examples. 
A hypothesis space H  containing a total of 6,412 hypoth-
eses was used, including intervals of numbers spanning a 
certain range, even numbers, odd numbers, primes, and 
cubes.

The number game is challenging, because any given 
number (say, x  8) is consistent with many hypotheses 
(not only intervals containing 8, but also hypotheses such 
as even numbers, cubic numbers, numbers with final 
digit 8, etc.). Interestingly, the responses of participants 
can be captured quite accurately with this Bayesian model 
(Figure 6A). However, this involves instantiating all 6,412 
hypotheses, calculating the likelihood for each rule, and 
integrating over the product of the prior and likelihood. 
Such computations are challenging, so a mechanism that 
approximates the exact solution is desirable. Fortunately, 
the probability computed in Equation 21 is an expecta-
tion and can be approximated by importance sampling and 
thus by an exemplar model.

The number game is another instance of a problem that 
requires the more general approximation scheme summa-
rized in Equation 13. The hypotheses h are candidates for 
the identity of the concept C, the data d are the observation 
that x belongs to C, and the function f (h) that we want 
to evaluate the expectation of is the indicator function 
1( y h). We can approximate this expectation by sam-

plar is greater than t. Consistent with the results presented 
here, Mozer et al. demonstrated that this model produced 
a good correspondence with the results of Griffiths and 
Tenenbaum (2006) with only a small number of exem-
plars, considering both aggregate performance and the 
amount of variability produced by different approxima-
tion schemes.

One important difference between the analysis we pre-
sent here and that of Mozer et al. (2008) is that we do not 
necessarily view using an exemplar model to approximate 
Bayesian inference as being related to having limited prior 
knowledge. For Mozer et al., the exemplars used in ap-
proximating Bayesian inference were taken to represent 
all that a given individual knew about a phenomenon. 
Since each participant in Griffiths and Tenenbaum (2006) 
made only a single judgment about each phenomenon, it 
was possible to accurately model the aggregate judgments 
by making this assumption. However, another possibility 
that is equally consistent with the data is that each individ-
ual has a large pool of exemplars available, and samples 
only a small number in making a given prediction. In this 
case, a small number of exemplars is used in order to make 
the Bayesian computation efficient, not because they rep-
resent the complete knowledge of the learner. These two 
possibilities can be differentiated by conducting an ex-
periment in which individuals make multiple judgments 
about a given phenomenon. If the participants have access 
to only a small number of exemplars, they produce very 
similar responses for a range of values of t, whereas if 
they are sampling different sets of exemplars on differ-
ent trials, their responses should increase as a function 
of t in a way that is consistent with applying Bayesian 
inference. Lewandowsky, Griffiths, and Kalish (2009) 
conducted such an experiment and found support for the 
latter hypothesis.

SIMULATION 4 
Concept Learning

The simulations that we have presented so far corre-
spond to cases in which Bayesian inference is performed 
with a hypothesis space that contains only hypotheses 

Table 1 
Comparison of Approximation Schemes With  

Exact Bayes and Human Data

Number of Exemplars

 Error Score  5  10  50  

|t*ML  t*Bayes| 4.2003 2.3333 1.2366
|t*ML t*human| 8.3023 7.0858 6.6757
|t*CL  t*Bayes| 3.5601 1.8620 1.0798
|t*CL t*human| 7.8566 6.8283 6.1023
|t*SA  t*Bayes| 1.4706 1.7449 2.3050
|t*SA t*human| 6.8043 6.0633 6.5741

Note—Subscripts correspond to memory-limited (ML), computation-
limited (CL), sampling from the posterior (SA), and true Bayesian and 
human estimates of t*. Error scores were summed across values of t for 
each prior, normalized as described in the text, and then summed across 
priors. The error score for the full Bayesian model, |t*human t*Bayes|, 
was 6.2626.
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baseline variability in the human responses that is not cap-
tured by the model, especially for x  {60, 52, 57, 55} and 
x  {60, 80, 10, 30}. After looking in detail at individual 
trials, we found that the high baseline variability was partly 
due to inconsistent use of the rating scale (which ranged 
from 1 to 7) to express low probability. For example, for 
x  {60, 52, 57, 55}, 2 out of 8 participants gave minimum 
responses of 2 out of 7, whereas the other 6 used the full 
range and had minimum responses of 1. A second point 
of difference between the human and simulated responses 
is in the use of the square numbers hypotheses with x  
{81, 25, 4, 36}. The model displays greater variability than 
that seen among human participants when generalizing 
to other squares from this set. This is due to the fact that 
the memory-limited exemplar model is not guaranteed to 
sample the square numbers rule in every trial, whereas the 
educated participants used by Tenenbaum (1999) consis-
tently recognized this mathematical rule.

For a closer look at the way in which variability mani-
fests in the model, we examined whether it was possible to 
find patterns of predictions that matched the behavior of 
individual participants. Figure 7B shows some close cor-
respondences between human and simulated participants. 
Each row shows the responses of a different human par-
ticipant, with the closest matching responses chosen from 
the 100 simulated participants used in our analysis of vari-
ability. In each case, the correlation between human and 
simulated participants was greater than r  .95, and many 
of the details of the responses are in correspondence. For 
example, in the case of x  {60}, this individual evaluated 
multiple hypotheses, such as intervals, multiples of 10, 
and multiples of 6, and a similar pattern appears in the 
model predictions.

SIMULATION 5 
Category Effects on Reconstruction  

From Memory

Retrieving or reconstructing items from memory can 
also be formulated as a problem of statistical inference, 
with Bayes’ rule being used to evaluate which item in 
memory might correspond to a particular cue (Anderson 
& Milson, 1989; Hemmer & Steyvers, 2009; Huttenlocher 
et al., 2000; Shiffrin & Steyvers, 1997). Examining how 
this kind of probabilistic inference can be approximated 
using an exemplar model has the potential to be particu-
larly informative, since exemplar models themselves are 
based on memory. This creates an opportunity to consider 
how exemplars come to be stored in memory and what 
role statistical inference plays in this process.

We will focus on the problem of reconstructing items 
from memory and, in particular, on a study by Huttenlocher 
et al. (2000, Experiment 1), in which they examined how 
the relative frequencies of items within a category can be 
used to improve accuracy in reproducing stimuli. In this 
study, participants learned the distribution associated with 
a novel one-dimensional stimulus (the width of a sche-
matic fish). The form of this distribution varied across 
participants. Some of the participants learned a single 
category, which was associated with either a uniform or 

pling hypotheses hj from the prior p(h) and reweighting 
those hypotheses by the likelihood p(x | h), with

 

p y C x

y h x h
h

x h
h

j j
jj

j
jj

( | )

,
| |

| |

,

1

1

1

1

 

(22)

meaning that p( y C | x) is just the ratio of the summed 
likelihoods of the hypotheses stored in memory that gen-
erate y to the summed likelihoods of all hypotheses stored 
in memory.

Figures 6B and 6C show generalization responses for 
different sets of numbers, x, for a single simulated par-
ticipant. As in Simulation 3, we conducted simulations 
for both memory- and computation-limited approxima-
tions, with the latter case corresponding to generating 
sample hypotheses h from the prior until a fixed number 
consistent with x had been generated. In the simulations, 
we used the same parameters as those in the full Bayesian 
model of Tenenbaum and Griffiths (2001), except that the 
likelihood function assigns a small nonzero probability to 
all natural numbers from 1 to 100 for every hypothesis to 
ensure numerical stability. The results suggest that a small 
number of exemplars (20 and 50 for the computation-
 limited and the memory-limited approximations, respec-
tively) is sufficient to account for human performance. 
The memory-limited case needs more exemplars, because 
not all exemplars are qualified hypotheses. Therefore, the 
effective number of exemplars, which determines the 
computational load, is small. The consistency of these re-
sults with the human judgments indicates that exemplar 
models provide a plausible mechanism that relies on rea-
sonable memory and computational resources and can be 
used with highly structured hypothesis spaces.

To further evaluate the model, we compared the vari-
ance of the predictions produced by importance sampling 
with the variability among individuals on this task. Since 
the model predictions rely on a sample from the prior, 
there can be variability between simulated participants 
that can be compared with the variability among human 
participants. Moreover, we should expect to see specific 
simulated participants who produced behavior similar to 
that of specific human participants. Figure 7A shows the 
variability among the 8 participants analyzed by Tenen-
baum (1999), with the variability among 100 simulated 
participants (using the memory-limited case). Both human 
and simulated participants exhibit significant variability 
in their responses, particularly for the stimulus x  {60}. 
The patterns of responses also share some key features. 
For x  {60, 52, 57, 55}, since there is no specific nu-
meric rule describing the set, most plausible hypotheses 
are intervals containing x. Therefore, we expect higher 
variability near the boundary of the set (i.e., less than 52 
or greater than 60) and lower variability within the set. 
For x  {60, 80, 10, 30}, high variability in generalization 
to multiples of 5 and 10 is observed in both human and 
simulated participants.

The variability seen in the human and simulated partici-
pants disagree in two respects. First, there is significant 
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of this study in which we used a variant on the standard 
exemplar model. The reconstruction of the first stimulus 
seen by each simulated participant was taken to be exactly 
equal to that stimulus. Each subsequent stimulus was re-
constructed using an exemplar model with the previous 
n stimuli as exemplars (or all stimuli, if fewer than n had 
been observed), including the observed value of the cur-
rent stimulus. Following Huttenlocher et al. (2000), the 
likelihood p(x | x* ) was taken to be a normal distribution 
with mean x* and variance 2. The resulting model has two 
parameters: the noise level 2 and the memory capacity n. 
Our simulations varied these two parameters, with n  {1, 
2, 5, 10, } and   {1, . . . , 10} pixels.4

Figure 8 shows the results of these simulations. In each 
case, we plot the bias in reconstruction for stimuli of dif-
ferent widths, defined as the difference between the width 
of the reconstruction and the width of the stimulus. In gen-
eral, stimuli that are smaller than the mean of a category 
show a positive bias, and stimuli that are larger show a 
negative bias, consistent with reconstructions moving to-
ward the mean of each category. This effect comes out 
in all of our models, being the basic prediction resulting 
from a Bayesian analysis of this problem. However, the 
results also show how the exemplar models capture some 
subtle characteristics of the data. For example, in the nor-
mal prior condition (the middle row of the figure), a full 
Bayesian model would predict that bias is a linear function 
of fish width. This prediction is quite clearly reflected in 
the results for n  , which most closely approximates 
exact Bayesian inference. In contrast, both the human data 
and the models with smaller values of n show a nonlinear 
function, with bias reduced for more extreme stimuli. To 
understand this effect, note that the current observation, x, 
is always included as an exemplar in producing the re-
construction of x*. Thus, when x takes an extreme value 
lying at the tails of the prior, it is often overweighted, since 
recent observations are unlikely to lie in proximity to this 
extreme value. In this case, the reconstruction of x* relies 
more on x itself, resulting in smaller bias.

GENERAL DISCUSSION

The formal correspondence that we have shown to 
exist between exemplar models and importance sampling 
suggests a way to solve the computationally challenging 
problem of probabilistic inference using a common com-
putational model of psychological processes. Our five 
simulations illustrate how this approach can be applied 
in a range of settings in which probabilistic models have 
previously been proposed. Simulation 1 showed that ex-
emplar models can be used to perform Bayesian inference 
for a simple speech perception problem, providing an ac-
count of the perceptual magnet effect that does not require 
parametric assumptions about the distribution of speech 
sounds associated with phonetic categories or any form of 
learning of these distributions. Simulation 2 demonstrated 
that a similar approach could approximate the predictions 
of Shepard’s (1987) classic analysis of generalization. In 
Simulation 3, we examined how exemplar models could 

a Gaussian distribution on fish width. Other participants 
learned two categories, each of which was associated 
with one half of the uniform distribution used in the one-
 category case (the categories thus corresponded to slender 
and fat fish). During training, the participants were briefly 
shown a stimulus and then were asked to reproduce that 
stimulus from memory (having been provided with its cat-
egory label). Reconstructions were produced by adjusting 
the size of a schematic fish until the participants felt that 
they had matched the size of the original stimulus.

Reconstructing a stimulus from memory can be ana-
lyzed as a Bayesian inference. Returning to the very first 
example of Bayesian inference that we considered in the 
article, we might assume that the observed stimulus x is 
taken as a noisily perceived instance of some true stimulus 
x*, with the noise process described by the distribution 
p(x | x*). The prior distribution on x* is provided by the 
category c, which is associated with a distribution p(x* |c). 
The best reconstruction of x*, in the sense of minimizing 
the squared error between the reconstruction and the true 
value, is the posterior expectation of x*, given x and c,

 E[x* | x,c]  x*p(x* | x,c) dx*, (23)

where the posterior distribution p(x* | x,c) is calculated 
using Bayes’ rule. Huttenlocher et al. (2000) explicitly 
tested this model of reconstruction from memory, arguing 
that using category information to guide reconstruction 
should increase accuracy.

The problem of reconstruction from memory is of ex-
actly the same form as the stimulus-denoising problem 
that we used to demonstrate the equivalence between im-
portance sampling and exemplar models. The expectation 
in Equation 23 can be approximated by storing a set of ex-
emplars x*

j  in memory, sampled from the prior p(x* | c), and 
then activating those exemplars in proportion to the likeli-
hood p(x | x* ). Huttenlocher et al. (2000) assumed that the 
likelihood was a Gaussian distribution with a mean at x* 
and explored several different prior distributions p(x* | c). 
In each case, the Bayesian inference required to recon-
struct a stimulus from memory can be approximated using 
an exemplar model of the form specified in Equation 12.

Although this analysis of reconstruction from memory 
is similar to that for the perceptual magnet effect, there are 
two important differences. First, category labels are given 
explicitly in the case of reconstruction but are unknown 
in the perceptual magnet effect. Second, and perhaps 
more important, the experiments conducted to explore 
these phenomena differ in how the relevant priors were 
acquired. The prior distribution on speech sounds was 
established before the experiment exploring the percep-
tual magnet effect, as a result of learning the distributions 
associated with these sounds in English. In contrast, the 
prior being used to reconstruct the stimuli in the experi-
ment conducted by Huttenlocher et al. (2000) is learned 
on the fly, through the process of forming the reconstruc-
tions. The reconstruction produced on one trial might thus 
play the role of a stored exemplar on a later trial.

To explore the effects of incrementally building a set of 
exemplars over time, we conducted a series of simulations 
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One way to extend the range of problems for which ex-
emplar models yield approximations to Bayesian inference 
might be to remove the assumption that the exemplars are 
drawn from the prior. Although we have focused on the 
equivalence between Equations 3 and 12, the exemplar-
based computations represented by Equation 3 are also 
equivalent to those used in the more general formulation 
of the importance sampler in Equation 10. Thus, exem-
plar models can be used to approximate expectations over 
a distribution p(x* | x) when the exemplars are generated 
from any distribution q(x*), provided that the similarity 
function used to activate each exemplar is proportional to 
p(x* | x) /q(x*). When q(x*)  p(x*), we obtain the class of 
models analyzed in this article. However, relaxing this as-
sumption broadens the range of proposal distributions that 
can be used and may make it possible for exemplar models 
to produce efficient approximations to Bayesian inference 
across a wider range of problems.

Approximating Dynamic Inferences
A second limitation of the approach that we have pre-

sented in this article is that it is only appropriate in cases 
in which the hypothesis space is static, with the same hy-
potheses being used in multiple inferences. The simple 
strategy of using a stored set of hypotheses does not work 
in cases in which the hypothesis space itself changes 
over time, and results in a particularly poor approxima-
tion when that hypothesis space grows with the number 
of observations. One example in which such a problem 
arises is dividing a set of observations into clusters, as in 
Anderson’s (1990, 1991) rational model of categorization. 
In this model, the hypothesis space consists of all possible 
clusterings of a set of observations. This hypothesis space 
has to be revised with each new observation, reflecting all 
of the ways in which that observation could be added to 
the existing clusters. Not only does the hypothesis space 
change over time, but it also grows super-exponentially in 
the number of observations.

Although exemplar models are not appropriate for this 
situation, they are closely related to another Monte Carlo 
method that can be extremely effective for approximating 
dynamic inferences. This method, known as particle fil-
tering, translates importance sampling into a dynamic set-
ting. The basic idea is that the posterior distribution over 
hypotheses after n observations should be closely related 
to the posterior distribution after n 1 observations, in the 
same way that the prior and posterior were closely related 
in the examples that we considered above. The posterior 
after n 1 observations can thus be approximated by im-
portance sampling, using a proposal distribution based on 
the posterior after n observations. This idea can be applied 
recursively: Although we may not know the posterior after 
n observations, we can approximate this by importance 
sampling too, using a proposal distribution based on the 
posterior after n 1 observations, and so on. A particle 
filter thus consists of a set of samples that evolves through 
time, with samples from the posterior distribution after n 
observations being used to generate samples from the pos-
terior distribution after n 1 observations.

be used in predicting the future. In Simulation 4, we ex-
tended our analysis to a case in which hypotheses repre-
sent discrete, qualitatively different accounts of observed 
data. Finally, in Simulation 5, we considered how exem-
plars might be recruited in the course of an experiment 
and showed that this approach could account for the re-
sults of a study of reconstruction from memory.

In the remainder of the article, we discuss three issues 
raised by these results. First, although our simulations 
show that exemplar models can be used to approximate 
Bayesian inference in a range of settings, this approach 
will not provide good approximations in all cases. The 
relationship with importance sampling makes it possible 
to clearly state in which cases we expect this to be an ef-
fective approximation scheme. Second, none of the cases 
that we consider involve any kind of dynamics, with the 
hypothesis space remaining static over time. Since some 
cognitive problems require dealing with hypothesis spaces 
that change in size and content over time, we outline how 
our approach can be extended to accommodate this situ-
ation. Finally, we consider some of the broader implica-
tions of the correspondence between exemplar models 
and importance sampling that we have identified in this 
article, viewing this result as just one instance of a more 
general approach toward connecting rational models of 
cognition with psychological processes.

The Limits of Importance Sampling
Although importance sampling is widely used to ap-

proximate probabilistic inference, it is not appropriate for 
all problems. As was discussed above, the quality of the 
approximation provided by importance sampling depends 
on the relationship between the target distribution p( y), 
the function g( y) for which we want to find an expected 
value, and the proposal distribution q( y). In particular, we 
want the proposal distribution to assign high probability 
to values of y for which both p( y) and the contribution of 
g( y) to the expectation are large, and low probability to 
other values of y (see note 2 for details). Otherwise, sam-
ples from the proposal distribution may not correspond to 
values of y that make a large contribution to the expecta-
tion of g( y).

The relationship between importance sampling and 
exemplar models that we have identified relies on the 
assumption that the exemplars are drawn from the prior 
(i.e., that the prior is used as a proposal distribution). This 
makes it easy to identify the limitations of this approach: 
Bayesian inference can only be approximated effectively 
using the kind of exemplar models that we have consid-
ered in this article when there is a reasonably close match 
between the posterior and the prior. This will be the case 
when the data are relatively uninformative, meaning that 
the posterior does not deviate significantly from the prior. 
Data can be uninformative because of small sample size, 
or because of a high level of uncertainty (as reflected in 
the likelihood). All of the settings that we explored in our 
simulations met this criterion, requiring an inference to 
be made on the basis of only one or at most a handful of 
stimuli.



462    SHI, GRIFFITHS, FELDMAN, AND SANBORN

process model. Such rational process models push the 
principle of rationality embodied in existing rational 
models of cognition a level deeper. Rational models of 
cognition apply the principle of rationality—the assump-
tion that optimal solutions are informative about human 
behavior—at the computational level. Rational process 
models apply a similar principle at the level of represen-
tation and algorithm, assuming that the psychological 
processes that are used to approximate probabilistic in-
ference represent efficient solutions to this problem. As 
was noted above, particle filters are another instance of a 
rational process model, but the great diversity of efficient 
approximation algorithms for probabilistic inference sug-
gests that there may be many other psychologically plau-
sible mechanisms for solving this problem that are still to 
be discovered.

In providing a connection between abstract probabilistic 
models of cognition and psychological processes, rational 
process models also have the potential to help us under-
stand the neural mechanisms that underlie probabilistic 
computation. For example, our analysis of the perceptual 
magnet effect revealed that approximating Bayesian infer-
ence by importance sampling resulted in a model that was 
extremely similar to a neural network model proposed by 
Guenther and Gjaja (1996). This connection is valuable in 
two ways: It shows how such a neural network could be 
used to approximate Bayesian inference, and it provides a 
high-level explanation of why this neural mechanism pro-
duces the perceptual magnet effect. We anticipate that sim-
ilar connections will exist in other domains, particularly 
given the close correspondence between exemplar models 
and neural network architectures such as radial basis func-
tion networks (Kruschke, 1992; Shi & Griffiths, 2009).

CONCLUSION

We have presented both theoretical results and simu-
lations showing that exemplar models provide a simple, 
psychologically plausible mechanism for performing at 
least some kinds of Bayesian inference. Our theoretical 
results indicate that exemplar models can be interpreted 
as a form of importance sampling and can thus implement 
an approximation of Bayesian inference. Our simulations 
demonstrate that this approach produces predictions that 
correspond reasonably well with human behavior and that 
relatively few exemplars are needed to provide a good ap-
proximation to the true Bayesian solution in at least five 
settings.

The approach that we have taken in this article repre-
sents one way of addressing questions about the mecha-
nisms that could support probabilistic inference. Our re-
sults suggest that exemplar models are not simply process 
models, but rational process models—an effective and 
psychologically plausible scheme for approximating sta-
tistical inference. This approach pushes the principle of 
optimality that underlies probabilistic models down to the 
level of mechanism and suggests a general strategy for 
explaining how people perform Bayesian inference: Look 
for connections between psychological process models 

Particle filters share with the models that we have dis-
cussed in this article the idea of approximating a probabil-
ity distribution with a small number of samples. However, 
the models that we have considered all assume that these 
samples are fixed exemplars stored in memory, whereas 
a particle filter dynamically constructs a set of samples 
in response to the information provided by a sequence of 
observations. Despite this difference, the basic compo-
nents of a particle filter are very similar to the components 
of an exemplar model, requiring activation of hypothe-
ses in proportion to their likelihood, normalization, and 
random selection. As a consequence, particle filters may 
provide a psychologically plausible scheme for approxi-
mating Bayesian inference in dynamic settings. This idea 
has been explored in the context of the rational model of 
categorization by Sanborn et al. (2006), and similar mod-
els have been proposed as explanations of change-point 
detection (Brown & Steyvers, 2009), associative learn-
ing (Daw & Courville, 2008), sentence processing (Levy, 
Reali, & Griffiths, 2009), and reinforcement learning (Yi, 
Steyvers, & Lee, 2009).

Rational Process Models
Probabilistic models of cognition are typically ex-

pressed at Marr’s (1982) computational level, analyzing 
learning, reasoning, and perception in terms of ideal solu-
tions to abstract problems posed by the environment. This 
is at odds with much of the history of cognitive psychol-
ogy, in which theories are typically expressed at the level 
of representation and algorithm. As Marr noted, these two 
levels should not be considered independent of one an-
other: Findings at one level provide constraints on theories 
at the other. However, despite a few notable exceptions 
(e.g., Kruschke, 2006), there has been little exploration of 
the relationship between probabilistic models of cognition 
and psychological process models.

The connection between importance sampling and 
exemplar models that we have established in this article 
hints at a strategy that might help to establish a more gen-
eral link between probabilistic models formulated at the 
computational level and psychological process models ex-
pressed at the algorithmic level. The computational chal-
lenges posed by probabilistic inference do not arise just 
as an obstacle for rational models of cognition: They also 
appear whenever a computer scientist or statistician wants 
to work with a probabilistic model. As a consequence, re-
searchers in computer science and statistics have devel-
oped a variety of schemes for efficiently approximating 
probabilistic inference. Importance sampling is just one 
of these schemes, and the fact that it can be implemented 
in a psychologically plausible way suggests that there may 
be other approximate algorithms for probabilistic infer-
ence that are candidate explanations for how people might 
address the computational challenges posed by rational 
models of cognition.

In embodying an effective solution to the problem of 
approximating probabilistic inference, and in making use 
of psychological notions common in mechanistic process 
models, exemplar models are an instance of a rational 
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This is not a practical procedure, since finding this distribution requires 
computing Ep[g( y)], but the fact that the minimum variance sampler 
need not be p( y) means that importance sampling can provide a better 
estimate of an expectation than can simple Monte Carlo.

3. Because listeners hear only noisy speech sounds S, they may not 
have direct access to a sample from T. Storing samples from S instead of 
T produces the same qualitative effect, but the computation is no longer 
optimal. Alternatively, listeners may be able to bootstrap a sample from 
T by using multiple cues to reduce the amount of noise and by using 
subsequent percepts to update stored values. We return to the problem of 
recruiting exemplars during inference in Simulation 5.

4. We also conducted simulations in cases in which perceptual noise 
was considered and reconstructed stimuli, instead of original stimuli, were 
taken as exemplars. All of these variations produced similar results.
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NOTES

1. Our analysis requires that this similarity measure have a finite in-
tegral, with s(x,x*) dx equal to a fixed constant for all values of x*. This 
assumption is satisfied by similarity functions such as the exponential or 
Gaussian functions that are typically used in exemplar models.

2. If the function g( y) takes on its largest values in regions in which 
p( y) is small, the variance of the simple Monte Carlo estimate can be 
large. An importance sampler can have lower variance than simple Monte 
Carlo if q( y) is chosen to be complementary to g( y). In particular, the 
asymptotic variance of the sampler is minimized by specifying q( y) as

 q( y) |g( y)  Ep[g( y)]| p( y). (24)


