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Abstract
Infants learn about the sounds of their language and adults process the sounds they hear, even though sound categories often
overlap in their acoustics. Researchers have suggested that listeners rely on context for these tasks, and have proposed two
main ways that context could be helpful: top-down information accounts, which argue that listeners use context to predict
which sound will be produced, and normalization accounts, which argue that listeners compensate for the fact that the same
sound is produced differently in different contexts by factoring out this systematic context-dependent variability from the
acoustics. These ideas have been somewhat conflated in past research, and have rarely been tested on naturalistic speech. We
implement top-down and normalization accounts separately and evaluate their relative efficacy on spontaneous speech, using
the test case of Japanese vowels. We find that top-down information strategies are effective even on spontaneous speech.
Surprisingly, we find that at least one common implementation of normalization is ineffective on spontaneous speech, in
contrast to what has been found on lab speech. We provide analyses showing that when there are systematic regularities
in which contexts different sounds occur in—which are common in naturalistic speech, but generally controlled for in lab
speech—normalization can actually increase category overlap rather than decrease it. This work calls into question the
usefulness of normalization in naturalistic listening tasks, and highlights the importance of applying ideas from carefully
controlled lab speech to naturalistic, spontaneous speech.

Keywords Speech perception · Categorization · Category learning

Introduction

Listeners are exposed to highly variable, continuous speech
and map it to discrete sound categories. To do so, they first
learn as infants what the relevant sounds of their language
are, and, subsequently, map incoming signal to learned
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categories. This is generally a robust process—infants learn
about the sounds of their language as early as 6 months
(Kuhl et al., 1992) and, for the most part, listeners process
what they are hearing in an effortless manner. However,
despite how seemingly easily listeners solve these tasks,
they are computationally difficult problems. In fact, after
decades of research in this area, researchers have not yet
established a robust one-to-one mapping between signal and
category that works to anywhere near the degree of success
of human listeners.

The reason these tasks are so computationally difficult
is because there is a large amount of variability in the
speech signal, which can lead to acoustic overlap between
different sound categories (Bion et al., 2013). One sound
category can be acoustically realized in infinitely many
ways, and two different sound categories can have identical
acoustic realizations. This makes establishing a one-to-one
mapping between speech and category difficult. Although
we focus on speech perception in this paper, this problem
is not unique to speech. For example, a particular visual
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stimulus may appear completely different across instances,
due to, for example, lighting conditions, viewing angles,
or occlusion. As in speech, two different objects can also
have identical physical attributes, and, yet, for the most
part, people effortlessly identify what they are seeing (Bar,
2004).

The basic problem is that absolute acoustic or other
perceptual cues are insufficient to separate categories as
well as humans do. This has led researchers to propose
that listeners may be relying on context to help map from
signal to categories. The role of context is widely studied
in cognitive science, and fundamental to many cognitive
theories, with most researchers largely agreeing that it is
crucial in speech perception, language acquisition, object
recognition, and visual perception, along with many other
domains (e.g., Warren, 1970; Ganong, 1980; Port & Dalby,
1982; Mann & Repp, 1980; Bar & Ullman, 1996; Bar,
2004).

In the speech domain, researchers have identified two
main, non-mutually exclusive ways that listeners could
rely on context, based on two ways that context affects a
speaker’s production. The first is that context affects which
sounds are likely to occur—e.g., /æ/ is much more likely
than /ε/ to occur in the context th t (‘that’ is a word, ‘thet’ is
not), so listeners could be biased to perceive acoustics in that
frame as /æ/ rather than /ε/. That is, top-down information
could guide expectations about what category was likely
to be heard. This type of information can supplement
the acoustics, and we will refer to these as ‘top-down
information’ accounts.1

The second is that context affects how sounds are
produced. For example, who is speaking will significantly
and systematically alter the acoustics of the signal. This
leads to variability in how a particular sound is produced,
and can lead to overlap between different sound categories
(e.g., one speaker’s /s/ could be another speaker’s /

∫
/ as

shown in Newman et al., 2001). Listeners could, thus,
factor out systematic variability stemming from contextual
factors like speaker (but also, speech rate, position in an
utterance, neighboring sounds, and so forth) from their
input. Removing variability may lead to less overlap
between categories, and make the mapping from acoustics
to categories clearer. In other words, context could be used
to pre-process the acoustics that are used for categorization
decisions. These types of accounts have generally been
termed ‘normalization’ accounts.

The top-down information and normalization account
examples provided above make use of two different

1While top-down information accounts sometimes refer exclusively
to the lexical, syntactic, and semantic levels influencing lower levels
of processing, we will also include influences by already-processed
phonemic information under this umbrella term, as will be explained
in more detail below.

contextual factors (i.e. neighboring sounds vs. speaker
information), but many contextual factors can affect both
stages of production (i.e. which category is produced and
how it is produced). That is, the core difference between
these two accounts is not which contextual factors are
used, but rather how they are used. In this paper, we
will broadly define context to include neighboring sounds,
position in a word/utterance, part of speech of the word
the sound was produced in, speech rate, speaker, as well
as aspects of the sound itself that have already been
processed. Many of these contextual factors could be useful
in both top-down information and normalization accounts.
For example, a particular phoneme may be a priori more
likely to be produced word-finally, in which case a listener
would benefit from a bias towards perceiving that phoneme
word-finally, as in a top-down information strategy. At the
same time, sounds are acoustically longer word-finally, so
a listener would separately benefit from accounting for
this difference in how the sound was produced, as in a
normalization strategy.

These two ways of using context have both been studied
extensively. There is a large body of experimental and
computational work supporting the notions (i) that context
does affect both which sound is produced and how it is
produced, (ii) that listeners can make use of these strategies,
and (iii) that listeners do make use of these strategies to help
overcome the overlapping categories problem. Both ways
of using context are relatively well accepted in the speech
perception literature.

However, there are two main limitations with previous
work that warrant further study. First, these two ways
of using context, although different, have been somewhat
conflated in previous work, and have been difficult to
dissociate experimentally. In particular, experiments that
have been used to argue for one over the other generally
show that an acoustic signal is perceived as one category
in a particular context, but when the same signal is placed
in a different context, it is perceived differently. This
type of finding has been used to argue for both top-down
information and normalization accounts, but depending on
the specifics, merely shows that context is used, but not
how. Therefore, it is not entirely clear whether listeners are
using both of these strategies, and if not, which one they
are using. This limitation requires separating these accounts,
and testing them individually, which computational methods
will allow us to do.

Second, these ideas have mostly been studied on
synthetic or carefully controlled lab speech, which differs
in important ways from the naturalistic and spontaneous
speech that listeners actually learn from and process. It
is not clear whether promising results from controlled lab
speech generalize to more variable spontaneous speech;
indeed, where tested, they have often not (e.g., Antetomaso

641Psychon Bull Rev  (2020) 27:640–676



et al., 2017). In addition, most of the debate so far has
centered on whether listeners do or do not make use of these
strategies, and has assumed that if listeners did use these
strategies, doing so would help them process naturalistic
speech. However, there is actually little to no evidence
so far that these strategies are effective on naturalistic
speech. Addressing this limitation requires applying these
two strategies to naturalistic speech of the type that listeners
are mostly exposed to, and testing whether they are effective
in separating overlapping categories.

In this work, we study how context can be effectively
used in speech perception, taking these two issues
into account. We implement top-down information and
normalization accounts separately and evaluate their relative
contribution in the process of going from speech signal
to categories—and we do so on spontaneous speech.
We focus on the test case of Japanese vowel length,
a test case with particularly overlapping categories that
current computational models fail to learn. We find
that top-down information is helpful in separating the
sound categories, remaining robust even on spontaneously
produced speech. However, contrary to expectations, we
find that normalization is not helpful, at least as it has
often been implemented in the cognitive literature. We
then study why exactly the discrepancy between our results
and previous findings occurs. We find that the discrepancy
results from the difference between controlled lab speech
and spontaneous speech, by showing that the exact same
normalization process we use works if we apply it to lab
speech that is more similar to the speech used in previous
work. Simulations and a mathematical analysis reveal that
one property of spontaneous speech that seems to play a
particularly important role is the fact that categories do
not occur uniformly across contexts in spontaneous speech,
as they do in controlled lab speech. Imbalances in where
categories occur—precisely the type of signal that is helpful
in top-down information accounts—can hurt normalization.
That is, this work not only dissociates two strategies that
have often been conflated, but shows interesting interactions
between them, such that properties of the input that make
one of them effective can make the other ineffective.

Past research on these cognitive theories has tended
to focus on whether listeners do or do not use these
strategies, assuming that using them would actually solve
the overlapping categories problem present in speech.
While our results validate this assumption for top-
down information accounts, our results show that in our
case study, this assumption is wrong for a common
implementation of normalization. It is possible that the
theory about how listeners normalize could be repaired in
light of these findings, as we will discuss, and this warrants
further study. Overall, these results highlight the importance
of studying speech perception using spontaneous speech, in

addition to carefully controlled lab speech, as results from
one do not necessarily generalize to the other.

Background

The Japanese vowel length contrast

This paper uses the Japanese vowel length contrast as
a test case to compare the relative efficacy of top-down
information and normalization strategies. In Japanese, there
are two sound categories along the duration dimension—
referred to as ‘short’ vowels and ‘long’ vowels (Vance,
1987). Which category is used can change the meaning
of a word. For example, /biru/ with a short vowel means
‘building,’ while /bi ru/ with a long vowel means ‘beer’.
Results from perception and production studies reveal that
Japanese speakers differentiate short and long vowels: they
produce short and long vowels differently and can identify
which vowel length category a particular vowel belongs
to (Chen et al., 2016; Hisagi et al., 2010; Mugitani et al.,
2009; Werker et al., 2007). Based primarily on studies of
controlled laboratory speech, vowel length is often thought
to be signaled primarily by the vowel duration cue and to
a lesser extent, by formant values (e.g., Arai et al., 1999;
Kinoshita et al., 2002; Lehnert-LeHouillier, 2010). Some
researchers have alternatively hypothesized that relativized
vowel duration (the ratio between a vowel’s duration and
the duration of its neighboring sound or the word it is
in) might be the primary cue to vowel length instead
(Hirata, 2004). However, there is no conclusive evidence
in either direction so, for a number of reasons, we follow
a substantial body of work in using vowel duration as the
cue to vowel length. On the one hand, absolute duration can
be more easily and reliably measured in naturalistic speech,
where, for example, vowels often occur in isolation without
any neighboring sounds to relativize against. On the other
hand, one of the theories we consider—normalization—
has historically only operated over absolute cues. This
is because it has been treated as an alternative, not a
supplement, to relativizing cues: both are ways to transform
the acoustics in such a way as to remove systematic
contextual variability, and doing both could be redundant.
Nonetheless, future work should study how these results
generalize when using duration ratios, and we return to this
issue in the General Discussion.

At this point, we wish to highlight an important
terminological distinction between vowel length and
vowel duration—and the corresponding two meanings that
short/long can have in this context. Vowel length refers
to the category status of a vowel—i.e., whether it is the
vowel category that will result in /biru/ (‘building’) or /bi ru/
(‘beer’). Vowel duration refers to the acoustic property of a

642 Psychon Bull Rev  (2020) 27:640–676



vowel—i.e., how long it took the speaker to articulate the
vowel—and is thought to be a cue to vowel length. There-
fore, a vowel can be referred to as short (or long) if it
belongs to the short (or long) category, but it can also be
referred to short (or long) depending on its physical dura-
tion. In this paper, we will use ‘phonologically short/long,’
‘phonemically short/long,’ or simply ‘short/long’ to refer
to category status, and ‘acoustically short/long’ to refer to
physical vowel duration.

This distinction is critical because a vowel’s duration
and length do not always line up. Recent work has
shown that although short vowels and long vowels are
different categories, the range of durations they can have
overlap substantially (Bion et al., 2013). While long vowels
are, on average, acoustically longer than short vowels, a
particular production of a phonologically short vowel can
be acoustically longer than a particular production of a
phonologically long vowel. In fact, because only 9% of
Japanese vowels are phonologically long, the combined
distribution of all vowels is unimodal along the duration
dimension (Fig. 1). Therefore, while vowel duration is
thought to be the primary cue to vowel length, it is
insufficient to completely separate short and long vowels
in spontaneous productions. This is precisely what has
led some researchers to instead consider relativized vowel
duration as the primary cue to vowel length; however,
that work has only considered controlled lab speech. On
naturalistic speech, this problem persists, regardless of
which type of cue is used (Bion et al., 2013).

Note that vowel length is not the only way that Japanese
listeners need to categorize incoming vowels. There are
ten total vowel categories in Japanese, a short and long
version of five different vowel qualities (/a/, /e/, /i/, /o/,
/u/), so Japanese listeners need to determine both the vowel
length and the vowel quality of incoming vowels. However,
the acquisition and processing of vowel quality and vowel
length seem to be relatively independent processes. It is
thought that Japanese infants learn the vowel length contrast
at around 10 months of age, about 6 months after they
have been argued to learn the vowel qualities (Sato et al.,

2010). For the purpose of this paper, we simply consider
how Japanese listeners may learn and process vowel length,
treating vowel quality as something that is already known
and can help in the categorization.

Japanese vowel length is just one instance of a commonly
observed overlapping categories problem, both in speech
perception (Allen et al., 2003; Hillenbrand et al., 1995;
Hillenbrand et al., 2001; Narayan, 2013; 2008; Narayan
et al., 2017; Newman et al., 2001; Swingley & Alarcon,
2018), and more generally (Adelson, 1993; Bar, 2004;
Todorović, 2010), where the physical cues are insufficient
on their own to explain human perception. The Japanese
vowel length contrast is a good first test case to consider
because (i) existing computational models fail to adequately
learn and classify these vowels due to overlap between the
categories, (ii) contextual information has been argued to
play a role in processing and learning, making it a good
test case for studying how context is helpful, and (iii) there
exists a hand-annotated dataset consisting of both child- and
adult-directed Japanese spontaneous speech.

However, one important question to consider is the extent
to which our findings on vowel length will generalize to
other contrasts. Our results are likely to be informative
about other cases of overlapping categories, which may
arise for similar reasons as in this test case. Nonetheless, the
Japanese vowel length contrast has some unique properties
that might make it different from some other contrasts. First,
there are disproportionately many short vowels relative to
long vowels, while other contrasts are often more balanced
in numbers. In fact, the overlapping categories problem
arises because of this imbalance: if short vowels and long
vowels were equally frequent, then the distribution might
be bimodal (as in controlled lab speech), which might make
the contrast easier to learn. Second, the main acoustic cue to
this contrast—duration—is particularly influenced by other
linguistic and non-linguistic factors. This means that the
underlying relationship between category and acoustic cue
may be particularly difficult to recover for Japanese vowel
length compared to a different contrast where the acoustic
cue is less affected by other factors. Third, the Japanese

Fig. 1 Distribution of R-JMICC dataset vowels (by log-duration): all are unimodal distributions. Values displayed are logs of the vowel durations
in seconds. As a result, log-durations will be negative whenever the vowel is less than a second long
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vowel length contrast has relatively low functional load,
because it does not distinguish many minimal pairs. As a
result, it is possible that the acoustics are less important
than in other contrasts, because which sound was produced
might be more predictable. Finally, the Japanese vowel
length is acquired relatively late compared to other contrasts
(e.g., vowel quality contrasts) in both phonetic development
(Sato et al., 2010) and phonological development (Mugitani
et al., 2009). As a result, it could be that learners have
access to different information or that a different learning
mechanism is involved in learning this contrast. All of these
properties suggest that Japanese vowel length may be a
particularly overlapping and difficult contrast to learn, and
results from these analyses could be illuminating for less
extreme contrasts. While we will speculate on how our
results might generalize to other types of contrasts through
the paper, future work will need to investigate this issue
more thoroughly.

Categorization - using unnormalized acoustic cues

Japanese listeners must first determine how many sounds
there are along the duration dimension during acquisition
and, once they have learned the language and its categories,
they must decide which of the vowels they hear are short
or long through a categorization process. We will test
the usefulness of top-down information and normalization
strategies by implementing them computationally and
seeing how well they perform in categorizing Japanese
vowels as short or long. We will compare their performance
against a baseline model that categorizes exclusively based
on unaltered, unnormalized acoustic cues.

All of the models we test are supervised and rely on
already knowing the distinction between short and long
vowels. As a result, these results are only directly applicable
to adult speech perception, where the task is precisely to
categorize vowels, and not to acquisition, where the task
is to discover that there are two categories to begin with.
Nonetheless, the results of this paper can provide some
insight into acquisition, by pointing to promising directions
to pursue in the future. Our categorization analyses reveal
how well a strategy can, at its best, separate short vowels
from long vowels. If a strategy cannot separate short vowels
from long vowels in a supervised model, then it would be
hard for an infant to use it to learn, and is less promising
to pursue in the context of acquisition. A strategy that can
separate short and long vowels in a supervised setting is
a much more promising one to pursue in the unsupervised
acquisition setting, even though the analyses in this paper
can not make claims about how exactly infants learn
these distinctions. In what follows, we lay out what this
base categorization model looks like, before turning to a
discussion of how context could be used in the process.

A categorization model can take many forms, but for
the purpose of this paper, we model categorization using
logistic regression, following previous work (McMurray &
Jongman, 2011). Our logistic regression models will take
as input a set of cues and map them to vowel category
(either short or long). The baseline categorization model—
argued to be insufficient in Bion et al. (2013) as described in
the previous section—will take as input a vowel’s acoustic
cues—duration and formant values—and will categorize the
vowel as short or long depending on those cues. It will do so
by weighting each of the cues (in terms of how much they
contribute to whether the vowel should be short or long),
summing the weighted acoustic cues, and then transforming
this value into a probability that represents the probability
that this vowel is short versus long. That is, if we consider
the acoustic cues, d, f1, f2, f3, logistic regression takes the
following form:

P(long|d, f1, f2, f3) = 1

1 + eβ0+βdd+βf1f1+βf2f2+βf3f3

(1)

where the β terms are weights on the cues—duration,
d , and formants, f1-f3. The probability that the vowel is
short is 1−P(long|d, f1, f2, f3). The model categorizes the
sound as belonging to the category (short or long) that has
the higher probability.

Learning this function involves learning an intercept (β0),
as well as a weight for each cue (βd ...βf3 ). The model is
trained on data that consist of the unnormalized acoustic
cues of a vowel, labeled with the category that vowel
belongs to, and weights are learned so as to optimally
separate the short vowels from the long vowels. Once we
learn this function, we can take any new vowel and calculate
the probability that that vowel is long (or short). The only
information that this model has access to is the acoustics of
the vowel, so it will be insufficient when categories overlap
in acoustic cues, but incorporating context could help.

How context could be used

There are two ways that listeners could use context, which
we define broadly to include neighboring sounds, speaker,
position in a word/utterance, speech rate, already processed
aspects of the sound itself (like vowel quality), and so forth
(see full list in the first column of Table 1). To illustrate the
two ways, it is helpful to consider the production process.

When a speaker produces a vowel, they first decide which
category to produce (short or long vowel) depending on
what word they are producing, and then utter a particular
acoustic value for that vowel based on the vowel category
they are producing. Both of these components of the
production process are affected by the context of the vowel,
but this is ignored in the base categorization model. The
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Table 1 The full set of contextual factors available for each dataset, with factors that were included in the normalization upper-bound shown
in bold (as described in the sections on normalization methods). In the case of the R-JMICC corpus, these are taken from the linear regression
normalization method, which outperformed the neural network normalization method

R-JMICC Spontaneous Werker Read Werker Spontaneous

Vowel Quality Vowel Quality Vowel Quality

Speaker Speaker Speaker

Previous Sound Previous Sound Previous Sound

Following Sound Following Sound Following Sound

Prosodic Position of Word (2 factors) Prosodic Position Prosodic Position

Prosodic Position of Vowel (12 factors) F0 F0

Accented

Previous Sound Duration (Speech Rate)

Following Sound Duration (Speech Rate)

Condition (Toys or Books)

Part of Speech

following two sections introduce the two ways context
affects a speaker’s sound production and, consequently,
the two ways that context could be used to improve
categorization.

Top-down information accounts

First, the context of a sound directly relates to which vowel
category is more or less likely to be produced. An English
speaker is much more likely to produce an /æ/ vowel (as
in ‘mat’) than an /ε/ vowel (as in ‘met’) in the context th t
(the word ‘that’ exists, but ‘thet’ does not), ‘but the opposite
holds when the context is w t instead (the word ‘wet’ exists,
but ‘wat’ does not)’. In Japanese, a speaker is relatively
more likely to produce a long vowel if they are saying an /o/
vowel than if they are saying an /a/ vowel, as can be seen in
Fig. 1. A listener could benefit from taking this type of prior
knowledge into account, and indeed listeners’ perception
appears to be biased by which sound was a priori more likely
to occur.

This type of strategy is often referred to as a ‘top down
information’ account, as it makes use of listeners’ prior
knowledge of which sounds are likely to occur in which
contexts, in addition to the sounds’ bottom-up acoustic cues.
It can also be thought of a ‘predictive’ strategy, in the
sense that context is used to directly predict which sound
occurred.

In this paper, we will use the term ‘top-down informa-
tion’ account to refer to the use of any prior knowledge—
including information at the phonemic level—to directly
bias perception. We wish to make explicit that we are using
the term more broadly than it sometimes is used in the

literature. It is sometimes used to refer only to lexical, syn-
tactic, or semantic factors influencing speech perception.
However, we use it in the sense of any non-acoustic informa-
tion directly biasing speech perception, which can include
information at the phonemic level (e.g., vowel quality or
neighboring sounds).

The categorization model presented in the previous
section does not, in its current form, take this type of
information into account: it only takes into account whether
one of the vowel categories is more likely to occur overall,
not whether vowel categories are more likely to occur in
particular contexts. To illustrate why this is problematic,
consider the toy case shown in Fig. 2, in which there are
two categories (short and long), and only two contexts (let’s
say phrase-medial vowels and phrase-final vowels). Overall,
phonemically short and long vowels occur with identical
frequency; however, the phonemically short category is
much more likely to occur in phrase-final position and the
phonemically long category is much more likely to occur
in phrase-medial position. The base categorization model
will simply place the category boundary halfway between
the short and long vowel means in (c), when really this
category boundary should be at a shorter duration for vowels
that occur phrase-medially and at a longer duration for
vowels that occur phrase-finally. This means that the base
categorization model will overclassify phrase-medial short
vowels (i.e., short vowels in contexts where long vowels are
much more likely to occur) as long and will overclassify
phrase-final long vowels as short. However, taking into
account context as a top-down influence can help correct
this problem. In particular, if the model or listener takes
into account expectations about which vowel is more likely
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Fig. 2 A toy example demonstrating how using contextual information
as top-down information can be helpful. Although short vowels and
long vowels are equally common overall, short vowels are much more
common phrase-finally, and the opposite holds phrase-medially. Our

baseline categorization model will not be able to take this into account
and will miscategorize some vowels as long in phrase-final position
and miscategorize some vowels as short in phrase-medial position

to occur in the context heard, then they will, all else being
equal, be biased towards categorizing vowels as short in
contexts where short vowels are more likely to occur, and
biased towards categorizing vowels as long in contexts
where long vowels are more likely to occur.

The base categorization model can be augmented to
take this into account, in order to reflect what listeners
are thought to do. In the logistic regression, this could
be accomplished by adding the contexts as independent
predictors. For example, in our Japanese example, if we
added the vowel quality, q, of the vowel as an independent
predictor, this could encode the fact that vowels that are /o/
are relatively more likely to be long than /a/ vowels:

P(long|d, f1, f2, f3, q) = 1

1 + eβ0+β1d+β2f1+β3f2+β4f3+β5q

(2)

Essentially, this means that in addition to the acoustic
cues affecting the relative probabilities of the vowel being
short or long, the quality of vowel can also affect the
categorization decision. Additional terms could be added
depending on what other contextual factors are thought to
predict category membership.

The effect is that instead of having one categorization
boundary overall, the boundary between categorizing a
vowel as short and categorizing it as long will shift
depending on the context, and how likely short vs. long
vowels are to occur in that context. If phonemically long
vowels are relatively more likely to occur in a particular
context than short vowels, then the boundary between
short and long vowels will shift towards vowels of shorter
durations, such that more vowels are classified as long, and
the opposite holds in contexts where phonemically short
vowels are relatively more likely.

Crucially, this model assumes that the acoustics of a
sound will be the same regardless of the context it was
produced in, and so it cannot take into account the fact that
vowel durations may systematically vary between different
contexts (due to e.g., acoustic lengthening effects).

Normalization accounts

In the previous section, we saw that context can affect which
category a speaker is likely to produce.

The next and final component of the speaker’s production
process is to actually produce an acoustic value for the
vowel category they have chosen. This portion of the
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production process is also affected by context, as context
systematically and predictably affects how a particular
sound category is acoustically realized. As an example,
vowels uttered in fast speech are, all else being equal,
acoustically shorter than vowels uttered in slow speech.
Similarly, vowels uttered phrase-finally are, all else being
equal, acoustically longer than vowels uttered phrase-
medially.

This can introduce variability and overlap between short
vowels and long vowels into the overall distribution—and
is problematic for a categorization model simply relying
on absolute acoustic cues. Consider the toy case in Fig. 3.
Here again, there are two vowel categories (short vowels and
long vowels) and there are two contexts (let’s say phrase-
medial and phrase-final). In phrase-medial position, short
vowels are produced with an average acoustic duration of

Fig. 3 A toy example demonstrating how using contextual information
to normalize acoustics can be helpful. Phrase-final vowels are
systematically acoustically lengthened, which introduces overlap in
the overall distribution of short vowels and long vowels. However,
a listener who knows that phrase-final vowels are systematically
acoustically lengthened could normalize for this acoustic lengthening,
and reduce the overall overlap between short vowels and long vowels
in their input

150 ms and long vowels are produced with an average
acoustic duration of 300 ms. In phrase-final position, vowels
are systematically acoustically lengthened by 100 ms. This
scenario is problematic for the base categorization model
because the overall distribution will reveal a lot of overlap
between sound categories. In particular, long vowels in
phrase-medial position will overlap with short vowels in
phrase-final position. The baseline categorization model
presented previously learns a categorization boundary
between short vowels and long vowels, which is the same
for all vowels, regardless of context. This will cause the
model to overclassify vowels occurring in lengthening
contexts as phonemically long, and overclassify vowels
occurring in acoustically short contexts as phonemically
short.

However, the shifts in acoustic cue values are systematic
and predictable once the context is known, so using contex-
tual information can help overcome these problems—and
listeners have been argued to do so in listening situations.
There are various ways this problem could be overcome, and
corresponding ways the baseline logistic regression model
could be augmented. One is that listeners might build a sep-
arate mapping between acoustics and category membership
for each context they encounter, such that lengthening con-
texts will have a boundary between short/long vowels at a
higher duration, and vice versa for shortening contexts. This
idea is referred to as adaptation (Kleinschmidt & Jaeger,
2015), and we will return to it in later discussion, but do not
directly study it in this paper. Instead, we focus on a second
idea, referred to as normalization.

The idea behind normalization is that instead of creating
a different acoustic boundary between short/long vowels
for every context encountered, all acoustics are mapped
to the same context-independent acoustic space and then
one boundary is estimated in this context-independent
space. This is done by estimating how much any particular
context lengthens or shortens the vowels, and then undoing
all lengthening or shortening processes. Returning to our
example, normalization would work by estimating that the
vowels in phrase-final context are on average 100 ms
longer than vowels in phrase-medial context, and then
essentially shifting the distributions to compensate for this
lengthening. Another way to think about it is that each
vowel is represented relative to the mean duration of vowels
that occurred in the same context. Acoustic cues that have
been mapped to this context-independent space are referred
to as normalized cues.

In the top-down information accounts, the logistic
regression in Eq. 1 was augmented by adding additional
predictors based on the context of the sound in question
(e.g., the vowel quality, q). In normalization accounts, the
logistic regression in Eq. 1 is changed by performing a

647Psychon Bull Rev  (2020) 27:640–676



preprocessing step (which will be described in detail below),
and inputting normalized cues (dnorm, f norm

1 , f norm
2 ,

f norm
3 ) into the logistic regression, instead of unnormalized

cues as before (dunnorm, f unnorm
1 , f unnorm

2 , f unnorm
3 ).

This means that while information about the context a
sound occurs in is a direct input to the logistic regression
categorization model in top-down information accounts, it
is not in normalization accounts. Rather, in normalization
accounts, the contextual information is used to obtain
normalized acoustic cues, which are ultimately the only
input to the categorization model (e.g., Cole et al., 2010;
McMurray & Jongman, 2011).

The normalized cues of a sound are obtained by
predicting its expected cue values based on the context it
occurs in, and then comparing these expected cue values
against its actual cue values.

cuenorm = cueunnorm − cueexpected (3)

The expected cues can be calculated from a sound’s
contextual information using various methods, and we make
use of two such methods. First, we follow past work, and
train a linear regression to predict a sound’s acoustic cues
from the context the sound occurs in (Cole et al., 2010;
McMurray & Jongman, 2011).

The second method involves training a neural network to
predict a sound’s acoustic cues from the context the sound
occurs in. The benefit of this method is that it allows for
more powerful, non-linear normalization functions to be
learned. Once the pre-processing step is complete and we
have normalized all of the acoustic cues relative to context,
we can then replace the unnormalized cues with normalized
cues in the logistic regression categorization model:

P(long|dnorm, f norm
1 , f norm

2 , f norm
3 )

= 1

1 + eβ0+β1d
norm+β2f

norm
1 +β3f

norm
2 +β4f

norm
3

(4)

Normalizing has the effect of shifting where the boundary
between short and long vowels falls. In particular, considering
the example in Fig. 3, the vowels in phrase-final position are
perfectly shifted from those in phrase-medial position. Ignoring
context will cause there to be a huge degree of variability
and overlap between short and long vowel acoustics in
the overall distributions. However, normalizing out this
variability by shifting the two contexts so that they line up
will help. In particular, vowels that are acoustically quite
long will be readily classified as short because listeners may
be accounting for the fact that these vowels were lengthened
and undoing this effect. That is, a long acoustic duration
presented in phrase-medial context may be perceived as
long; however, when placed in phrase-final context, that
same vowel with the same acoustics may now be perceived
as phonemically short because it may be relatively short

relative to other vowels that occur in that same lengthening
context.

There are other implementations of normalization,
including z-scoring, vocal tract normalization, relativizing
cues, as well as proposals by Dillon et al. (2013) that we
do not test in this work. We return to the question of how
our results generalize to other normalization methods in the
General Discussion, but future work should investigate this
question more thoroughly.

Adaptation accounts

Another idea that has been proposed is that of adapta-
tion (Kleinschmidt & Jaeger, 2015). Under ‘adaptation’
accounts, listeners build a separate model for each context
they encounter, so they have a different mapping between
acoustic space to categories for each context a sound occurs
in. For example, a listener using an adaptation strategy
would build a separate model for utterance-medial /o/ vow-
els, utterance-final /a/ vowels, etc. (see Kleinschmidt &
Jaeger, 2015 for a more thorough explanation of adapta-
tion). In doing so, adaptation allows listeners to ignore
systematic acoustic variability that stems from the context a
sound occurs in. These models would encode the fact that
a shorter absolute duration is required to classify a vowel
as long in utterance-medial position than in utterance-final
position, without transforming the vowels’ acoustic cues as
is done in normalization.

While both normalization and adaptation aim to explain
how listeners account for systematic acoustic variability,
they do so in different ways. In particular, under normal-
ization accounts, all acoustics are mapped to one context-
independent acoustic space using an explicit normalization
function, and listeners only estimate one boundary between
short and long vowels in the context-independent acoustic
space. Under adaptation accounts, listeners estimate a dif-
ferent acoustic boundary between short and long vowels for
each context they encounter, without considering data from
other contexts. This means that in addition to accounting for
systematic acoustic variability, adaptation can also encode
top-down information. Building a separate model for each
encountered context necessarily encodes relative frequency
of occurrence of different sound categories across different
contexts, and this could bias perception. Therefore, adap-
tation can take advantage both of factoring out systematic
variability and using top-down information. Because we
wish to disentangle the relative contribution of these two
ideas, we do not study the efficacy of adaptation strategies
here, but we return to the idea of adaptation in the General
Discussion.

Crucially, we have seen that these two distinct theories
about how listeners could use context in categorization
produce similar changes in categorization, which has led
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researcher to sometimes conflate them in the literature. In
what follows, for each of the two strategies, we first review
the evidence that has been used to argue in favor of listeners
using them, and then review evidence that both ways of
using context could potentially be helpful in Japanese.

Top-down information

Evidence for top-down information accounts

Experimental and computational work suggests that people
can and do make use of higher-level linguistic information
in a top-down fashion—at least on synthesized or carefully
controlled laboratory speech. In various experiments,
researchers have presented participants with stimuli that
have portions of removed or degraded acoustic information,
and shown that participants make use of contextual
information to compensate. Warren (1970) showed that
when adult participants are played a sentence with a single
phone (and its transitional cues) completely removed and
replaced with a cough, they nonetheless report hearing
the sound, suggesting that linguistic context affects speech
perception.

This is true even when full acoustic information is
available. In a classic study, Ganong (1980) played
participants acoustic continuua that ranged between a
non-word and a word (i.e. from dask to task, or from
dash to tash), and showed that participants were biased
towards categorizing the initial sound in a way that
resulted in a word. They were more likely to classify
a given sound as /t/ for dask-task, but as /d/ for dash-
tash, suggesting that listeners use context (in this case,
lexical information), in addition to acoustics, to constrain
their categorization decisions. Similar work has shown that
phonotactic constraints also affect categorization decisions,
such that listeners are more likely to classify a particular
sound in a way that adheres to, rather than violates, the
phonotactics of their language (e.g., Brown and Hildum,
1956; Massaro & Cohen, 1983).

Particularly relevant to our test case, there is experimen-
tal evidence fromMoreton and Amano (1999) that Japanese
speakers may make use of higher-level contextual infor-
mation to make decisions about vowel length. Words in
Japanese fall into four main groups based on their histori-
cal origin (e.g., Foreign words, Sino-Japanese words, etc.)
and these word groups differ in their properties. For exam-
ple, long /a/ occurs in Foreign words, but not Sino-Japanese
words, and Sino-Japanese and Foreign words have different
frequency distributions over consonants (e.g., /p/ is frequent
in Foreign words, but very rare in Sino-Japanese words,
and vice versa for /hy/). Taken together, this means that,
for example, an /a/ vowel that co-occurs with a /hy/ vowel
is almost certainly phonemically short, while an /a/ vowel

that co-occurs in a word with a /p/ could also be long. In a
series of experiments, Moreton and Amano (1999) showed
that Japanese listeners make use of these regularities when
identifying vowels: the other consonants a particular vowel
token co-occurred with affected whether participants cate-
gorized it as short or long, again showing that top-down
information affects adults’ categorization.

Children also seem to use top-down information to
guide acquisition and processing. A number of studies have
shown that both adults and infants use lexical context while
acquiring sound categories (Thiessen, 2007; Swingley,
2009; Feldman et al., 2013b). For example, Feldman et al.
(2013b) showed that adults and infants were more likely to
assign acoustically similar vowels (/ / vs. / /) to different
sound categories when they were not exposed to minimal
pairs between them (i.e., when they did not occur in the
same phonetic contexts) than when they were exposed to
minimal pairs (i.e., when the vowels occurred in identical
phonetic contexts). In addition, Feldman et al. (2013a)
showed that a computational model that made use of
information about the word frames that sounds occurred in
resulted in an improvement in phonetic category learning
over models that did not incorporate lexical information.

The idea that higher-level information influences speech
perception and language acquisition has been replicated
many times over, and is mostly accepted in the field.
Most of the support for this idea, however, comes from
work on simplified speech data. Furthermore, the model
from Feldman et al. (2013a) was recently applied to the
problem of Japanese vowel length we study here, and was
found to be ineffective on spontaneous speech (Antetomaso
et al., 2017). Therefore, there is some recent doubt that this
strategy could be helpful on spontaneous speech. However,
phonemically short vowels and phonemically long vowels
have been shown to differ in the contexts that they are likely
to occur in Japanese, so there is potentially signal that would
be helpful to a listener relying on such a strategy. We discuss
this evidence in the following section.

Evidence that there is top-down information in Japanese

With the exception of Moreton and Amano (1999) and
Antetomaso et al. (2017), there has not been much
work on studying the role of top-down information in
the acquisition and processing of Japanese vowel length.
However, there is independent evidence that there are
systematic differences between short and long vowels in the
types of contexts/environments they occur in that listeners
could make use of.

First, different vowel qualities have different relative
probabilities of short and long vowels, as seen in Fig. 1. In
particular, long vowels make up a greater proportion of /o/
vowels than /a/ vowels.
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Short and long vowels also differ in the types of sounds
they co-occur with, due, for example, to properties of
various subsets of the Japanese lexicon as seen in the
previous section (Moreton & Amano, 1999). Similarly, in
some dialects of Japanese, long vowels do not occur before
nasals, due to phonotactic constraints. Vowels also tend to
be phonologically short when adjacent to long consonants.
Therefore, the adjacent sounds of a vowel could potentially
provide useful, disambiguating information about the length
status of a target vowel (Isei-Jaakkola, 2004).

Finally, prosodic position could also be helpful, as
phonemically long vowels are less likely to occur domain-
finally (e.g., Kubozono, 2002). As a result, listeners could
exploit the prosodic position of the vowel to help determine
the length of a vowel: they could be biased towards
classifying a domain-final (e.g., word-final) vowel as short.

Overall, there are various patterns due to phonological,
historical, or lexical reasons that result in differences in how
likely short versus long vowels are to occur in particular
contexts. Listeners could exploit this information in a top-
down fashion to categorize and learn the vowel length
contrast. We test how effective this strategy could be by
applying it to the Japanese vowel length contrast.

Normalization

Evidence for normalization

A body of experimental work has been used to argue that
listeners can and do normalize when making categorization
decisions—at least on the carefully controlled laboratory
speech or synthetic speech that is typically studied (but
see Johnson, 1997, 2006; Pierrehumbert, 2002, which argue
against normalization). This work generally shows that
listeners’ perception of a particular sound can change by
modifying the context it appears in. As we saw, modifying
the context can also change listeners’ perception if they are
relying on a top-down information strategy. Therefore, this
evidence is insufficient to argue uniquely for normalization
as a useful strategy when the contextual factor being
normalized out could also prove helpful in a top-down
information account (e.g., neighboring sounds, prosodic
position).

However, for contextual factors that do not influence
which category is more likely to be produced (e.g., speech
rate and speaker), there is extensive evidence that listeners
factor out systematic variability from the acoustics of lab
speech, though these studies do not necessarily pinpoint
normalization as the involved mechanism—as opposed to
adaptation, for example (Kleinschmidt & Jaeger, 2015). In
this section, we review the literature that has been taken
as support for normalization in the field, even if it could
also be used to argue for adaptation or top-down accounts,

but we return to the issue of how to properly dissociate
these accounts, and what evidence could be taken as
unequivocal support for one of these theories, in the General
Discussion.

Nearey (1978) studied synthetic speech and showed
that listeners factor out systematic variability stemming
from speaker. His study showed that listeners’ category
boundaries were shifted upward in F1 and F2 when a target
sound followed a vowel that sounded like a child produced
it instead of a man. This type of result has been repeatedly
reported (e.g., Strand and Johnson, 1996).

Mann and Repp (1980) studied synthetic speech and
argued that listeners also take into account coarticulatory
influences. They played participants a fricative from the /

∫
/

to /s/ continuum, followed by either the rounded vowel /u/
or the unrounded vowel /a/. They found that participants
were more likely to identify the fricative as /s/ when it was
followed by /u/ than when it was followed by /a/. Fujisaki
and Kunisaki (1978) found a similar effect with Japanese
speakers.

Various studies have also shown that listeners take
into account the influence of speech rate. These findings
are particularly relevant to the Japanese vowel length
case, because they offer evidence that participants using
durational cues also take into account systematic variability
due to context. Using synthesized speech, Fujisaki et al.
(1975) studied Japanese listeners’ perception of the contrast
between short and long consonants as a function of
contextual speech rate. They played participants synthesized
syllables ranging from /ise/ to /isse/ and found that the
absolute duration at which participants’ percept changed
from a short consonant to a long consonant was affected by
the speech rate of the utterance.

Analogous effects have been found for English vowel
and voicing categorization, as well as /b/-/w/ distinctions,
and recent work has even suggested that changing the
speech rate of neighboring consonants can cause listeners
to not hear or insert entire function words (e.g., Ainsworth,
1974; Verbrugge et al., 1976; Ainsworth, 1973; Dilley
and Pitt, 2010; Miller & Liberman, 1979; Minifie et al.,
1977 Summerfield, 1981). Overall, the general finding that
listeners’ perceptions of a sound (or even a word) change
as a function of the context it occurs in has been replicated
many times over (e.g., Crystal & House, 1990; Miller, 1981;
Miller et al., 1984; Miller et al., 1997; Newman & Sawusch,
1996; Pickett & Decker, 1960; Sawusch & Newman, 2000;
Wayland et al., 1992, 1994) and has often since been taken
as evidence for normalization.

However, as mentioned above, recent work has also
suggested that some of the experimental findings that
have been taken as evidence for factoring out systematic
variability may actually be support for participants making
use of top-down information. In a classic study, Port
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and Dalby (1982) argued that listeners use durations of
neighboring sounds, in addition to utterance speech rate,
to calibrate (or normalize) the durational cues of the target
sound. They ran several experiments studying English
listeners’ voicing judgments in synthesized minimal pairs
like rapid versus rabid. They showed that the duration of a
vowel neighboring a stop could affect listeners’ perception
of whether that stop was voiced or voiceless (Port &
Dalby, 1982), and similar findings have been reported in
other research as well (e.g., Boucher, 2002; Summerfield,
1981). These findings have classically been interpreted as
evidence that listeners factor out the effect of speech rate,
and use the relative duration of the stop’s closure duration
to the neighboring vowel to do so. However, Toscano and
McMurray (2012) argued that these same findings were
consistent with the alternative idea that listeners are using
neighboring vowel duration as a direct cue to the voicing of
the target stop (parallel to closure duration or VOT), rather
than normalizing for it. Although this reinterpretation has
been discussed with reference to a particular set of studies
(Boucher, 2002; Port & Dalby, 1982; Summerfield, 1981),
it raises the interesting possibility that other studies arguing
for normalization could also be used as evidence for a top-
down information account, rather than for normalization. In
particular, this holds true for all studies where the contextual
factor that is normalized out could also prove helpful in a
top-down information account—for example, neighboring
sounds.

Experimental findings in support of normalization
have been supplemented by recent computational work,
which has generally found that models that normalize
for systematic variability achieve better sound category
identification results, and better match human performance
than models that do not.

McMurray and Jongman (2011) showed that a model that
normalized for multiple contextual factors better matched
human behavior than a model that did not. They took
lab recordings of the 8 English fricatives /f, v, , s, z,∫
, / produced in the initial position of a CVC syllable,

where the vowel was one of six vowels, and the final
consonant was always /p/. They had measurements of
24 cues from these tokens (Jongman et al., 2000). They
presented a subset of these recordings to listeners and
asked them to identify the syllable-initial fricative. They
then used a method from Nearey (1990) and Cole et al.
(2010), that we also make use of in this paper, to compare
whether normalized or unnormalized cues led to more
human-like identification in their model. They found that
the version that normalized for speaker and neighboring
vowel yielded a better match to human categorization than
the version that used unnormalized cues. This finding
has been replicated many times, sometimes with different
normalization implementations (Apfelbaum & McMurray,

2015; Cole et al., 2010; Richter et al., 2017); however,
these models have, for the most part, only been applied to
controlled and well-enunciated lab speech.

There has also been some work looking at normalization
in acquisition. Dillon et al. (2013) considered the problem
of learning the phonological system of Inuktitut, using
elicited speech. Inuktitut has three vowels (/i/, /u/, /a/),
but these vowels are lowered when followed by uvular
consonants. The researchers found that a computational
model that learned from the unnormalized vowel formants
failed to learn the correct sound categories of Inuktitut
(learning six categories instead), but when they subtracted
out the influence of the neighboring uvular and used these
normalized vowel formants as input to the model, it was
able to learn the correct three categories of Inuktitut, just
as infants do, suggesting that normalization is a possible
strategy that infants could be using in learning the sounds of
their language.

Because most cognitive research has focused on carefully
controlled laboratory research or synthesized speech,
and because many of the empirical studies supporting
normalization could also be in support of top-down
information accounts, it is hard to draw strong conclusions
about the efficacy of normalization in naturalistic listening
environments. This paper further tests its efficacy in
naturalistic listening situations.

Evidence that factoring out systematic variability might
be useful in Japanese

Factors other than phonological length influence the
duration of Japanese vowels, and could cause the overlap
between short and long vowels. This is variability that
normalization could, in principle, help reduce.

First, the quality of a vowel systematically affects its
duration. Hirata (2004) had Japanese participants produce
disyllabic non-words in a carrier phrase and found that
the vowel /e/ tended to be acoustically longer than /o/ and
/u/. In addition, Bion et al. (2013) analyzed a corpus of
spontaneously produced infant-directed speech and found
that low vowels were acoustically longer than high vowels.

Japanese vowels are also acoustically shorter in fast
speech than slow speech, all else being equal. Hirata (2004)
had participants produce Japanese sentences (including non-
words) at three different speech rates—slow, normal, and
fast speech—and found that as the speech rate quickened,
the vowels became acoustically shorter.

There is evidence that the prosodic position of a sound
influences the duration of a vowel, as well. There are various
prosodic phrase types in Japanese—utterances are made up
of intonational phrases (IPs), which are, in turn, made up
of accentual phrases (APs)—and a vowel’s position relative
to these phrasal units affects its duration. Bion et al. (2013)
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found that in spontaneous infant-directed speech, vowels
are acoustically longer when followed by an intonational
phrase boundary, but acoustically shorter when followed by
a word boundary that is not an intonational phrase boundary.
Martin et al. (2016) calculated the average mora duration in
various prosodic positions in spontaneously produced adult-
and infant-directed speech. They found that the average
mora duration increases, moving from more phrase-medial
to more phrase-final positions (from phrase-medial, to AP-
final, to IP-final, to utterance-final position), which suggests
that segments are acoustically lengthened phrase-finally.

Some work has also shown that neighboring sounds can
influence the duration of a vowel. For example, several
studies have found that vowels tend to be acoustically longer
before a geminate than a singleton consonant (Fukui, 1978;
Han, 1994; Kawahara, 2006). Other work has suggested
that accented vowels tend to be acoustically longer than
unaccented vowels (Hirata, 2004).

Finally, although these factors have not been studied in
Japanese, work in other languages suggests sounds may
be acoustically lengthened at the beginning of a phrase,
in addition to phrase-finally (Keating et al., 2004; Rakerd
et al., 1987), that sounds may be acoustically shorter in
function words rather than content words, and that other
features of neighboring consonants, for example voicing,
may affect the duration of the target vowel (House, 1961;
Luce & Charles-Luce, 1985; Umeda, 1975; Van Santen,
1992). In sum, there are a priori reasons to believe that
normalization could be helpful for the vowel length contrast.

Testing the efficacy of top-down information
on Japanese vowel length

In this section, we test how helpful using contextual
information as top-down information can be in categorizing
Japanese vowels, by testing to what extent it helps separate
short and long vowels in spontaneous speech. We compare
various logistic regression models that make use of higher-
level contextual factors to the baseline logistic regression
that only uses unnormalized duration and formants.

Data

The data we use come from the RIKEN Japanese Mother-
Infant Conversational Corpus (R-JMICC) (Mazuka et al.,
2006). It is spontaneously produced child-directed speech.
Mazuka et al. (2006) collected the data by recording the
speech of 22 mothers who visited the lab with their 18-
to 24-month-old children. The mothers first played with
their child with picture books for about 15 min. They then
played with their child with toys for about 15 min. Finally,
a female experimenter came into the room and talked to

the mother. The mothers’ speech in the first two parts,
where they interacted only with their child, was labeled as
child-directed speech. The mothers’ speech in the third part,
where they interacted with the experimenter, was labeled
as adult-directed speech. The corpus consists of about 14
total hours of speech, and is labeled for both phonetic and
prosodic information.

We extracted information about each of the vowels
produced by the mothers, but excluded singing, coughing,
devoiced vowels, diphthongs, and any segments that the
researchers could not transcribe. We also excluded any
vowels that were not labeled with prosodic information.
This left 92003 total vowels, 30035 of which were in the
adult-directed section of the corpus and 61968 of which
were in the child-directed section of the corpus. All of the
analyses we report were run on the child-directed part of the
corpus; however, we also ran these analyses on the adult-
directed parts and did not find substantial differences in
model performance (see Supplementary Materials).

We extracted both acoustic information and contextual
information about each vowel, as described below. The list
of the features we extracted is also compiled in Table 1.

Acoustic cues

• Duration: We extracted the duration of each vowel in
milliseconds.

• Formants: We extracted the first three formants, and
used these as direct acoustic cues to vowel length.
While duration is thought to be the primary acoustic
predictor of vowel length in Japanese, previous work
has shown that spectral information can improve
categorization performance (e.g., Arai et al., 1999;
Kinoshita et al., 2002; Lehnert-LeHouillier, 2010).
The formants were automatically extracted using Praat
(Boersma, 2001) in previous work on this corpus
(Antetomaso et al., 2017) and we used the formant
values at the midpoint of the vowel.

Contextual factors

In addition to extracting acoustic information, we also
extracted contextual information about each vowel that has
been shown to be relevant for normalization or top-down
information accounts:

• Vowel quality: This was a categorical variable that took
one of five values (/a/, /e/, /i/, /o/, /u/) and was taken
from the coding of what the mother said.

• Speaker: This was a categorical variable, with 22
different possible speaker values.

• Neighboring sounds: We extracted the identity of
the previous sound and the following sound (both
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categorical variables), as labeled by the phonetic
transcription. This was marked as ‘#’ if the vowel
was preceded by silence. Because the vowel length
contrast is thought to be learned later than other types of
contrasts (Sato et al., 2010), it is reasonable to assume
that infants can make use of the other contrasts in their
language to learn vowel length.

• Prosodic position: We represented prosodic position in
three different ways. First, we extracted a categorical
variable that ranged from 1 to 4, which indicated
whether the word that the vowel occurred in was not
phrase-final at all (1), was AP-final (at the end of an
accentual phrase) (2), was IP-final (at the end of an
intonational phrase) (3), or was utterance-final (4) (BI).
Second, we extracted a second categorical variable that
ranged from 1 to 4, which indicated whether the word
that the vowel was in was not phrase-initial (1), was
AP-initial (2), was IP-initial (3), or was utterance-initial
(4) (BIstart). Third and finally, we extracted a vector
of length 12, which represented the prosodic position
of the vowel itself in a bit more detail. Namely, each
element of the 12-long vector was a binary categorical
variable, with three elements of the 12 elements
corresponding to whether the vowel itself was word-
initial, word-medial, word-final, three to whether the
vowel itself was AP-initial, AP-medial, AP-final, three
to whether the vowel itself was IP-initial, IP-medial,
IP-final, and three to whether the vowel itself was
utterance-initial, utterance-medial, utterance-final. That
is, while the first two categorical variables represented
the prosodic position of the word the vowel was in, and
would, thus, have the same value for every vowel in a
given word, the vector represented the prosodic position
of the vowel itself.

• Accented?: This was a binary variable that took a value
of 1 if the vowel was accented and 0 if it was not.

• Speech rate: We extracted the duration of the
immediately preceding and the immediately following
sounds, as proxies for speech rate. If the vowel was
immediately preceded (or followed) by silence, we did
not use the duration of the silence, but instead used
the average duration of the immediately preceding (or
following) sound, averaged across all vowels that were
not preceded (or followed) by silence.

• Condition of the vowel: This was a categorical variable
with a value of ‘B’ if the vowel occurred when mother
and child were playing with books and ‘T’ if it occurred
when mother and child were playing with toys. We
include this to account for the possibility that the
mothers’ speech was consistently different (e.g., more
or less clear) while playing with books than toys.

• Part of speech: This was a categorical variable taken
from the annotation in the corpus. In our simulations,

we either use full part-of-speech information, or
simplified part-of-speech information, which only
considers the distinction between function and content
words. We vary this because we want our results to
be applicable to language acquisition. Infants show
evidence of distinguishing function vs. content words
using acoustic correlates as early as birth (Shi et al.,
1999; Shi & Werker, 2001), so it is relatively likely that
they can make use of this knowledge in learning the
contrast. However, it is less clear that they could make
use of full part-of-speech information for this task,
as cross-linguistic evidence suggests that infants have
much of this knowledge only after Japanese infants
have learned the vowel length contrast (Höhle et al.,
2004; Mintz, 2006; Shi & Melançon, 2010). That
being said, He and Lidz (2017) show evidence that
infants know the distinction between nouns and verbs
as early as 12 months, so while infants might not have
complete part-of-speech information, they may be able
to use more than just the distinction between function
and content words for acquiring the vowel length
contrast. Testing function vs. content word distinctions
in addition to full part-of-speech allows us to determine
whether our qualitative results hold true regardless of
what infants know.

Methods

We compare the results of four models—divided into three
types of models. The baseline model is a logistic regression
that learns to predict short/long from only a vowel’s
absolute duration and formant values (Baseline). The next
two models are logistic regressions that learn to predict
short/long from contextual factors listed previously and in
Table 1, in addition to absolute acoustic cues (Acoustic and
Top-Down Information Models). The first of these makes
use of all of the contextual factors listed in Table 1, with
part-of-speech simplified to just indicate whether the word
was a function or content word. The second of these makes
use of all of the contextual factors, including detailed part-
of-speech, exactly as annotated in the corpus. Finally, we
test how much signal just the contextual factors provide, by
running a logistic regression model that learns to categorize
vowels as short/long using only the contextual factors,
without any access to acoustic information (Top-Down
InformationModel Without Acoustics). Studying the results
of this model will allow us to understand how much of the
work context does. That is, it will reveal how many vowels
can be identified just by the context they occur in, without
even turning to acoustic information, or, in other words, how
much information is lost when acoustics are removed.

We split the dataset into a training subset (90% of the
data) and a test set (the remaining 10% of the data), keeping
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the proportions of short and long vowels equal in the two
sets. The training and test sets consisted of the same tokens
for all of the simulations run in this paper.

Once the logistic regression equations were estimated
from the training set, we simply applied each equation to
the vowels in the unseen test set to make a prediction
about whether that vowel was short or long, as described
previously. We compared the models’ predictions to the true
labels. We report two types of evaluation metrics for each
tested model.

First, we report overall categorization accuracy, which is
simply the percentage of all of the vowels in the test set
that the model categorized correctly, as well as accuracy on
just the short vowels and accuracy on just the long vowels.
Second, we report the Bayesian Information Criterion (BIC)
for each model, computed over the training set. The BIC is
a common metric used to select between different models
(Schwarz, 1978). The benefit of the BIC is that it balances
how well the model works (the likelihood of the model
given the data) with how complicated the model is (how
many parameters it uses), so it will prefer simpler models,
all else being equal. The BIC is calculated as follows and
lower values are better:

BIC = −2 ∗ ln(L) + k ∗ ln(n) (5)

where L is the likelihood of the model given the data, k is
the number of parameters, and n is the number of samples.

We ran each model ten times and averaged performance
across these ten runs.

Results

The results from this analysis on child-directed speech are
summarized in Table 2.

Baseline model

The baseline model reached an overall accuracy of 91.1%.
It correctly categorized 99.1% of short vowels, and 12.2%

of long vowels. It had a BIC of 28716. Because 90.9%
of vowels in the R-JMICC corpus are short, this model
performs comparably to a model that simply categorizes
every incoming vowel as short, and has failed to learn
anything meaningful about the distinction between short
and long vowels.

Acoustic and top-down informationmodel

The following models used contextual factors as direct
predictors to category membership, in addition to using
absolute duration and formant values. When part-of-speech
was simplified to the distinction between function and
content words, the model reached an overall accuracy
of 95.2%, correctly classifying 98.8% of short vowels
and 59.0% of long vowels. The BIC was 15193. When
we included full part-of-speech information, the model
achieved an overall accuracy of 95.7%, correctly classifying
98.8% of short vowels and 63.9% of long vowels.
The BIC was 13106. Including additional part-of-speech
information led to performance improvements, but both
models substantially outperformed the baseline model.
Table 3 analyzes the role of each contextual factor, by
showing how well a model with each factor as its only piece
of top-down information performs. The most helpful factors
include part-of-speech, the previous sound, the following
sound, whether the sound is accented, prosodic information
(BI and BIstart as described previously), as well as vowel
quality.

Top-down informationmodel without acoustics

Even without any acoustic information, only contextual
information, the final top model achieved an overall
accuracy of 94.5%, correctly classifying 98.6% of short
vowels and 54.0% of long vowels. The model BIC
was 16301. That is, although there was a slight dip in
performance when we removed acoustic information, top-
down information models can still perform well even
without any acoustic information, suggesting a large role for
context.

Table 2 Summary of top-down information results from the R-JMICC dataset

Model Accuracy Short accuracy Long accuracy BIC

Baseline 91.1 99.1 12.2 28716

Top-down information (with simplified POS) 95.2 98.8 59.0 15193

Top-down information (with POS) 95.7 98.8 63.9 13106

Top-down information (with POS, no acoustics) 94.5 98.6 54.0 16301
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Table 3 Results showing the contribution of each contextual factor. This table shows model results when each available contextual factor is
included as the only piece of top-down information in a logistic regression model. Factors are ranked from lowest BIC (best) to highest BIC (worst)

Factor Accuracy Short accuracy Long accuracy BIC

Baseline 91.1 99.9 12.2 28716

Part-of-speech 92.0 99.1 21.0 23165

Previous sound 92.1 99.0 23.0 24231

Following sound 91.7 99.1 18.9 25572

Accented? 91.4 99.1 15.0 26446

BIstart 91.8 99.3 17.5 26870

Quality 91.2 99.0 13.6 27372

BI 91.5 99.1 15.9 27673

Word-medial? 91.0 99.0 11.7 28205

Utterance-final? 91.2 99.0 13.4 28362

Speaker 91.1 99.1 12.4 28463

IP-final? 91.2 99.1 13.3 28500

Word-initial? 91.2 99.1 12.2 28523

Previous sound duration 91.3 99.1 13.1 28540

Word-final? 91.1 99.0 12.2 28563

AP-final? 91.2 99.1 13.3 28605

AP-initial? 91.2 99.1 12.4 28687

Utterance-initial? 91.2 99.1 12.2 28697

AP-medial? 91.2 99.1 12.4 28701

IP-initial? 91.2 99.1 12.2 28703

IP-medial? 91.1 99.1 11.8 28723

Following sound duration 91.2 99.1 12.2 28724

Condition 91.2 99.1 12.2 28726

Utterance-medial? 91.1 99.1 12.2 28727

Discussion

In these analyses, we investigated the hypothesis that infants
and adults learn and process the Japanese vowel length
contrast by combining bottom-up acoustic cues with top-
down expectations about which category is likely to occur
in a particular context. To implement this hypothesis, we
included contextual factors listed in Table 1 as direct
predictors of category membership in the logistic regression
model (in addition to absolute acoustic cues), and compared
its performance against a model that only makes use of
absolute acoustic cues as predictors.

We found that including these additional contextual
factors as predictors drastically improved accuracy and
lowered BIC scores, suggesting that this method does quite
well at separating short vowels from long vowels. Given the
relatively small set of factors we used—for example, the
only word-level information we used was part-of-speech—
it is quite impressive that the model achieved this level of

performance, and it suggests that this may be a hypothesis
worth pursuing as a way that infants could learn and adults
could process the Japanese vowel length contrast.

In fact, although excluding acoustic information did hurt
performance, a model relying on contextual information
alone still performs very well. Even without any acoustic
information, this model can correctly identify nearly all
short vowels and more than half of all long vowels. This
illustrates just how much signal there is in contextual
information.

This work shows that top-down information could be
very useful in adult speech perception, and also has
implications for acquisition. Although these are supervised
models that have much more information available to them
than infants learning language, and there is still work to be
done to show that this is a strategy that could be helpful in
acquisition, our analysis does reveal that there is signal to
separate short and long vowels that could be exploited in a
future unsupervised model.
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Testing the efficacy of normalization on
Japanese vowel length

In this section, we test whether normalization can help
categorize Japanese vowels, by comparing models that use
normalized acoustic cues to models that use unnormalized
acoustic cues.

Data

The data are exactly the same from the first analysis, but
the contextual factors listed in Table 1 are normalized out of
the acoustics (as described below in the Methods section),
instead of being included as independent predictors in the
logistic regression categorization model. The same training
and test sets are used as in the previous analysis, which
allows us to directly compare results.

Methods

In testing the efficacy of normalization on spontaneous
speech, we implement and test two normalization methods.
First, we apply methods from previous work (Cole et al.,
2010; McMurray & Jongman, 2011; Nearey, 1990) to
the Japanese vowel length contrast, by using linear
regression to normalize out systematic variability from
vocalic acoustic cues. Second, we implement normalization
using a neural network, which has the advantage over past
implementations that it can represent more powerful, non-
linear normalization functions. Our results can only directly
tell us about the two implementations we use, and future
work should investigate other ways of normalizing. We
return to the question of how these results would generalize
to other contrasts in the General Discussion.

Normalization implementation

We use either unnormalized or normalized acoustic cues as
predictors of vowel length. Using unnormalized cues simply
involves representing the absolute acoustic cues, so this
section will focus on how we implement normalization. The
basic idea underlying both of the implementations we use is
to learn a function that predicts acoustic features (duration
and formants) of a vowel from the context that a vowel
occurs in (i.e., vowel quality, speaker, prosodic position).
Once we learn this function, we can make a prediction about
a vowel’s duration and formants based on everything we
know about where it occurs. We can then use the residuals,
or the difference between how long we expect the vowel
to be given all of the factors and how long it actually is,
to represent a normalized version of this vowel. That is,

we have excluded the influence of contextual factors and
have recoded the acoustic cues in terms of their difference
from expected values. Once we learn this equation from the
training set, we recode both the training set and the test
set in normalized terms. We use two different methods for
representing the function between contextual factors and
acoustic cues, linear regression and neural nets, which can
learn non-linear functions, which we describe in turn.

Linear regression as normalization Following previous
work, we first use linear regression to factor out systematic
variability (Cole et al., 2010; McMurray & Jongman,
2011; Nearey, 1990). Linear regression models represent a
relationship between a continuous dependent variable and a
set of independent variables. In this particular case, we try
to estimate an equation that can predict what the acoustic
features (duration and formants) of a vowel should be from
its context. Each of the factors (e.g., vowel quality, speaker,
prosodic position from Table 1) is weighted and combined
linearly to yield a prediction. That is, given the factors
x1, x2, ..., xn, linear regression models take the form:

acoustic cue = β0 + β1 ∗ x1 + β2 ∗ x2 + ... + βn ∗ xn (6)

Learning this function involves learning an intercept (β0),
as well as a weight for each cue (β1...βn). The data it learns
from consist of the information we want to factor out of the
acoustic cues, as well as the known acoustic cue values of
the vowel, and weights are learned so as to minimize the
error in predicting the duration of the vowel.

Neural networks as normalization The linear regression
models we use can only learn normalization functions and
do not include interactions, even though previous work did.
This is because our analyses use a total of 23 contextual
factors, so considering all possible interactions would
be computationally difficult. To test the possibility that
our linear regression without interactions was insufficient
to handle spontaneous speech, we also implemented
normalization using a neural network. We train a neural
network on the training set to predict the duration and
formants of a vowel token from its context. Once we have
a trained neural network, we use it to predict expected
acoustic cues for each vowel, subtract them from the vowel’s
true acoustic values, and input this into a logistic regression
model.

We use a simple feed-forward neural network. We use
five-fold cross validation on the training data to tune
parameters of the neural network. We manipulate the
number of hidden layers, the batch size, the number of nodes
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in the hidden layers (either keeping this constant for all of
the layers or decreasing the number of nodes progressively
deeper into the network), learning rate, number of epochs,
and regularization factors. We choose the parameters that
minimize average mean squared error on the training set.

Logistic regressions

To test the efficacy of normalization, we compare seven
total logistic regression models, which can be grouped
into three types of models. The first model is the
baseline, which as before uses absolute (unnormalized)
duration and formants to predict category membership
(short or long). Then, for each type of normalization (linear
regression and neural networks), we run three models.
First, we regress out all of the contextual factors listed
in Table 1 with part-of-speech in simplified form (i.e.,
function/content word distinctions). Second, we regress out
all of the contextual factors listed in Table 1 including
full, detailed part-of-speech information. In both of these
models, the normalization function is trained completely
independently of the subsequent logistic regression. That
is, the normalization function is not trained to maximize
categorization performance. The third and final model is an
oracle model: we choose the subset of contextual factors
from Table 1 that maximizes categorization performance,
which gives us an estimate of the upper bound on
normalization performance. This is useful because it is
possible that we are wrongly including some factors in
the first three models and underestimating the efficacy of
normalization. Running this oracle model allows us to see
what the best normalization performance could be.

Results

A summary of the results is presented in Table 4.

Unnormalized model

The baseline model is identical to the baseline model from
the previous analysis and uses unnormalized duration and
formants as predictors of category membership, without
running any linear regression models. As a reminder, this
logistic regression model reached an overall accuracy of
91.1%. It correctly classified 99.1% of short vowels and
12.2% of long vowels. Its BIC was 28716.

Linear regression normalizationmodels

When all of the contextual factors with simplified part-
of-speech (function vs. content word) were regressed out,
the model had an overall categorization accuracy of 91.2%,
correctly classifying 99.5% of the short vowels and 8.3% of
the long vowels. It had a BIC of 30774. The set of factors
used accounted for 26.8% of the variance in duration, 23.0%
of the variance in F1, 40.2% of the variance in F2, and 8.1%
of the variance in F3.

When all of the contextual factors including full part-
of-speech information were regressed out, the model had
an overall categorization accuracy of 91.2%, correctly
classifying 99.6% of the short vowels and 7.6% of the long
vowels. It had a BIC of 30990. The set of factors used
accounted for 27.8% of the variance in duration, 23.1% of
the variance in F1, 40.3% of the variance in F2, and 8.3% of
the variance in F3. Figure 4 plots the normalized durations
by vowel length for this model.

Finally, the oracle normalization model included the
following five contextual factors: speaker, whether the
vowel itself was word-final, whether the vowel itself was
AP-final, whether the vowel itself was IP-final, and whether
the vowel itself was utterance-final. This oracle model had
an overall accuracy of 91.2%, and correctly classified 99.0%
of the short vowels and 13.6% of the long vowels. It had an

Table 4 Summary of normalization results on R-JMICC corpus

Model Accuracy Short accuracy Long accuracy BIC

Unnormalized baseline 91.1 99.1 12.2 28716

Linear regression normalization 91.2 99.5 8.3 30774

All factors with simplified part-of-speech

Linear regression normalization 91.2 99.6 7.6 30990

All factors with full part-of-speech

Oracle linear regression normalization 91.2 99.0 13.6 28122

Neural network normalization 91.1 99.8 5.1 32356

All factors with simplified part-of-speech

Neural network normalization 91.1 99.7 5.8 31738

All factors with full part-of-speech

Oracle neural network normalization 91.2 99.0 13.4 28188
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Fig. 4 Distribution of normalized durations (through linear regres-
sion). Normalizing does not appear to decrease overlap between short
and long vowels

overall BIC of 28122. The set of factors that resulted in the
best categorization performance accounted for 11.7% of the
variance in duration, 3.6% of the variance in F1, 3.3% of the
variance in F2, and 3.8% of the variance in F3.

Neural network normalization models

When all of the contextual factors with simplified part-of-
speech (function vs. content word) were normalized out,
the model had an overall categorization accuracy of 91.1%,
correctly classifying 99.8% of short vowels, and 5.1% of
long vowels. The BIC was 32356.

When all of the contextual factors, including fully
detailed part-of-speech information, were normalized out,
the model reached an overall categorization accuracy of
91.1%, correctly classifying 99.7% of short vowels, and
5.8% of long vowels. The BIC was 31738.

Finally, the oracle model normalized out the following
factors from the acoustics: whether the vowel itself was
word-final, whether the vowel itself was AP-initial, whether
the vowel itself was AP-final, and whether the vowel
itself was utterance-final. The oracle model had an overall
accuracy of 91.2%, and correctly classified 99.0% of the
short vowels and 13.4% of the long vowels. It had an overall
BIC of 28188.

Discussion

Previous work has argued that normalization can be helpful
in acquisition and processing (Cole et al., 2010; Dillon
et al., 2013; McMurray & Jongman, 2011); however,
our results on Japanese vowel length did not lend
additional support to this hypothesis. We compared the
Japanese vowel length categorization performance of a
logistic regression model that used unnormalized acoustic
cues to the performance of various logistic regression
models that used normalized acoustic cues. We considered
two different normalization implementations, and three
different instantiations of normalized cues for each. The

first normalized all available contextual factors, with
simplified part-of-speech information (i.e., whether the
word containing a vowel was a function or content word).
The second normalized all available contextual factors,
including detailed part-of-speech information. The third and
final normalized out the subset of contextual factors that
led to best categorization performance. Crucially, in the
first two models, as in past work, normalization was not
optimized to give the best categorization. The final, oracle
model considered categorization performance in choosing
how to normalize, giving it the best possible chance to
succeed.

The main finding was that, at its best, normalization
resulted in only a modest improvement in accuracy and BIC,
regardless of which implementation we used. Although the
overall accuracy of all of the models is quite high, just
guessing that all of the vowels were short would result
in similar results. Normalization never improved accuracy,
but improved the BIC from 28716 for the unnormalized
version to 28122 for the best normalized version. While this
does constitute improvement, it is only modest improvement
and a listener would need to learn precisely which factors
they should normalize out. Of course, it is possible that
results would be better on a larger corpus with more
information about the contextual factors. We used previous
and following sound duration as a proxy for speech rate,
while other measures of speech rate might lead to better
performance, and we return to this possibility in the
discussion. However, given how prevalent normalization is
in the field, the results are surprisingly bad and call into
question the efficacy of normalization, at least in this task.

Although it is difficult to directly compare this degree
of improvement to the improvement shown in past
studies merely on the basis of accuracy, past studies that
have implemented and tested normalization reported that
normalization resulted in an increase in performance from
28.63% to 54% and 83.3% to 92.9% respectively (Cole
et al., 2010; McMurray & Jongman, 2011). In comparison,
in this work, the overall accuracy did not change depending
on whether cues where unnormalized or normalized, and
the long vowel accuracy increased from 12.2% to 13.6%—
a much weaker increase in performance than has been
observed previously.

It is important to emphasize that there are many ways
that normalization could be implemented. Here, we have
only tested one that has been proposed and well studied in
the literature, as well as a neural network extension of it. It
is possible that a different implementation of normalization
could yield different results, and future work should test
this, in addition to developing additional specific proposals
for how normalization could operate. Nonetheless, we have
some evidence that this normalization model may not be as
helpful as previously thought, and we explore why in the
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following sections. Understanding why normalization is not
helpful will also let us speculate whether these results will
generalize to other normalization implementations.

Do differences between controlled lab
speech and spontaneous speech explain
discrepancies in results?

Previous results found normalization to be helpful; however,
our results were surprising in that they showed that
normalization was unhelpful—even when the process was
fully supervised. The biggest difference between previous
work and our own is that most previous work has explored
normalization on controlled and carefully enunciated
lab speech, but our work looked at normalization on
spontaneously produced speech. To bring these results more
in line with each other, we apply the same normalization
analyses we used on the R-JMICC Spontaneous Speech
corpus to a corpus of read speech that more closely
resembles controlled, lab speech. We find that the same
linear regression normalization process that was not helpful
on spontaneous speech is helpful on read lab speech,
suggesting that the discrepancy in results between our
work and previous work arises from differences between
spontaneous and controlled speech.

Data

The data we use here come from Werker et al. (2007).
The data consist of ten mothers teaching their 12-month-
old infants a set of 16 nonce CVCV words, while looking
at picture books together. This interaction included both a
reading task, in which mothers were asked to read sentences
containing the nonce words with pictures of the novel object
(Werker Read dataset - Fig. 5), as well as a spontaneous
speech task, in which mothers were asked to describe a

scene that contained the novel object, using the nonce word
as much as possible (Werker Spontaneous dataset - Fig. 6).
The nonce words were made only using /i/ and /e/ as
critical vowels, so the data do not contain any annotated
instances of /a/, /o/, or /u/, unlike the R-JMICC corpus. The
data were collected in the NTT Communication Science
Laboratories in Keihanna, Japan and were labeled by trained
phoneticians.

These data were much more similar to datasets that had
previously been used to study normalization, though not
identical. The experimenter controls the environment in
which target sounds occur in, and artificially changes the
statistical co-occurrences from that of naturalistic speech.
This is especially true for the read portions, but still
true for the spontaneous subset, in which researchers still
decided what the nonce words were and, therefore, what
sounds each target vowel was likely to occur next to.
In addition, the productions are relatively well enunciated
because the parents are trying to teach their children new
words. However, that being said, even the read speech is less
constrained than many speech recordings used for research,
in which words are often recorded in isolation, or in highly
constrained contexts like “Now I will say .”

It is also worth pointing out that though we, and the
past researchers, refer to one portion of the Werker data
as spontaneous, it is quite different than the spontaneous
R-JMICC data, in that nonce words were used, only a
subset of vowels are represented, mothers were instructed
to teach their infants, and they were provided with highly
constrained images to describe.

Given these data, we extracted information about each
of the vowels produced by the mothers, excluding any
segments that the researchers could not annotate with
certainty. The read speech data consisted of 798 vowels,
of which 381 (47.7%) were phonemically short vowels and
the remaining 417 (52.3%) were phonemically long vowels.
The spontaneous speech data consisted of 1382 vowels,

Fig. 5 Distribution of Werker Read IDS vowels (by log-duration). Log-durations will be negative whenever the vowel is less than a second long

659Psychon Bull Rev  (2020) 27:640–676



Fig. 6 Distribution of Werker Spontaneous IDS vowels (by log-duration). Log-durations will be negative whenever the vowel is less than
a second long

exactly half of which were phonemically short and half
of which were phonemically long. Similarly as for the R-
JMICC data, the information we extracted was either used
as an acoustic predictor or as a contextual factor to be
normalized out.

Acoustic cues

As before, we used the duration of the vowel in milliseconds
and the first three formants, as direct predictors of
vowel length. These acoustic cues were either represented
unnormalized as in the corpus, or underwent normalization
through linear regression.

Contextual factors

We also extracted all of the contextual information that the
original researchers had labeled on this dataset. The set of
factors available for the Werker data is largely a subset
of what was available for the R-JMICC dataset, with the
exception that fundamental frequency (F0) was available for
the Werker data while it was not extracted for R-JMICC. In
addition, the labeling for prosodic position information was
much simpler for the Werker data than for R-JMICC data,
as described below. We collected the following pieces of
information about each of the extracted vowels.

• Vowel quality: This was a categorical variable that took
one of two values (/e/ or /i/) and was taken from the
coding of what the mother said.

• Speaker: This was a categorical variable with one of
ten different possible values.

• Prosodic position: Prosodic position took one of four
values: ‘Independent Word,’, if the vowel occurred in
a free-standing word, or ‘Sentence Initial,’ ‘Sentence
Medial,’ or ‘Sentence Final,’ depending on whether the
syllable the vowel occurred in was first, last, or in
the middle of the sentence. This was controlled in the
Werker Read data.

• Neighboring sounds: We extracted the previous and
following sound. Unlike in the R-JMICC data, these
were controlled to always be consonants.

• Fundamental frequency: We extracted the F0 at the
vowel’s midpoint.

Methods

We use linear regression to implement normalization. We
did not use neural networks because they require large
amounts of data, which we do not have for controlled
lab speech, and because they performed worse than linear
regression normalization models in our previous analyses.
This is a limitation because it does not provide as strong
of a test of the normalization hypothesis; however, our
results will show that even just using a linear normalization
function will suffice for getting better normalization results
on the Werker data than the R-JMICC data. The methods
were otherwise identical to the normalization methods run
on the R-JMICC data set.2

Results

The results are summarized in Table 5.

Werker read speech data

Unnormalized model The unnormalized model achieves
91.4% overall accuracy on the Werker Read speech.

2Top-down information analyses are not included for the Werker
corpus, as they would not be informative above and beyond the
analyses performed on the R-JMICC corpus. Top-down information
models make use of regularities in where different sounds occur. Any
regularities that exist in the Werker corpus arise because researchers
created them, and do not reflect true regularities that exist in
naturalistic speech. As a result, we only present normalization analyses
for the Werker corpus, which are informative above and beyond the
analyses performed on the R-JMICC corpus, because they help explain
why we see worse normalization performance than in past work.
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Table 5 Comparison of normalization results on R-JMICC spontaneous speech corpus and Werker controlled laboratory data. The Werker speech
corpus had a read component and a spontaneous component, but even the spontaneous component was relatively controlled by the experimenters,
as the experimenters provided nonce words for the parents to teach their children

Data Model Accuracy Short accuracy Long accuracy BIC

Unnormalized 91.4 89.7 92.9 246

Werker read Normalized (all factors) 86.1 83.9 88.1 399

Normalized (best factors) 95.1 92.3 97.6 105

Unnormalized 82.9 90.0 75.7 1072

Werker spontaneous Normalized (all factors) 78.5 85.9 71.1 1219

Normalized (best factors) 90.0 92.9 87.1 869

Unnormalized 91.2 99.1 12.2 28716

R-JMICC spontaneous Normalized (all factors) 91.2 99.6 7.6 30990

Normalized (best factors) 91.2 99.0 13.6 28122

Although this is a similar overall accuracy to the R-JMICC
spontaneous data, this corpus is much more balanced than
the R-JMICC corpus. In the Werker Read speech, about
47.7% of the used vowels are short, compared to 90.9% in
the R-JMICC corpus, so a strategy of simply categorizing
every vowel as short (or long) will not yield as good results
on the Werker Read Speech as on the R-JMICC corpus.
The unnormalized model correctly classifies 89.7% of short
vowels and 92.9% of long vowels, achieving a BIC of 246.

Normalized models When we normalized out all available
factors, the model’s overall accuracy is 86.1%, and it
correctly classifies 83.9% of the short vowels and 88.1%
of the long vowels. Its BIC is 399. That is, normalizing
all available factors does not improve performance. When
we instead choose the best subset of factors, the model no
longer factors out the effect of the following consonant,
and shows a boost in performance. It achieves an overall
accuracy of 95.1%, a short vowel accuracy of 92.3%, a long
vowel accuracy of 97.6%, and a BIC of 105.

Werker spontaneous speech data

Unnormalized model The unnormalized model achieves
82.9% overall accuracy on the Werker Spontaneous speech,
and correctly classifies 90% of the short vowels and 75.7%
of the long vowels. It achieves a BIC of 1072. Again, in
the Werker Spontaneous speech, exactly 50% of the used
vowels are short, so the unnormalized model substantially
outperforms one that simply guesses that each vowel is
short, unlike on the R-JMICC corpus.

Normalized models The model that normalizes out all
available contextual factors listed previously and in Table 1
achieves an overall accuracy of 78.5%, correctly classifying
85.9% of short vowels and 71.1% of long vowels. When
we allow subsequent categorization results to drive which

subset of contextual factors are included in normalization,
the model achieves an overall accuracy of 90.0%, and
correctly classifies 92.9% of short vowels and 87.1% of long
vowels. It achieves a BIC of 869. Similarly to the Werker
Read speech, normalizing out all of the factors does not
help, but depending on what factors are normalized out,
normalization can help—and substantially.

Discussion

In this section, we applied the linear regression analyses
that we applied to the R-JMICC spontaneous speech corpus
to the Werker corpus. The idea was to test whether we
would see similar normalization results as were previously
reported, when we used data that more closely resembled
that used in previous work. We found that normalization
could help on the read speech, as well as the Werker
spontaneous speech, even though it did not help when all
available contextual factors were factored out.

That is, on the same contrast in the same language,
normalization was helpful on carefully controlled lab
speech, but was unhelpful on naturalistic, uncontrolled
spontaneous speech. This suggests that normalization may
be ineffective on spontaneous speech.

Another interesting finding was that the Werker Sponta-
neous speech patterned similarly to theWerker Read speech,
instead of the R-JMICC Spontaneous speech. The overall
results were worse on the Werker Spontaneous speech than
on the Werker Read speech; however, normalization was
helpful on the Werker Spontaneous speech, but not the R-
JMICC Spontaneous speech. One reason for this could be
that duration seems to be used differently by speakers in
the R-JMICC data versus the Werker data, perhaps reflect-
ing the fact that the Werker data is not nearly as natural as
the R-JMICC data. In particular, in comparing Figs. 1 to 5
and 6, it seems that the contrast is being produced differ-
ently in the two datasets, such that duration is a much better
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cue for vowel length in the Werker data than the R-JMICC
data. There is less overlap between the short and long vowel
categories in the Werker data: there is a duration such that
all vowels that are acoustically longer than it are reliably
long vowels. In the R-JMICC data, however, this is not the
case: some short vowels are as acoustically long as the most
acoustically lengthened long vowels.

It is important to emphasize that although both the
R-JMICC and Werker Spontaneous speech datasets are
referred to as spontaneous speech, they differed quite
substantially in nature. In particular, in the Werker
Spontaneous speech, mothers were producing nonce words
that were created by researchers, were instructed to teach
their infants, and were given pictures to describe. In
the R-JMICC Spontaneous speech, mothers were given
toys and books, but were given very little instruction, so
they were free to talk about anything. It is important to
keep these types of distinctions in mind when developing
and comparing performance across various spontaneously
produced speech datasets.

Overall, the simulations we have presented have disen-
tangled normalization and top-down information accounts
and evaluated their relative efficacy on relatively natu-
ralistic, spontaneously produced speech. Our results from
Japanese vowel length suggest that while top-down infor-
mation accounts are extremely useful even on spontaneous
speech, results that argue for this normalization model only
hold for controlled laboratory speech and do not generalize
to the type of spontaneous speech that listeners hear. These
results force us to scrutinize the role this model and normal-
ization, more broadly, can play in learning and processing,
as well as the ways in which the primary cue for a distinction
can shift based on the domain of speech.

In the following two sections, we consider what
properties of spontaneous speech cause normalization to
be ineffective. We provide simulations, followed by a
theoretical analysis demonstrating that a listener that makes
use of normalization will be impeded if sound categories in
their input differ in the types of contexts they are likely to
occur in.

Simulating how contextual category
imbalances affect normalization
performance

We showed that normalization can help reduce category
overlap between Japanese short and long vowels when
applied to controlled lab speech, but not when applied to
spontaneous speech. What are the properties of sponta-
neous speech that make this normalization implementation
ineffective?

In this section, we provide simulations that reveal that
one property of spontaneous speech that seems to play
an important role is the fact that categories do not occur
uniformly across contexts in spontaneous speech, as they
do in controlled lab speech. That is, imbalances in where
categories occur—precisely the type of signal that is helpful
in top-down information accounts—can hurt normalization.
We provide an example from the Werker controlled lab
speech, in which we take advantage of one contextual
factor—the following sound—that is not balanced between
short vowels and long vowels. In particular, the consonants
/g/, /s/, and /z/ (three of the eight consonants used in
the study) each followed either only short vowels or
only long vowels. Even within following consonants that
occurred both with short and long vowels, there were
large imbalances in which vowels occurred with which
consonants. These types of imbalances are uncommon in
carefully controlled lab speech, where researchers ensure
that each vowel occurs in each context—but are extremely
common in spontaneous speech, which has phonotactic
constraints and phonological alternations. We previously
showed that when the effect of the following consonant was
one of the contextual factors normalized out, normalization
hurt onWerker Read speech, but when it was not normalized
out, normalization helped. Here we show that this is because
of the large imbalance observed between short and long
vowels, by artificially balancing the dataset and showing
that normalizing out the following consonant becomes
helpful once it is balanced.

Methods and data

The data we use come from the Werker dataset, as
described previously. We test the efficacy of normalization
(implemented via linear regression) on various subsets of
the Werker Read speech data. We limit normalization to one
contextual factor—following consonant.

The first dataset is simply the full dataset (Full). As
described previously, some of the consonants in the dataset
exclusively follow either short vowels or long vowels (i.e.,
(/g/, /s/, and /z/). To create the second dataset, we remove
all vowel tokens that precede one of these consonants and
test the efficacy of normalization on this partially balanced
dataset. The remaining consonants (/b/, /d/, /k/, and /p/)
are still all much more likely to follow one of the vowel
categories than the other. For example, /k/ is twice as likely
to follow short vowels than long vowels, even though it co-
occurs with both. Therefore, to create the third dataset, we
randomly remove enough tokens such that each following
consonant is preceded by the same number of short and
long vowels (Fully Balanced). The Fully Balanced dataset
most resembles typical controlled lab speech corpora, as
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it completely controls for which vowels occur with which
consonants. For each of these three datasets, we test the
efficacy of normalizing out the effect of the following
consonant, by seeing whether normalized or unnormalized
cues result in a better separation between short and
long vowels. To ensure that differences in normalization
efficacy between datasets are not due to changes in overall
proportions of short/long vowels, or due to differences
in dataset size, we create two additional control datasets:
a Control for the Partially Balanced Data and a Control
for the Fully Balanced Data. To create these datasets, we
randomly remove the same number of short vowels and
long vowels from the full dataset as are removed in the
Partially Balanced and Fully Balanced datasets, but remove
them randomly and uniformly from all contexts, instead of
removing them based on the following consonant. We run
normalization using linear regression on each of these five
datasets, and test whether normalization is helpful on each
of them.

Results

The results are summarized in Table 6. Normalizing for
the effect of the following consonant is ineffective on the
Full dataset: unnormalized cues result in 91.4% overall
accuracy, while normalized cues result in 82.7% overall
accuracy. However, normalization was more effective on
the Partially Balanced dataset, which removed all vowel
tokens that preceded a consonant that only occurred either
with long vowels or with short vowels. Unnormalized cues
result in 90.1% accuracy, while normalized cues result
in 92.6% accuracy. Finally, normalization was even more
effective on the Fully Balanced dataset: unnormalized cues
resulted in 90.1% accuracy, while normalized cues brought
the accuracy up to 93.8% accuracy. That is, each step of
removing imbalances in the data resulted in improvements
in normalization performance. In fact, when we completely

balanced the dataset, normalization was effective. Just
reducing the size of the tested dataset or changing the
relative proportion of short/long vowels was not enough to
explain this effect, as normalization was still ineffective on
both control datasets.

Discussion

In this section, we explored why normalization is unhelpful
on spontaneous speech. One difference between sponta-
neous speech and lab speech is that sound categories in
spontaneous speech often differ in the contexts they are
likely to occur in, while in lab speech, researchers specif-
ically control where sounds occur to make sure that the
dataset is fully balanced. We took advantage of one con-
textual factor within the Werker data for which this was
not true, and found that when there were imbalances in a
particular context, normalization hurt, but when we artifi-
cially balanced the context, normalization was helpful. That
is, listeners relying on a normalization strategy when their
input contains strong imbalances between categories would
be hurt, unless they could somehow learn that they should
not normalize for factors that are imbalanced. In this par-
ticular case, that would mean learning to normalize for the
previous consonant, but not the following consonant.

If category imbalances across contexts were the only
factor impeding normalization in our analyses, then we
would expect a similar manipulation to make normalization
effective on the R-JMICC data. However, in further analyses
(not described in detail here), we were unable to show
that balancing contextual factors on the spontaneous R-
JMICC data made normalization effective. This suggests
that although contextual imbalances of this type constitute
one key difference between lab speech and spontaneous
speech, they are not the only reason that normalization
is ineffective on spontaneous speech but not lab speech.
Another possibility is that duration is less of a primary cue

Table 6 Results from balancing how often short/long vowels precede different sounds in the Werker Read Speech corpus. Results indicate that
the more balanced the corpus, the better normalization performs

Data Model Accuracy Short accuracy Long accuracy BIC

Full Unnormalized 91.4 89.7 92.9 246

Normalized 82.7 79.5 85.7 525

Partially balanced Unnormalized 90.1 87.2 92.9 219

Normalized 92.6 92.3 92.9 241

Fully balanced Unnormalized 90.1 87.2 92.9 172

Normalized 93.8 92.3 95.2 112

Control for partially balanced data Unnormalized 91.4 89.7 92.9 181

Normalized 81.5 80.8 82.1 377

Control for fully balanced data Unnormalized 90.1 89.7 90.5 151

Unnormalized 83.5 79.5 87.1 325
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to vowel length in spontaneous speech than lab speech, and
this could make normalization ineffective.

That being said, this simulation points to an interesting
interaction between normalization and top-down informa-
tion accounts, because the imbalances that are harmful for
normalization are precisely the imbalances that are helpful
for top-down information accounts. That is, when there is
signal in the input that is helpful for top-down information
accounts, normalization suffers. In the following section, we
delve into this interaction in more detail.

Amathematical analysis of how properties
of naturalistic input affect the efficacy of
normalization and top-down information
approaches

We have seen that there are two ways that context affects
sound production: it affects how likely a particular sound
category is to be produced a priori, and, once that is decided,
it affects what acoustic realization that sound category is
likely to have. As a result, there are also two main ways that
listeners might make use of contextual information when
processing or learning the sounds of their language. They
could either make use of it to normalize the acoustics, or
they could make use of it as top-down information that
biases their category perception directly. Thus far, we have
shown that in the case of Japanese vowel length, top-down
information accounts are robust even on naturalistic speech,
but that normalization is not effective on naturalistic speech.

The previous simulation suggests that signal in the input
that is helpful for top-down information accounts may be
harmful for normalization accounts. In this section, we
provide a theoretical analysis about how listeners relying
on each of these two strategies will fare depending on
the kinds of information sources that are present in their
input, including what pitfalls they might encounter. We
ultimately show that a listener relying on a normalization
strategy when their input contains imbalances in categories
across contexts may be misled, consistent with our previous
simulation, while a listener who relies on a top-down
information strategy when their input contains systematic
variability resulting from context will not be. Overall, the
results in this section suggest that top-down information
strategies are much more robust to various types of input
than normalization strategies are.

How do contextual category imbalances affect
normalization performance?

In this section, we consider how a listener relying on a
normalization strategy will fare when their input contains

imbalances in category membership—of the type that are
helpful in top-down information accounts.

We begin by recapping what inference task we assume
the listener is performing, and how exactly we implement
normalization. As discussed in Chapter 2, we use a logistic
regression categorization model, which involves calculating
the relative probability that a particular vowel is long (or
short) as follows, where d refers to duration, f1, f2, and f3
refer to formants and all β’s refer to learned weights in the
logistic regression.

P(long|dnorm, f norm
1 , f norm

2 , f norm
3 )

= 1

1 + eβ0+β1d
norm+β2f

norm
1 +β3f

norm
2 +β4f

norm
3

(7)

That is, this relies on having normalized duration and for-
mants to categorize a particular vowel as phonemically short
or long. There are a number of ways that normalization can
be implemented. Our upcoming analyses focus exclusively
on the linear regression implementation, which is a simple,
but commonly used normalization method.

In order for normalization to be helpful, we would expect
normalization to push the means of the short and long
vowel categories apart. To study when normalization is
or is not helpful, we derive an equation that quantifies
how the distance between category means changes as a
result of normalization. The mean of short vowels before
normalization, μunnorm

l=short, is the average of the mean duration
of short vowels in each context short vowels occur in,
weighted by how many of all the short vowels occur in
that context. In the following equation, Nl=short,c=j is the
number of short (l = short) vowels in context j (c = j ),
Nl=short is the total number of short vowels, and μl=short,c=j

is the mean duration of short (l = short) vowels in context j
(c = j ).

μunnorm
l=short =

∑

j

Nl=short,c=j

nl=short
μunnorm

l=short,c=j (8)

An analogous equation holds for the mean of long vowels
before normalization, μunnorm

l=long . We can then compute a
closed form value for the means of the short and long vowel
categories after normalization with linear regression—
μnorm

l=short and μnorm
l=long, respectively. Each vowel token is

normalized by taking the difference between that vowel’s
acoustic cue and the average acoustic cue of vowels that
occur in that vowel’s context. Once we obtain closed form
values for the mean acoustics of short and long vowels
pre- and post-normalization, we can derive the following
equation, which shows how the difference between short
and long vowel means changes as a result of normalization.
This allows us to describe under what conditions category
means will move closer together or farther apart as a result
of normalization. Of course, the success of categorization
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depends not just on the difference in means, but how
large this difference is compared to the variance. But
in the simplest case, where normalization applies an
additive mean shift without changing the variance, it is
clear that normalization will hurt performance when the
means become closer together. See the Appendix for a full
derivation of this equation.

(
μnorm

l=long − μnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)

=
∑

j

[
Nl=short,c=j

Nl=short
− Nl=long,c=j

Nl=long

] [
Nl=long,c=j

Nc=j

μunnorm
l=long,c=j

+Nl=short,c=j

Nc=j

μunnorm
l=short,c=j

]

(9)

In this equation, Nl,c is the number of vowels of length
l in context c and μl,c is the mean of vowels of length l in

context c. The first term in the sum,
Nl=short,c=j

Nl=short
− Nl=long,c=j

Nl=long
,

corresponds to the difference between the fraction of
all short vowels that occur in the j th context and the
fraction of all long vowels that occur in the j th context.

The second term in the sum,
Nl=long,c=j

Nc=j
μunnorm

l=long,c=j +
Nl=short,c=j

Nc=j
μunnorm

l=short,c=j , is a weighted average between the
mean of the long vowels in this context weighted by the
proportion of vowels in this context that are long and
the mean of the short vowels in this context weighted
by the proportion of vowels in this context that are
short. The product of these two terms is summed over

all contexts. When the value of
(
μnorm

l=long − μnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)
from Eq. 9 is greater than zero, this

means that normalization has pushed the categories apart
and when this value is less than zero, this means that
normalization has pushed the categories closer together.
This equation reveals that if there are imbalances in the
contexts in which different categories are likely to occur
in, then a listener relying on normalization alone may
be misled. To illustrate why, consider a context that is
dominated by long vowels (i.e., there are more long vowels
than short vowels in this context). For such a contextual
factor, we would typically expect the first bracketed term
(of two) in Eq. 9 to be negative. This is because it is likely
that the proportion of all long vowels that are in this context,
Nl=long,c=j

Nl=long
is greater than the proportion of all short vowels

that are in this context,
Nl=short,c=j

Nl=short
(although this need not be

the case if, for example, there are many more long vowels
than short vowels overall: Nl=long > Nl=short). In this
long-dominated context, the second bracketed term (of two)
would be relatively large for the following reason. Most of
the vowels in this context are long (by virtue of it being

a long-dominated context), so
Nl=long,c=j

Nc=j
will be relatively

large and
Nl=short,c=j

Nc=j
will be relatively small. The second

bracketed term (of two) then consists of putting a higher
weight on the long vowel mean than on the short vowel
mean, which will push this value more towards the long
vowel mean (and thus higher). Taking the product, the value
within the sum will be a relatively large negative number
for long-dominated contexts. Conversely, in a context that
is dominated by short vowels (i.e., there are more short
vowels than long vowels in this context), we would typically
expect the first term to be positive, and the second term to
be relatively small, due to a heavier weighting on the short
vowel mean than on the long vowel mean (which will push
the value towards shorter durations). Taking the product,
the value within the sum will be a relatively small positive
number for short-dominated contexts. Overall, then, we
would expect the sum over all contexts to be negative, since,
as we saw, the negative summands should be relatively
large, and the positive summands should be relatively small.
This means that imbalances in sound categories across
contexts (i.e., large differences in the relative proportion of
short and long vowels within particular contexts) can lead to
normalization bringing the category means closer together,
rather than farther apart.

Another way to think about this is that vowels are
normalized relative to the context they occur in, by
subtracting the mean of all of the vowels in that vowel’s
context from that vowel’s own acoustic values. An
imbalance between short and long vowels in a particular
context will cause the mean of that context to be artificially
decreased or increased, respectively. All else being equal,
in a context that consists of a majority of long vowels,
the mean duration will be artificially lengthened, so
the normalized cues will be artificially low. A parallel
effect will cause the normalized cues for short-dominated
contexts to be artificially higher than expected. That is,
vowels in contexts that are majority long will be shifted
towards shorter durations, and vowels in contexts that are
majority short will be shifted towards longer durations,
which will push the short and long vowel distributions
together. Essentially, the problem is that imbalances in
where categories occur make it hard to estimate a proper
normalization function.

Consider again the toy example in Fig. 2. In this toy
example, there are short vowels and long vowels and only
two contexts. Note that the acoustics of the short and long
vowels do not change across contexts – the average short
vowel and long vowel durations are not shifted. However,
there is a large imbalance between phonemically short and
phonemically long vowels in particular contexts, such that
there are many more long vowels than short vowels in
phrase-medial position, and many more short vowels that
long vowels in phrase-final position. This will cause the
mean duration in phrase-medial context to be much higher
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than the mean duration in phrase-final context. A listener
relying on normalization would try to normalize and would
actually increase the amount of within-category variability
present in the speech stream and push the categories
together. Overall, differences between sound categories, in
terms of the contexts they are likely to occur in, can impede
a listener who relies on normalization strategies.

To be clear, this analysis only reveals that normalization
will be problematic for factors that can also be useful for
top-down information accounts—e.g., neighboring sounds,
prosodic position, but not for speech rate or speaker, which
only affect how a sound is produced and not which sound
is likely to be produced. That being said, normalization
will be ineffective whenever it is difficult to estimate a
normalization function, and there is reason to believe that
this might be the case for factors like speech rate too.
In particular, it has been shown that factors like speech
rate seem to acoustically lengthen long vowels more than
short vowels. In its current form, then, normalization will
be incorrect for factors like speech rate, because it only
estimates one normalization function for both short vowels
and long vowels, instead of using a different function
for each category. We return to this point and what it
tells us about the efficacy of normalization in the General
Discussion.

How does systematic acoustic variability affect
top-down information performance?

While a listener relying on normalization when there is
signal in the input for top-down information accounts
will be misled, the opposite does not hold. A listener
relying on a top-down information strategy when there
is systematic variability to be normalized in their input
will not be misled relative to a listener who simply relies
on the acoustics. The model making use of contextual
information has access to all the information that the
baseline absolute acoustics model does (and more), so it
will necessarily perform at least as well. It can always
learn to put no weight on contextual factors, and implement
exactly the baseline model. Therefore, no matter what
the acoustics are like, using top-down information will
never mislead a learner more than a listener only relying
on acoustic information. More strongly, a listener only
relying on contextual information without any access to
acoustics cannot be misled by systematic variability in
the signal, precisely because it makes no use of acoustic
information. Therefore, a listener who makes use of top-
down information as a contextual bias in learning and
perception will avoid pitfalls that a listener making use of
normalization may encounter (as long as they trained on the
right distributions).

Discussion

In this section, we provided a mathematical analysis
showing that listeners who make use of a normalization
strategy may suffer when there are imbalances in category
membership of the type that are useful for top-down
information accounts. However, the opposite is not true—
listeners that make use of top-down information accounts
will not be hurt by systematic variability in the signal.

Category imbalances are extremely common in natural
language, due to phonotactic constraints, phonological
alternations, historical reasons, and more. Our mathematical
analysis shows that listeners who rely on normalization
strategies may suffer when their input contains these
types of category imbalances. Therefore, for factors that
affect which sound category is likely to be produced,
normalization is not an effective way to deal with context
in processing and especially sound category learning for
learners who cannot yet separate categories. Instead, a
listener would be much better off making use of top-down
information, which is immune to systematic variability in
acoustics. Overall, in order to make a claim that listeners
do use normalization in order to learn and process sounds,
it will become important to explain how listeners can
overcome the problems presented by contextual imbalances
in category membership.

General discussion

In this paper, we tested the efficacy of two ways of using
context in helping to disambiguate overlapping categories.
We tested top-down information accounts, where listeners
make use of context to bias their expectations of what
category they will observe, as well as normalization
accounts, where listeners use context to help factor out
systematic variability. Although well studied, these ideas
have been somewhat conflated in past work and have
rarely and with limited success been applied to naturalistic
spontaneous speech. In this paper, we further explored these
two ideas, trying to overcome these issues with past work.
We disentangled these two ideas and carefully studied the
relative contribution of each of them to the listener’s task,
applying them to spontaneous speech.

Our simulations showed that a top-down information
strategy is effective even on spontaneous speech, but that
normalization, at least as it has often been implemented,
is not. This result was surprising given that normalization
has been found to be effective in the past. We resolved
this discrepancy, by showing that normalization was helpful
when we ran our same analyses on simplified controlled
lab data—of the type generally studied in the normalization
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literature—rather than on naturalistic spontaneous speech.
We then provided simulations and a mathematical analysis
showing that normalization may be ineffective when there
are context-specific category imbalances—precisely of the
type that are useful for top-down information accounts. This
suggests that a learner whose input contains imbalances
through phenomena such as phonotactic constraints and
phonological alternations, is better off using context to
bias their perception in a top-down fashion rather than
normalizing it out, at least as we have implemented
these strategies here. In what follows, we discuss where
this leaves normalization in the literature, how top-down
information may be used in acquisition models, how these
results generalize to other problems in speech perception
and cognition, as well as the importance of testing ideas on
spontaneous data in addition to controlled lab data.

The status of normalization

The idea that normalization plays a role in processing
and acquisition is a widely held idea, but our results
bring up important issues with it that complement other
problems discussed in earlier work (Johnson, 1997, 2006;
Pierrehumbert, 2002). Although our results can only
directly speak to the two implementations that we studied
in this paper, the problem appears to arise because
of properties of the input that might also hurt other
normalization implementations, as we discuss below.

In order to normalize well, it is important to be able to
estimate the correct normalization function. Failing to do so
can actually increase the amount of variability and overlap
between categories, rather than reduce it, as we saw in the
toy example in Fig. 2. The results in this paper show that
one obstacle to estimating the normalization function well
is the fact that different sound categories occur in different
contexts with different probabilities. For example, short
and long vowels differ in what consonants they are likely
to precede, which makes factoring out systematic acoustic
variability from the following consonant difficult. This is a
problem for any contextual factor that both affects which
target sound is likely to occur a priori, and systematically
affects a target sound’s acoustics (i.e., any contextual factor
that would be a good top-down predictor of vowel category).
Therefore, this is not a problem for sources of systematic
variability like speech rate or gender: short (or long) vowels
are no more likely to occur in fast speech than slow speech,
or in speech by men than women (and vice versa), so speech
rate and speaker gender are unlikely to be informative about
whether a particular vowel is short or long.

That being said, there are other problems with normal-
ization that would also affect factors like speech rate and
gender. Context can affect how some categories are pro-
duced more than others. For example, long vowels might

be acoustically lengthened more than short vowels in slow
speech. In the implementation adopted here, normalization
cannot handle these types of sources of systematic variabil-
ity because it uses one normalization function across all
categories. If different categories are actually differentially
affected, then the learned normalization function is guaran-
teed to be wrong for some tokens, and this may increase
variability and overlap rather than reduce it.

Our results directly study linear regression normalization
methods; however, our analyses reveal that the properties
of naturalistic speech that hurt the studied normalization
method would likely also hurt many of the most commonly
discussed normalization methods. Essentially, the linear
regression normalization method fails because it has an
underlying assumption that the only way the mean value
of an acoustic cue could change between contexts is if
speakers are acoustically altering their productions between
those contexts. However, this assumption is not valid in
naturalistic speech, where simply having more instances
of a particular category in a context can change the
mean value of an acoustic cue. Most, if not all, concrete
implementations of normalization that have been proposed
in the cognitive literature have this same problem. For
example, z-scoring, and the normalization method in Dillon
et al. (2013) both rely on transforming the acoustics relative
to the overall mean acoustic cue in each context. Therefore,
while we only directly study one implementation, other
implementations could suffer from the same problem.

One possible exception is the idea of relativizing cues.
The idea is that, instead of normalizing by learning an
explicit normalization function (implemented here as a
linear regression or neural network), listeners might rely on
an alternative set of acoustic cues that are more invariant
than those that are typically measured and described. For
example, for Japanese vowel length, listeners might use
the ratio of a vowel’s duration to the word duration or the
duration of a neighboring sound as the primary cue (Hirata,
2004). For other contrasts, researchers have argued that cues
like the ratio of first and second formants to third formant
values, as well as ratios between stop closure and previous
vowel duration could be helpful for perception of vowel
qualities and stops, respectively (e.g., Monahan & Idsardi,
2010; Port & Dalby, 1982).

These accounts have support in the literature: MEG
experiments have shown that the auditory cortex is sensitive
to ratios of these sorts (Monahan & Idsardi, 2010), and
analyses have shown that these can be clear cues to category
membership (Hirata, 2004; Monahan & Idsardi, 2010),
though these analyses have been of controlled lab speech
rather than naturalistic speech.

In our own preliminary work and in work by Bion et al.
(2013), these relativized cues do not help in the Japanese
vowel length contrast, when considering naturalistic speech.
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However, it is possible that other untested relativized
acoustic cues would help, and future work should be done
to systematically study this class of ideas as applied to
naturalistic speech.

Given that so many of the already proposed normaliza-
tion implementations are likely to suffer from the problem
exposed in this paper, the question that remains is whether
current normalization methods could be altered, or if new
normalization methods could be developed, to overcome
these issues. The problem we point out is that it is difficult
to estimate the correct normalization function. However, it
is possible that normalization would be effective with a bet-
ter estimation of the function. Here, we discuss possible
changes that could accomplish that.

With regards to adult speech perception, one possibility
would be for listeners to learn different normalization functions
for each category type (i.e., one normalization function for
short vowels and another for long vowels). This would
also allow the process to take into account category
imbalances. However, if the listener is equipped with
one normalization function for short vowels and one
normalization function for long vowels, they will not know
which function to use until they have already categorized
the sound, so normalization would not, in this case,
be helpful during the categorization process (only after).
Another possibility would be that listeners build separate
normalization functions for separate categories, but average
them during categorization, weighting them by the relative
proportion of each category type. These ideas have not yet
been tested, and it is currently unclear that they would
increase the efficacy of normalization on spontaneous
speech, but future work should investigate them.

The issues with normalization become even more prob-
lematic when considering acquisition. The learner does not
yet know the distinction between short and long vowels,
and cannot take into account category imbalances. As a
result, they will necessarily be applying inaccurate nor-
malization functions, which may actually increase category
overlap rather than reduce it. In addition, throughout the
paper, we saw that normalization performance depended
on the precise set of factors being normalized out. There-
fore, a learner would have determine which factors to factor
out—and would need to learn that some factors that system-
atically affect acoustic productions should be factored out,
but other factors that similarly affect acoustic productions
should not be factored out. These issues complicate the view
that normalization is helpful in language acquisition.

Overall, although normalization has received a lot of
support in the literature, there is actually little to no
current evidence suggesting that this is a strategy that
could be helpful for acquisition and processing naturalistic
speech. Much of the evidence that has been used to
argue for normalization is also consistent with a top-down

information strategy, which, unlike normalization, was
shown to be effective here, as well as adaptation accounts
(Kleinschmidt & Jaeger, 2015). In addition, normalization
has mostly been tested on controlled lab speech, rather
than the speech that listeners primarily hear and learn
from. We showed here that these results from lab speech
do not necessarily generalize to naturalistic speech (and
did not in the case of Japanese vowel length). This work
calls into question the role that normalization could play
in acquisition and processing. Certainly it is possible
that amending the normalization process helps, but for
existing concrete proposals, there is more evidence against
normalization than for it. In order to stand by the idea that
normalization helps disambiguate overlapping categories, it
is critical to find some evidence that normalization—in any
form—is actually effective in separating categories when
applied to spontaneously produced speech.

That being said, the fact that we show that normalization
may not lead to better separation between short and long
vowels does not imply that listeners do not normalize. If it
is the case that listeners process their input by normalizing
acoustics relative to context, then our results indicate that
listeners are overcoming even more overlap between short
and long vowels than represented in Fig. 1. Our results
show that normalization is unlikely to be the solution to the
overlapping categories problem.

As discussed before, normalizing is only one way
to factor out systematic variability resulting from the
context, and other alternatives may be more effective. One
particularly promising alternative would be an adaptation
strategy, which reduces systematic variability without
having to calculate an explicit normalization function. It
does so by essentially learning a separate mapping between
acoustics and linguistic category for each context observed.
This avoids the need to learn a precise normalization
function, but can still overcome systematic variability
by treating each context separately (see Kleinschmidt &
Jaeger, 2015 for a more extensive discussion). Adaptation
is promising to pursue because it does not encounter any
of the issues that normalization does, and can explain
the experimental findings that have been used to argue
for normalization. In particular, an adaptation mechanism
would also be able to cope with variability due to speech
rate or gender, so studies of these factors do not provide
independent evidence that normalization must be present.
At the same time, the adaptation account is independently
supported by experimental evidence regarding other kinds
of variability between speakers, such as dialect. Even young
infants are capable of learning to adapt to dialect variation
given sufficient evidence (van Heugten & Johnson, 2014).
Normalization is not a good account of this learning process,
since it would require complex phonological alternations
such as vowel shifts to be normalized directly in the acoustic
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space rather than learned phonologically (Elsner et al.,
2013a).

Currently, we run into data sparsity issues when trying
to investigate the adaptation idea, as this requires splitting
already small datasets by context; however, it is promising
to continue pursuing.

Top-down information in acquisition

Our results indicated that using contextual information in
a top-down fashion is promising and merits continued
study. In the current work, we only included a small
set of contextual factors, and adding in additional factors
could help separate short and long vowels even further. In
particular, with the exception of part-of-speech, our work
did not include any word type or word-level information,
which has been argued to be helpful in the past (Swingley,
2009; Feldman et al., 2013a, b). This suggests that using
contextual information as top-down information or to guide
expectations could be extremely helpful in adult speech
perception.

All of the models presented here are supervised, meaning
that they have information about what the sound categories
and relevant contextual factors are. They directly reveal how
helpful a top-down information strategy would be for adult
speech perception. When applied to acquisition, our results
have shown that the prerequisite for a top-down information
strategy to be effective in acquisition is met: there is signal
in the input that can separate short vowels from long vowels.
However, we have not shown how an infant could actually
use this contextual information to acquire the vowel length
contrast. In order to do this, we would need to propose an
unsupervised category learning model. This is the primary
challenge facing top-down information accounts, and future
work will need to apply these ideas more directly to
acquisition, as has been done in the past, to try to gain
a more complete account of how the listener solves these
overlapping category problems.

A lot of work has already applied top-down information
strategies to acquisition. Past research has shown that
infants seem to make use of word-level information
in acquiring sound categories (Feldman et al., 2013b;
Thiessen, 2007) and computational models has shown that
word-level information can be helpful (Feldman et al.,
2013a). However, as with most speech perception research,
these ideas have largely been tested on controlled lab
speech, and, in fact, recent work showed that the model
from Feldman et al. (2013a) was no longer effective when
applied to spontaneous Japanese speech (Antetomaso et al.,
2017). As a result, we still do not have a solution for
how contextual information could be used in a top-down
fashion for learning from spontaneously produced speech.

However, most past work has focused exclusively on word-
level information, so it is possible that making use of the
other aspects of context that we considered in this paper
(e.g., prosodic position, neighboring sounds), in addition
to word-level information, will result in models that work
on naturalistic speech. In what follows, we outline a few
possibilities for how top-down information could be useful.

An adaptation strategy, which builds a separate mapping
from acoustics to categories for each context encountered,
could again be helpful (Kleinschmidt & Jaeger, 2015). In
doing so, it has access to information about which categories
are more/less likely to occur within a particular context.
Therefore, it is possible that within particular contexts, the
short and long vowel categories are more separated than
they appear overall. For example, short vowels and long
vowels might be well separated when they occur in phrase-
final position and preceded by a particular consonant. If
the distribution is bimodal along the duration dimension
in a particular context like this one, then the learner could
learn that there are two categories along the duration
dimension via a process of distributional learning (Maye
et al., 2002), and then generalize this to other contexts where
the distinction is less clear.

In particular, our results have shown that there seems to
be something about carefully enunciated Japanese speech
that reliably elicits different durations for short versus
long vowels. While most of the input infants hear is
highly-variable and spontaneous, infants do sometimes get
some exposure to clearer instances of speech. Infants may
hear their parents read them books. In addition, parents
often use repetitions when speaking, which could help
children by providing them points of comparison. Finally,
Japanese child-directed speech involves a lot of mimetics,
or onomatopoeic words, which have been shown to help
in lexical acquisition (e.g., Imai & Kita, 2014), and might
differ from other subsets of IDS in terms of the relative
proportion of short and long vowels, or in terms of how
well the length distinction is enunciated. Therefore, it is,
in principle, possible that children learn which words have
which vowels precisely by listening to subsets of their data
in which their parents speak carefully.

This type of adaptation strategy, in which children learn
about the distinction in a particular context and generalize
it, is a particularly promising strategy, as it provides
both a way to take advantage of top-down expectations
of category membership, as well as a way to remove
systematic variability. By building a separate mapping
from signal to category for each context, it has access
to information about top-down information about which
categories are more or less likely to occur in a particular
context, and, therefore, can account for results that have
been used to argue for top-down information accounts. At
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the same time, experimental results that have been used
to argue for normalization functions can also be explained
by adaptation strategies (Kleinschmidt & Jaeger, 2015), as
these results show that listeners account for the fact that
sounds are produced differently in different contexts, but
cannot dissociate whether listeners do so via an explicit
normalization function, or by building a separate model
for each context. As a result, adaptation accounts can
explain the experimental findings that have been used to
argue in favor of both top-down information accounts and
normalization accounts in a unified way. However, again,
infant-directed speech corpora are generally quite small, and
it is difficult to test adaptation accounts without running into
data sparsity issues.

The above possibility relies on the learner considering
the distribution of vowels across many different contexts,
and observing a bimodal (or substantially less overlapping)
distribution within one of those contexts. Another possibil-
ity is that the overall distribution remains unimodal across
contexts, but that the shape of the distribution, nonetheless,
changes, and this could reveal the presence of multiple cat-
egories. What our results have revealed is that there are
radically different proportions of short and long vowels
across different contexts. As a result, the overall distribu-
tion of vowels (along the duration dimension) will change
depending on the relative proportion of short and long vow-
els within it. For example, a context in which almost all
vowels are long will be more heavily skewed to the right
than one in which all of the vowels are short. It is pos-
sible that these types of distribution shape changes only
occur along acoustic dimensions that are contrastive for a
language (e.g., for duration in Japanese, but not for French
which does not use duration contrastively). If this is true,
then a learner might be able to detect that a particular dimen-
sion is contrastive in their language by observing these types
of changes in distribution shape across contexts. A learner
could apply this across contexts, or alternatively, within fre-
quent words—to see whether the vowel distributions within
particular word frames differ (i.e., depending on what pro-
portion of the time the word frames involve short vowels or
long vowels).

There are other ways that a learner could take advantage
of contextual information in a top-down fashion, and future
work will implement these strategies computationally and
test how effective they are at learning the contrast between
short vowels and long vowels.

How generalizable are these results?

We focus on the Japanese vowel length contrast as a test
case, but to what extent do our results generalize to other
similar overlapping category problems in speech perception

and more generally? For a number of reasons, the vowel
length contrast is unique and it is possible that these
properties explain the results we observe. For example,
vowel length is acquired relatively late (Sato et al., 2010;
Mugitani et al., 2009), and it could be that earlier learned
contrasts rely more on normalization.

First, it is relatively likely that our results showing the
efficacy of top-down information accounts would generalize
to other tasks in speech perception, phonetic learning,
and cognition. In all of these areas, there is already
ample evidence that top-down information is useful (though
mostly from controlled lab data). Our results suggest
that this usefulness will generalize to more realistic data,
because there are systematic regularities in which contexts
sounds (or objects) of all types occur in; however, this
hypothesized generality will need to be demonstrated in
future work.

The picture is a bit more complicated for our results on
normalization. Our analysis reveals that normalization is
ineffective when it is difficult to estimate the normalization
function. As we have shown here, it will be difficult to
estimate normalization functions for contextual factors that
would helpful for top-down information accounts (i.e.,
when there are regularities in which categories occur in
which contexts). In addition, as we have discussed in the
previous section, it will also be difficult to estimate one
good normalization function for contextual factors that
affect the productions of different categories differently
(e.g., a contextual factor that acoustically lengthens long
vowels more than they acoustically lengthen short vowels).
To the extent that people are dealing with contextual factors
that do not fall into one of these classes, normalization
could very well help for the tasks of speech perception
and phonetic learning. In particular, it is possible that in
the case of Japanese vowel length, there is sufficient signal
via top-down information to distinguish most short/long
minimal pairs without attending to the acoustic duration at
all, so that in conversational speech, the durational contrast
is mostly neutralized. It may be the case that normalization
is ineffective for contrasts with low functional load
(like Japanese vowel length), but more effective for
contrasts with high functional load, where speakers must
produce a perceptible contrast in order to be understood.
We, nonetheless, speculate that the ineffectiveness of
normalization will generalize to many other contrasts, as
naturalistic speech is full of top-down information, which
helps predict which sound will be uttered, even without
hearing the acoustics of the sound, but hurts normalization.
However, further work will need to be done to study the
extent to which these findings generalize to other contrasts
within the domains of speech perception and phonetic
learning.
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Dissociating top-down information from
normalization accounts

The two ideas we study here—normalization and top-down
information accounts—have often been conflated in the
literature. Part of the reason why this might be the case is
that they are difficult to dissociate experimentally. Many
of the studies that have been used to argue for one or the
other are actually compatible with both alternatives, because
they show that contextual information is used, but cannot
pinpoint exactly how. In addition, these two ideas have
largely been treated in separate literatures, such that where
computational models have been proposed, they have never
been directly compared.

In this work, by implementing these two ideas separately,
and testing their relative efficacy on the same task, we
are able to dissociate these two ideas. On the same
task, top-down information accounts performed well, but
normalization accounts performed poorly, showing that
these two accounts are theoretically very different, even if it
has been difficult to separate them empirically.

It is very well known that contextual information is used
in speech perception, but, as this paper highlights, there are
many ways that contextual information is used, and it will
be important to get a better understanding of how exactly
listeners use context. Towards this end, future work should
devise ways to test how listeners use context in speech
perception and acquisition, in a way that can differentiate
between different accounts.

There has been some work that has succeeded in
dissociating these two accounts. Much of this work comes
from testing contextual factors that could be helpful under
one account, but not for the other, and showing that
listeners use them. For example, the Ganong effect, in which
participants preferentially categorize sounds so as to form
words (Ganong, 1980), and the phonemic restoration effect,
in which participants report hearing a sound that is not
physically present in the speech (Warren, 1970), show that
top-down information is used, and are incompatible with
normalization accounts. On the other hand, experiments
showing that speakers change their perception based on
speech rate or speaker (e.g., Nearey, 1978; Fujisaki
et al., 1975), are incompatible with top-down information
accounts, because e.g., a speaker is unlikely to produce more
/s/ phones just because they are speaking quickly. These
studies show us that listeners are factoring out systematic
variability in one way or another, though it is also unclear
how to dissociate using both normalization and top-down
information from an adaptation account. Finally, there have
also been experiments which have directly compared two
different ways of using context (Toscano & McMurray,
2012). In so doing, the researchers showed that an effect that
is typically taken as evidence for normalization can also be

explained by other ways of using context. Studies that can
put these two theories in conflict can be particularly helpful,
although because the strategies are not mutually exclusive,
it is possible for listeners to use both.

Future work should build off of these cases to help us
gain a more nuanced view of how listeners rely on context
in speech perception.

Controlled lab speech vs. naturalistic speech

The results of this paper reiterate once again that there is a
crucial distinction between controlled laboratory speech and
spontaneously produced naturalistic speech. Essentially all
of our understanding of speech perception comes from work
on carefully controlled and carefully enunciated laboratory
speech, but almost all of our experience as listeners comes
from messy, variable spontaneous speech. These two types
of speech differ quite substantially from each other in
nature, both in how the speech is produced, as well as the
content of the speech. Indeed, where tested, many of the
ideas developed on controlled lab speech have been shown
to be ineffective on spontaneous speech. Previous work
has shown that top-down information accounts developed
and tested on carefully controlled or synthesized speech
do not generalize to spontaneously produced lab speech
(Antetomaso et al., 2017). The current work shows that
normalization is helpful on lab speech, but ineffective on
spontaneously produced speech.

There is obviously a great deal of value that comes from
working on speech where various factors are controlled for
and isolated. In addition, listeners can process synthesized
and controlled lab speech effortlessly, so our theories must
be able to handle clear, enunciated speech, in addition to
more naturalistic daily speech. However, what is critical is
for ideas generated and tested on this lab speech to then be
applied to spontaneous speech, to make sure that researchers
are working on the same problem that listeners are
solving.

There has certainly been some research starting to look
at spontaneous speech, especially with the development of
hand-annotated child-directed speech corpora such as from
(Mazuka et al., 2006). As we have discussed, Antetomaso
et al. (2017) applied the model from Feldman et al. (2013a)
to spontaneous Japanese speech, showing that the model’s
success did not generalize to spontaneous speech. Other
work has also investigated spontaneous speech corpora
both in the case of the overlapping categories problem
(Narayan et al., 2017; Swingley & Alarcon, 2018) and more
widely (Guevara-Rukoz et al., 2018; Ludusan et al., 2016;
Ludusan et al., 2017; Martin et al., 2016). However, it is
still not prevalent, and our work aligns with previous work
in revealing that studying spontaneous speech is critical for
ensuring our ideas apply to naturalistic listening situations.
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Conclusions

In this paper, we compared the relative efficacy of two
ways of using context to help in phonetic learning. The
first involved making use of contextual information as
top-down information to guide expectations about what
category was likely to be heard. The second involved
factoring out systematic acoustic variability that resulted
from the context a sound was produced in. These ideas have
been conflated and almost entirely studied on controlled
lab speech, not naturalistic speech. In this work, we
showed that, for the case of the Japanese vowel length
distinction, a top-down information strategy is effective
even on spontaneous speech, but, contrary to previous
findings, normalization is not. We resolved this discrepancy
in findings, by demonstrating that the same normalization
procedure is helpful on lab speech—the focus of most
previous studies—but ineffective on spontaneous speech—
the focus of our study. We then provided simulations and
a mathematical analysis showing that normalization may
be ineffective when there are context-specific category
imbalances—precisely of the type that are useful for top-
down information accounts. These results suggest the
need to reevaluate the role that normalization can play
in acquisition and processing. In addition, they reveal the
importance of applying ideas tested on well enunciated
lab speech to highly variable spontaneous speech which is
present in most listening situations.
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Appendix

Notation

Nl,c - The number of vowels of length l (phonemically
short or long) in context c

μl,c - The mean duration of vowels of length l (phonemi-
cally short or long) in context c

vi - The unnormalized duration of vowel token i

Derivation
The following derives Eq. 9, which characterizes how the

means of two categories will move relative to one another
as a result of normalization when top-down expectations are
present. First, we write out what the unnormalized average
duration of long vowels and short vowels is, beginning with
long vowels. The average duration of long vowels is simply
the sum of every long vowel’s duration, divided by the total
number of long vowels:

μunnorm
l=long = 1

Nl=long

∑

i: li=long

vi (10)

Summing every long vowel’s duration is equivalent to
summing every long vowel’s duration in every context, and
then adding up the sums from each context, which can be
written as

μunnorm
l=long = 1

Nl=long

∑

j

∑

i: li=long,ci=j

vi (11)

We then multiply in
Nl=long,c=j

Nl=long,c=j
to obtain:

μunnorm
l=long = 1

Nl=long

∑

j

Nl=long,c=j

Nl=long,c=j

∑

i: li=long,ci=j

vi (12)

The value 1
Nl=long,c=j

∑
i: li=long,ci=j vi is simply

μunnorm
l=long,c=j . This is because we are summing the durations

of all long vowels in context j and then dividing that by
the total number of long vowels in context j , which is
equivalent to the mean duration of long vowels in context j .
This gives us the following equation for the unnormalized
average duration of long vowels:

μunnorm
l=long =

∑

j

Nl=long,c=j

Nl=long
μunnorm

l=long,c=j (13)

Similarly, the unnormalized average duration of short
vowels is

μunnorm
l=short =

∑

j

Nl=short,c=j

Nl=short
μunnorm

l=short,c=j (14)

Next, we compute the normalized average duration of
long vowels and short vowels, starting with long vowels.
To normalize a particular vowel’s duration based on the
context it occurs in, we take that vowel’s unnormalized
duration, vi , and subtract from it the average duration of
vowels in that context. The average duration of vowels in
that context can be calculated by taking the sum of all short
vowel durations in that context, adding that to the sum of
all long vowel durations in that context, and then dividing
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the total sum (of short vowel and long vowel durations) by
the total number of vowels in that context. This difference,(
vi − 1

Nc=ci

(∑
k: lk=long,ck=ci

vk + ∑
k: lk=short,ck=ci

vk

))
,

is the normalized duration value for one particular long
vowel, i. We can then take the sum of this value from
each long vowel token, and divide by the total number of
long vowels to obtain the average long vowel normalized
duration:

μnorm
l=long = 1

Nl=long

∑

i: li=long

⎛

⎝vi − 1

Nc=ci

⎛

⎝
∑

k: lk=long,ck=ci

vk

+
∑

k: lk=short,ck=ci

vk

⎞

⎠

⎞

⎠ (15)

Multiplying everything out yields

μnorm
l=long= 1

Nl=long

∑

i: li=long

vi − 1

Nl=long

∑

i: li=long

1

Nc=ci

∑

k: lk=long,ck=ci

vk

− 1

Nl=long

∑

i: li=long

1

Nc=ci

∑

k: lk=short,ck=ci

vk (16)

The first term in Eq. 16 is summing the unnormalized
durations of all long vowels and dividing by the total
number of long vowels there are, so this first term is
equivalent to the mean unnormalized duration of long
vowels. Therefore, we can rewrite Eq. 16 as:

μnorm
l=long = μunnorm

l=long − 1

Nl=long

∑

i: li=long

1

Nc=ci

∑

k: lk=long,ck=ci

vk

− 1

Nl=long

∑

i: li=long

1

Nc=ci

∑

k: lk=short,ck=ci

vk (17)

From here, we will rewrite both the second and third terms
of Eq. 17, and we make an aside here to show how. Consider
first the second term of Eq. 17. In it, we are summing over
all long vowels. Just as in the transition from Eqs. 10 to 11,
we can rewrite this as summing over all long vowels in a
particular context, and then summing over these contexts,
which yields (18). To get from Eqs. 18 to 19, notice that
the term, 1

Nc=j

∑

k: lk=long,ck=j

vk in the inner sum will be the

same for every long vowel in context j , so this term will be
repeated exactly Nl=long,c=j times.

1

Nl=long

∑

i: li=long

1

Nc=ci

∑

k: lk=long,ck=ci

vk

= 1

Nl=long

∑

j

∑

i: li=long,ci=j

1

Nc=j

∑

k: lk=long,ck=j

vk (18)

= 1

Nl=long

∑

j

Nl=long,c=j

1

Nc=j

∑

k: lk=long,ck=j

vk (19)

Using the same logic for the third term, we can, therefore,
rewrite Eq. 17 as follows:

μnorm
l=long = μunnorm

l=long −
∑

j

1

Nc=j

Nl=long,c=j

Nl=long

∑

i: li=long,ci=j

vi

−
∑

j

1

Nc=j

Nl=long,c=j

Nl=long

∑

i: li=short,ci=j

vi (20)

As before, the mean duration of long vowels in a
particular context is equivalent to the sum over all long
vowel durations in that context, divided by the total number
of long vowels in that context. Writing this out notationally
will help us rewrite Eq. 20:

μunnorm
l=long,c=j = 1

Nl=long,c=j

∑

i: li=long,ci=j

vi (21)

Using Eq. 21, we can rewrite Eq. 20 as

μnorm
l=long = μunnorm

l=long −
∑

j

Nl=long,c=j

Nc=j

Nl=long,c=j

Nl=long
μunnorm

l=long,c=j

−
∑

j

Nl=long,c=j

Nc=j

Nl=short,c=j

Nl=long
μunnorm

l=short,c=j (22)

Factoring out
Nl=long,c=j

Nc=j Nl=long
gives us the following equation for

the mean normalized duration of long vowels,

μnorm
l=long = μunnorm

l=long −
∑

j

[
Nl=long,c=j

Nc=jNl=long

(
Nl=long,c=jμ

unnorm
l=long,c=j

+ Nl=short,c=jμ
unnorm
l=short,c=j

)]

(23)

Similarly, the mean normalized duration of short vowels is

μnorm
l=short = μunnorm

l=short −
∑

j

[
Nl=short,c=j

Nc=jNl=short

(
Nl=short,c=jμ

unnorm
l=short,c=j

+ Nl=long,c=jμ
unnorm
l=long,c=j

)]

(24)

Up until this point, we have calculated the mean unnor-
malized duration of long vowels and short vowels, as
well as the mean normalized duration of long vowels and
short vowels. We can subtract the average unnormalized
short vowel duration from the average unnormalized long
vowel duration to obtain a measure of how far apart the
two vowel categories are before normalization. Similarly,
we can subtract the average normalized short vowel dura-
tion from the average normalized long vowel duration to
obtain a measure of how far apart the two vowel cate-
gories are after normalization. To compare whether the
means of the two categories move closer together or far-
ther apart after normalization, we can calculate the value
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of
(
μnorm

l=long − μnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)
, by simply

plugging in the relevant terms from above.

(
μnorm

l=long − μnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)

=
(
μunnorm

l=long − μunnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)
(25)

−
∑

j

Nl=long,c=j

Nc=jNl=long

(
Nl=long,c=jμ

unnorm
l=long,c=j

+Nl=short,c=jμ
unnorm
l=short,c=j

)

+
∑

j

Nl=short,c=j

Nc=jNl=short

(
Nl=long,c=jμ

unnorm
l=long,c=j

+Nl=short,c=jμ
unnorm
l=short,c=j

)

=
∑

j

[(
Nl=short,c=jμ

unnorm
l=short,c=j + Nl=long,c=jμ

unnorm
l=long,c=j

Nc=j

)

×
(

Nl=short,c=j

Nl=short
− Nl=long,c=j

Nl=long

)]

(26)

This gives us Eq. 9 from the main text:

(
μnorm

l=long − μnorm
l=short

)
−

(
μunnorm

l=long − μunnorm
l=short

)

=
∑

j

[
Nl=short,c=j

Nl=short
− Nl=long,c=j

Nl=long

] [
Nl=long,c=j

Nc=j

μl=long,c=j

+Nl=short,c=j

Nc=j

μl=short,c=j

]

(27)

We can then study whether this value is positive or
negative. This value will be positive when the difference
between the normalized means is greater than the difference
between the unnormalized means (i.e., when normalization
is effective and reduces the overlap between categories).
Likewise, this value will be negative when normalization
is ineffective and actually increases the overlap between
categories.

As stated in the main text, this equation reveals that when
different categories differ in the contexts that they are likely
to occur in, then normalization may actually increase the
amount of overlap between different categories.
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Höhle, B., Weissenborn, J., Kiefer, D., Schulz, A., & Schmitz, M.
(2004). Functional elements in infants’ speech processing: The
role of determiners in the syntactic categorization of lexical
elements. Infancy, 5(3), 341–353.

House, A. S. (1961). On vowel duration in English. The Journal of the
Acoustical Society of America, 33(9), 1174–1178.

Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping
hypothesis for language acquisition and language evolution.
Philosophical Transactions of the Royal Society B: Biological
Sciences, 369(1651), 20130298.

Isei-Jaakkola, T. (2004). Lexical quantity in Japanese and Finnish.
Unpublished doctoral dissertation.

Johnson, K. (1997). Speech perception without speaker normalization:
An exemplar model. Talker Variability in Speech Processing,
145–165.

Johnson, K. (2006). Resonance in an exemplar-based lexicon: The
emergence of social identity and phonology. Journal of Phonetics,
34(4), 485–499.

Jongman, A., Wayland, R., & Wong, S. (2000). Acoustic characteris-
tics of English fricatives. The Journal of the Acoustical Society of
America, 108(3), 1252–1263.

Kawahara, S. (2006). A faithfulness ranking projected from a
perceptibility scale: The case of [+ voice] in Japanese. Language,
536–574.

Keating, P., Cho, T., Fougeron, C., & Hsu, C. S. (2004). Domain-
initial articulatory strengthening in four languages. Phonetic
Interpretation: Papers in Laboratory Phonology VI, 143–161.

Kinoshita, K., Behne, D. M., & Arai, T. (2002). Duration and
F0 as perceptual cues to Japanese vowel quantity. In Seventh
international conference on spoken language processing.

Kleinschmidt, D. F., & Jaeger, T. F. (2015). Robust speech perception:
Recognize the familiar, generalize to the similar, and adapt to the
novel. Psychological Review, 122(2), 148.

Kubozono, H. (2002). Temporal neutralization in Japanese. In
Laboratory Phonology 7, (pp. 171–2002). Cambridge: Cambridge
University Press.

Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom,
B. (1992). Linguistic experience alters phonetic perception in
infants by 6 months of age. Science, 255, 606–608.

Lehnert-LeHouillier, H. (2010). A cross-linguistic investigation of
cues to vowel length perception. Journal of Phonetics, 38(3),
72–482.

Luce, P. A., & Charles-Luce, J. (1985). Contextual effects on vowel
duration, closure duration, and the consonant/vowel ratio in speech
production. The Journal of the Acoustical Society of America,
78(6), 1949–1957.

Ludusan, B., Cristia, A., Martin, A., Mazuka, R., & Dupoux, E. (2016).
Learnability of prosodic boundaries: Is infant-directed speech
easier? The Journal of the Acoustical Society of America, 140(2),
1239–1250.

Ludusan, B., Mazuka, R., Bernard, M., Cristia, A., & Dupoux, E.
(2017). The role of prosody and speech register in word segmen-
tation: A computational modelling perspective. In Proceedings of
the 55th Annual Meeting of the Association for Computational
Linguistics (volume 2: Short papers), (Vol. 2, pp. 178–183).

Mann, V. A., & Repp, B. H. (1980). Influence of vocalic context
on perception of the [

∫
]-[s] distinction. Attention, Perception, &

Psychophysics, 28(3), 213–228.
Martin, A., Igarashi, Y., Jincho, N., & Mazuka, R. (2016). Utterances

in infant-directed speech are shorter, not slower. Cognition, 156,
52–59.

Massaro, D. W., & Cohen, M. M. (1983). Phonological context in
speech perception. Attention, Perception, & Psychophysics, 34(4),
338–348.

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity
to distributional information can affect phonetic discrimination.
Cognition, 82(3), B101–B111.

Mazuka, R., Igarashi, Y., & Nishikawa, K. (2006). Input for
learning Japanese: RIKEN Japanese mother–infant conversation
corpus. The technical report of the Proceedings of the Institute
of Electronics. Information and Communication Engineers,
106(165), 11–15.

McMurray, B., & Jongman, A. (2011). What information is necessary
for speech categorization? Harnessing variability in the speech
signal by integrating cues computed relative to expectations.
Psychological Review, 118(2), 219.

Miller, J. L. (1981). Effects of speaking rate on segmental distinctions.
Perspectives on the Study of Speech, 39–74.

Miller, J. L., Grosjean, F., & Lomanto, C. (1984). Articulation rate
and its variability in spontaneous speech: A reanalysis and some
implications. Phonetica, 41(4), 215–225.

Miller, J. L., & Liberman, A. M. (1979). Some effects of later-
occurring information on the perception of stop consonant and
semivowel. Perception & Psychophysics, 25(6), 457–465.

Miller, J. L., O’Rourke, T. B., & Volaitis, L. E. (1997). Internal
structure of phonetic categories: Effects of speaking rate.
Phonetica, 54(3-4), 121–137.

Minifie, F., Kuhl, P., & Stecher, E. (1977). Categorical perception of
/b/ and /w/ during changes in rate of utterance. The Journal of the
Acoustical Society of America, 62(S1), S79–S79.

Mintz, T. H. (2006). Finding the verbs: Distributional cues to
categories available to young learners. Action Meets Word: How
Children Learn Verbs, 31–63.

Monahan, P. J., & Idsardi, W. J. (2010). Auditory sensitivity to formant
ratios: Toward an account of vowel normalisation. Language and
Cognitive Processes, 25(6), 808–839.

Moreton, E., & Amano, S. (1999). Phonotactics in the perception of
Japanese vowel length: Evidence for long-distance dependencies.
In EUROSPEECH.

675Psychon Bull Rev  (2020) 27:640–676



Mugitani, R., Pons, F., Fais, L., Dietrich, C., Werker, J. F., & Amano,
S. (2009). Perception of vowel length by Japanese- and English-
learning infants. Developmental Psychology, 45(1), 236.

Narayan, C. (2008). The acoustic–perceptual salience of nasal place
contrasts. Journal of Phonetics, 36(1), 191–217.

Narayan, C. (2013). Developmental perspectives on phonologi-
cal typology and sound change. Origins of Sound Change:
Approaches to Phonologization, 128–146.

Narayan, C., Peters, A., & Woldenga-Racine, V. (2017). Fragile pho-
netic contrasts in longitudinal infant-directed speech: Implications
for infant speech perception. In BUCLD 42: Proceedings of the 41st
Annual Boston University Conference on Language Development.

Nearey, T. (1978). Vowel space normalization in synthetic stimuli. The
Journal of the Acoustical Society of America, 63, 1.

Nearey, T. (1990). The segment as a unit of speech perception. Journal
of Phonetics.

Newman, R. S., Clouse, S. A., & Burnham, J. L. (2001). The
perceptual consequences of within-talker variability in fricative
production. The Journal of the Acoustical Society of America,
109(3), 1181–1196.

Newman, R. S., & Sawusch, J. R. (1996). Perceptual normalization for
speaking rate: Effects of temporal distance. Attention, Perception,
& Psychophysics, 58(4), 540–560.

Pickett, J., & Decker, L. R. (1960). Time factors in perception of a
double consonant. Language and Speech, 3(1), 11–17.

Pierrehumbert, J. (2002). Word-specific phonetics. Laboratory
Phonology, 7.

Port, R. F., & Dalby, J. (1982). Consonant/vowel ratio as a cue for
voicing in English. Attention, Perception, & Psychophysics, 32(2),
141–152.

Rakerd, B., Sennett, W., & Fowler, C. A. (1987). Domain-
final lengthening and foot-level shortening in spoken English.
Phonetica, 44(3), 147–155.

Richter, C., Feldman, N. H., Salgado, H., & Jansen, A. (2017). Eva-
luating low-level speech features against human perceptual data.
In Transactions of the Association for Computational Linguistics.

Sato, Y., Sogabe, Y., & Mazuka, R. (2010). Discrimination of
phonemic vowel length by Japanese infants. Developmental
Psychology, 46(1), 106.

Sawusch, J. R., & Newman, R. S. (2000). Perceptual normalization
for speaking rate II: Effects of signal discontinuities. Attention,
Perception, & Psychophysics, 62(2), 285–300.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals
of Statistics, 6(2), 461–464.
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