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Abstract

Listeners quickly adapt to novel accents. There are three main
hypotheses for how they do so. Some suggest that listeners
expand their phonetic categories, allowing more variability in
how a sound is pronounced. Others argue that listeners shift
their categories instead, only accepting deviations consistent
with the accent. A third hypothesis is that listeners both shift
and expand their categories. Most work has supported the
category expansion hypotheses, with the key exception of Maye
et al. (2008) who argued for a shifting strategy. Here, we apply
the ideal adaptor model from Kleinschmidt & Jaeger (2015)
to reexamine what conclusions can be drawn from their data.
We compare adaptation models in which categories are shifted,
expanded, or both shifted and expanded. We show that models
involving expansion can explain the data as well as, if not better
than, the shift model, in contrast to what has been previously
concluded from these data.
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Speech is highly variable. A given sound or word can be
pronounced differently depending on the context, the speaker’s
accent or gender, and the discourse situation, among many
other factors. In order for successful communication to take
place, people’s speech recognition system must adapt to this
variability. Previous work has shown that listeners adapt to
unfamiliar speech quickly. Although unfamiliar speech results
in an initial processing cost, this cost generally disappears
after a few minutes of exposure (Clarke & Garrett, 2004).

How do listeners adjust their sound categories in response
to newly introduced variability? To address this question, we
consider one example of adaptation to variable speech: adult
perception of accented speech. In accented speech perception,
the variability stems from the fact that the speaker and listener
have different accents, so the speaker’s pronunciation can
differ, often substantially, from what the listener expects.

There are three main hypotheses about how individuals
adapt their sound categories in response to accented speech.
The Expand hypothesis suggests that individuals relax their
categories, allowing more flexibility in how a particular cat-
egory is produced. The Shift hypothesis suggests that indi-
viduals shift their categories, only allowing more flexibility
in the direction of the accent they heard. Finally, the Shift
and Expand hypothesis suggests that individuals do both: they
allow more flexibility in how a given sound is produced, but
do so around a shifted mean. Most work has found evidence
that category expansion is involved in adaptation, either with
a shift (Shift and Expand) or without (Expand).

Evidence for the Expand hypothesis comes primarily from
experiments in which adults were exposed to an unfamiliar ac-
cent and, at test, had adapted to changes that were not present
during the initial exposure (Schmale et al., 2012). In other

words, they accepted variability that they had no evidence
for. For example, listeners who were exposed to an accent
in which back vowels were lowered accepted items that were
raised versions of English words as words in a lexical decision
task, despite not being familiarized with instances of this kind
(Weatherholtz, 2015). In another study, listeners accepted
large deviations in how particular vowels were pronounced
after only being exposed to small deviations in pronunciation
(Witteman et al., 2010). In addition, after being presented
with an accent in which stops were devoiced syllable-finally,
listeners accepted mispronunciations where stops were de-
voiced syllable-initially, even if they were never devoiced in
this position during the exposure period (Eisner et al., 2010).
Finally, toddlers exposed to an accent where [a] was produced
[] also accepted [¢] for [a] (White & Aslin, 2011). In all
of these cases, adults and children alike seem to be allowing
more flexibility in how a sound is produced, even if it does not
align with what they previously heard in this accent.

Although the Shift and Expand hypothesis has not been di-
rectly studied in the accent adaptation literature, it is consistent
with many of the findings that support the Expand hypothesis.
These findings mostly provide evidence that categories expand
during adaptation, without considering whether they also shift.
In addition, recent work suggests listeners use this strategy in
other related instances of category adaptation, including pho-
netic recalibration and selective adaptation, so perhaps they
are also using it in accent adaptation (Kleinschmidt & Jaeger,
2015). When adults are played sounds that are ambiguous be-
tween two categories (e.g. /b/ and /d/) and then shown visual
stimuli that disambiguate them, they adapt their categories
in accordance with the visual stimuli (phonetic recalibration).
On the other extreme, when people are repeatedly played pro-
totypical instances of a category (e.g. /b/), they adjust their
categories in a way that makes them less accepting of non-
prototypical instances of this category (selective adaptation).
A model in which categories are both shifted and expanded in
response to speech is able to explain these results, suggesting
that adaptation involves both shifting and expanding.

Most work on accent adaptation has found evidence for
category expansion, but a key finding by Maye et al. (2008)
stands as an exception. In their experiment, participants lis-
tened to passages of the Wizard of Oz, with all of the front
vowels lowered (e.g. ‘witch’ was pronounced ‘wetch’). After
just twenty minutes of exposure, participants were more likely
to accept items that were mispronounced with lowered vowels
(e.g. ‘wetch’) as being words, but were no more likely to
judge items mispronounced with raised vowels (e.g. ‘weech’)
as words. From this result, Maye et al. (2008) intuit that people
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shift their categories, rather than expand them.

In this work, we model Maye et al.’s data to see whether
their conclusion is warranted. We apply the ideal adaptor
model from Kleinschmidt & Jaeger (2015) to compare three
adaptation models: one in which categories are shifted, one
in which they are expanded, and one in which they are both
shifted and expanded. We compare these to a fourth model that
directly learns the vowel mappings (e.g. that [i] is produced [1]
in this dialect). We show that the data from Maye et al. (2008),
which have typically been used to argue against expansion
hypotheses, can be captured by all four hypotheses. This
suggests that the Maye et al. (2008) results may not provide
strong evidence for the Shift hypothesis after all.

We begin with a description of the Maye et al. (2008) ex-
periment, before describing our simulations.

Maye et al. (2008)

Maye et al. (2008) experimentally investigated how adults
adapt their sound categories in response to accented speech,
asking whether people shift or expand their vowel categories.
The experiment was conducted in two sessions that were
spaced a few days apart. In Session 1, participants listened to
twenty minutes of the Wizard of Oz spoken in their accent by
a synthesized male voice. The participants then took part in a
lexical decision task, described below, in which they decided
whether various test items they heard were words or not.

In Session 2, the same participants listened to the same pas-
sage; however, in this session, all of the front vowels were low-
ered. The vowel [i] was pronounced as [1], [1] was pronounced
as [€], [€] was pronounced as [&], [&] was pronounced as [a]
and [a] was unaltered, resulting in a merger between [&] and
[a]. None of the back vowels were lowered. After twenty min-
utes of exposure to this accented speech, in which participants
heard fragments like ‘the weckud wetch of the wast,” instead
of ‘the wicked witch of the west,” participants took part in
the same lexical decision task from Session 1. Participants’
responses between the two sessions were compared to see how
exposure to accented speech affected their judgments.

Six types of test items were included in the lexical decision
task. Witch items are words under the participants’ accent, but
are not words under the lowered accent (‘witch’ is a lowered
version of ‘weech’, which is not a word in standard English).
Wetch items are words in the lowered accent, but are not words
in the standard American accent (‘wetch’ is a lowered version
of ‘witch’). Weech items are words in standard American
English mispronounced with raised front vowels (‘weech’ is
a raised version of ‘witch’). The remaining three test item
types did not contain any front vowels, so these would be
pronounced identically under both accents. Girl items are
words under both accents. Loke items are non-words under
both accents, but are lowered versions of a word in standard
English (‘loke’ is a lowered version of ‘look’). Tuke items
are non-words under both accents, but are raised versions of a
word in standard English (‘tuke’ is a raised version of ‘took’).
Participants were presented with test items of these types -

half of them occurred in the story and half of them did not -
and were asked whether they were a word or not.

Maye et al. (2008) argue that if people are generally more
flexible with how categories are produced (Expand hypothe-
sis), then the participants should show an increase in endorse-
ment rates for both Weech (raised) items and Wetch (lowered)
items. On the other hand, they suggest that if listeners shift
their categories in the direction of the accent they hear (Shift
hypothesis), then participants should only show an increase in
endorsement rates for Wetch items, not Weech items.

The results from their experiment are shown as part of Fig-
ure 2. Participants show an increase in endorsement rates for
Wetch items, but not Weech items. Based on this finding, Maye
et al. (2008) conclude that people are shifting their categories,
not expanding them. In this paper, we model the data from this
experiment and find that their results do not reliably support
the Shift hypothesis over either expansion hypothesis (Shift
and Expand or Expand). In the next section, we outline the
modeling framework - the ideal adaptor framework - that we
use to test these three hypotheses.

The Ideal Adaptor Model

We use the ideal adaptor model from Kleinschmidt & Jaeger
(2015) to instantiate the Shift, Expand, and Shift and Expand
hypotheses. We generalize the model to two dimensions, rep-
resenting vowels as two-dimensional Gaussians. The vowels
are defined by their first and second format values, which
are continuous measures that are standardly used to distin-
guish between vowels. At any given point, the model has
a set of categories, each of which is defined by a mean and
covariance. With exposure to new speech, these categories
change (the mean and covariance get updated) by taking a
weighted average of the previous category information and the
newly encountered data. We formalize shifting a category as
changing its distribution’s mean based on new evidence. We
formalize expanding a category as updating the covariance of
its distribution based on new evidence.

Broadly speaking, if the newly encountered data point lies
near the category that generated it, then the category mean
and covariance will be minimally changed, but if the newly
encountered data point lies far from the category that generated
it, then the mean and covariance will be more substantially
changed to account for that data point. Crucially, the properties
of this model are such that we can manipulate how much
confidence we place on the previous mean and covariance, to
manipulate how much the mean and covariance get updated. If
we have high confidence in the previous mean (or covariance),
then it will be less affected by new data, whereas if we have
low confidence in the previous mean (or covariance), then the
new data will affect the parameters more. We take advantage
of this property to implement three of the hypotheses we would
like to test. For the Shift model, we place high confidence in
the previous covariance and low confidence in the previous
mean. For the Expand model, we place low confidence in
the previous covariance and high confidence in the previous
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Figure 1: Original categories (dotted lines) and updated categories (solid lines) for each model.

mean. Finally, for the Shift and Expand model, we place low
confidence in both the previous mean and covariance.

We assume a Normal Inverse Wishart prior over the cat-
egory means and covariances based on speaker productions
and assume that these means and covariances are updated as
follows. The updated mean of a category after seeing N new
acoustic values, u,, is the sum of the previous mean of the
category, Lo, weighted by the confidence in the previous mean,
K, and the mean of the new acoustic values, X, weighted by
how many of them there are,
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As confidence in the previous mean, K, increases, more weight
will be placed on the previous mean than the mean of the new
instances and the category mean will not change very much.

Similarly, the updated covariance of a category after seeing
N new acoustic values, X, is the sum of the previous covari-
ance, Xy, weighted by the confidence in the previous covari-
ance, V, and the covariance contributed by the new acoustic
values, weighted by the number of new values observed, N.
The covariance contributed by the new acoustic values is a
sum of the covariance of the new acoustic values, s%, and a
weighted term that accounts for the deviation of the mean of
the new acoustic values from the previous mean,

% N [, K
= Z —X —X
ViNOT (s gy o~ ) ko — %)

Hn (D

Y, T

V+N
&)

As confidence in the previous covariance, V, increases, the
previous covariance will be weighted more heavily and the
category covariance will not be updated as much. We use this
ideal adaptor framework to implement our three adaptation
models (see Kleinschmidt & Jaeger (2015) for more details
of the generative model). The next section explains how we
simulate the experiment performed by Maye et al. (2008).

Simulation of Accent Adaptation Experiment

To simulate the experiment, we first initialize the models with
vowel categories based on standard American English, then
update their categories based on the acoustic values partici-
pants would have heard in both experimental sessions, and,
based on each model’s updated categories, simulate the lex-
ical decision task participants took part in. In the following
sections, we outline each of these components.

Category Initialization

Each model was initialized with a category set that corre-
sponded to a standard American English speaker. The standard

accent categories were estimated based on data reported by
Hillenbrand et al. (1995), in which participants produced vow-
els in a “h_d” context (e.g. ‘head, ‘had, ‘heed’). Because the
speech in the experiment was spoken by a male voice, we lim-
ited our estimates to vowels produced by male speakers. For
each vowel type, there were 45 productions, each produced
by a different speaker. For each vowel category, we took the
45 productions in F1-F2 space and calculated the mean and
covariance of these 45 data points, which we used as the mean
and covariance of the Gaussian distribution representing that
category. These were the categories the models started with
(the categories corresponding to the standard accent), shown
in dotted lines in Figure 1.

Familiarization Data

We approximated what the participants in the experiment heard
in both of the experimental sessions. Based on average reading
times, the participants would have heard about 2500 words
spoken during the 20-minute story excerpt (Olive et al., 1993).
To get the actual items, we automatically transcribed all of
the words in the Wizard of Oz, using the CMU Pronunciation
Dictionary (Weide, 1998), and then manually verified that the
results were accurate. We sampled 2500 words in proportion
to how frequently they occur in the story. The same words
were presented to the model in Session 1 and Session 2. For
each vowel in the presented words, a particular formant-value
pair was sampled. The distribution from which the vowel
token was sampled depended on the session and the frontness
of the vowel. For both front and back vowels in Session 1,
a token was sampled from the distribution corresponding to
that vowel in standard American English. For Session 2, front
vowels were sampled from the standard American English
distribution corresponding to the lowered vowel (for example,
[i] tokens were sampled from the [1] category) and for back
vowels, the same formant values were repeated from Session 1.
Throughout the experiment, the test item vowels were sampled
from the same underlying distributions, which represent the
(unchanged) sound categories of the standard American dialect.
The listeners’ categories were updated based on this exposure.

Category Adaptation

For the Shift, Expand, and Shift and Expand hypotheses, we
update the models’ categories according to (1) and (2). We also
implement a fourth model, in which we update each category
by setting its mean and covariance to the mean and covariance
of its lowered version (Vowel Mapping model). For example,
the updated [i] category will have the mean and covariance of
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Figure 2: Difference in endorsement rates between Session 1 and Session 2 from Maye et al. (2008) and models.

the original [1] category, the updated [1] category will have the
mean and covariance of the original [¢] category, and so forth.

There is some evidence reviewed in Kleinschmidt & Jaeger
(2015) that listeners build different sets of categories for dif-
ferent groups of speakers. For example, people could learn
that adult men speak differently than toddlers and instead of
representing speech by both groups as identical, they could
build two sets of categories to capture their speech differences.
They might have one /i/ category corresponding to adult males
and another /i/ category corresponding to toddlers.

Based on these results, when the model encounters the
accented speech from Session 2, a new set of categories is
built to represent the accented speech. These categories are
initialized where the previous categories were, but only these
newly-formed categories are updated in response to this new
type of speech. At the end of the experiment, the model has
one set of categories for speech spoken in a standard accent
and another set for speech spoken in a lowered accent. !

As discussed above, we manipulate the speed of the adap-
tation by choosing particular values of K and V (confidence
in previous mean and variance). Based on parameter settings
found to capture experimental data in Kleinschmidt & Jaeger
(2015), we set both K and V to 100 for the Shift and Expand
model, we set K to 100, but V to 10000 for the Shift model,
and we set K to 10000 and V to 100 for the Expand model.

Lexical Decision Task

After the categories are updated in Session 1 and Session 2,
a lexical decision task is simulated. We adapt the model of
lexical decision developed by Norris (2006) for written word
recognition tasks to the problem of spoken word recognition
tasks. The goal in a lexical decision task is to determine
whether a test item is a word or not, not to identify the particu-
lar word. As a result, inference consists of inferring the word
status (w) of a test item given its form. To do so, we apply

IWe also ran a version of each model where we directly updated
the initial categories, without building a new set of category to rep-
resent the accented speech. These fail to fit the data because they
predict a substantial decrease in the endorsement of Wirch items,
which is not observed in the experiment.

Bayes’ rule to calculate the relative probability that a test item
is a word, given the acoustic input, x,

P(x|w = word)P(w = word)
Ly Plx[w)P(w)

That is, the posterior probability that the test item is a word is
proportional to the product of the probability that the particular
acoustic value in question was generated from a category that
would make the test item a word (likelihood) and the prior
probability that a test item is a word.

Because there are two category sets at the end of the Session
2 (one set corresponding to unaccented speech and another
corresponding to the accented speech), we need to sum over
both of these category sets (c=standard and c=lowered),

P(w=word|x) = 3)

B _ Y. P(x|w=word,c)P(w=word)P(c)
Pl =word ) ==y B (e w.e)POw)Ple)

4)

This is because we need to incorporate all possible ways that
the item could have been generated. For example, ‘wetch’
could be an unaccented pronunciation of the non-word ‘wetch’
or it could be an accented pronunciation of the word ‘witch’
and both of these possibilities need to be considered.

In order to calculate the probability in (4), we need the val-
ues of P(x|w =word,c), P(w=word), and P(c = standard).
We consider each of these in turn, beginning with P(x|w =
word, c). In theory, we need to sum over all possible words, L,
that the test item could be an instance of to get this probability.
For example, if we want to calculate the posterior probability
of ‘wetch’ being a word, we need to sum the possibility that
this was a mispronunciation of the word ‘watch’ under stan-
dard English, a mispronunciation of ‘witch’ under standard
English, a mispronunciation of ‘watch’ under accented En-
glish, etc. Because most of the elements in this sum are close
to zero, we make the simplifying assumption that participants
are only considering the possibility that one specific word or
one specific non-word generated the input (5). All of the test
items are either a word, or based on a word (e.g. ‘wetch’ is a
lowered version of ‘witch’), so we make use of the most rele-
vant word, [*, and non-word in our calculations. For example,
if participants hear ‘witch,” they infer whether this came from



Model P(c = standard) | P(w = word)
Shift 0.75 0.9
Expand 0.9 0.9
Shift and Expand 0.9 0.9
Vowel Mapping 0.95 0.9

Table 1: Parameter setting that produced results that best
matched Maye et al. (2008) for each model.

a word or a non-word, by considering the probability that it
was generated from the word ‘witch’ or the non-word ‘weech.’

P(x|w=word,c) = ZleLP(xU,c) ~Px|l",c) (5

To get the probability of the phonetic form of the word
given the particular lexical item and category set, P(x|[*,c),
we take the vowel token in the word in F1-F2 space and calcu-
late the value of the Gaussian probability density function of
the relevant vowel category at this point. This probability is
highest near the participant’s category means.

The remaining two terms are free parameters: one cor-
responds to the probability of a test item being a word,
p(w = word), and the other corresponds to the probability of
using the standard English set of categories, p(c = standard).
To deal with these two free parameters, each version of the
model was run on all combinations of these two parameters,
ranging from 0.05 to 0.95 by increments of 0.05, for a total of
200 combinations. Because there is quite a bit of randomness
involved throughout the process, the model was run twenty
times on each parameter combination and the results were
averaged across these twenty runs.

Putting this into (4), we get the relative probability of the
input, x, being a word versus not. The model classifies an
item as a word or non-word by sampling from its posterior
distribution, P(w|x).

To summarize, we update the model’s categories in one of
three ways: by shifting them, expanding them, or shifting and
expanding them. In addition, we implemented a fourth model
that sets categories to their lowered version. We compare the
four models’ results to human performance to see which can
capture the experimental findings.

Simulation Results

The front categories before and after they are updated are
shown in Figure 1. The next two sections compare the models’
performance to the Maye et al. (2008) results.

Difference in Endorsement Rates

Figure 2 shows the difference in endorsement rates between
Session 1 and Session 2 from the experiment and for each
model. The figure shows each model’s results from the pa-
rameter settings that had the best match with the original data
(shown in Table 1). This was determined by calculating the
log-likelihood of the model (i.e. the probability of the differ-
ences in endorsement rates observed in the experiment given
the model). These results are shown in Table 2 - less nega-
tive log-likelihoods indicate better matches. Because all four

Model Log-Likelihood
Shift -394.82
Expand -388.72
Shift and Expand -388.04
Vowel Mapping -395.97

Table 2: Log-likelihood of models given Maye et al. data.
Less negative values indicate a better match with the data.

models have the same number of free parameters, model com-
parison methods like the Bayesian information criterion (BIC)
reduce to simply comparing the model log-likelihoods.

Overall, comparing the log-likelihoods, all three adaptation
hypotheses outperform the Vowel Mapping model. Quali-
tatively, all four models are able to capture the increase in
endorsement rates for Werch items between sessions, though
the Expand model underestimates this increase. The Expand
model is, however, also able to capture the slight increase in
endorsement rates observed for Weech items.

The Shift and Vowel Mapping models have the worst log-
likelihoods, mainly because they both incorrectly predict a
slight decrease in endorsement rates for Wirch items between
the two sessions. This happens because the free parameter set-
tings that result in an increase in endorsement rates for Wetch
items (i.e. high reliance on the new category set) also result in
a decrease in endorsement rates for Witch items. Although this
tension exists for all of the models, the Expand and Shift and
Expand models overcome this because of their high-variance
updated categories that continue to overlap with the original
category. The Shift and Vowel Mapping models share the
property that their updated categories do not overlap with the
original categories, which explains their similar predictions.

It is worth noting that none of these models capture the
Loke, Tuke, or Girl results very well. The participants seem
to be generalizing the lowering of vowels to back vowels to a
certain extent, which our models cannot capture because back
vowels are left completely unaltered.

Overall, despite the conclusions that have been drawn from
these results, all three adaptation processes (Shift, Expand,
and Shift and Expand) can explain them to approximately the
same degree, with the adaptation processes involving category
expansion performing slightly better.

Absolute Endorsement Rates

Figure 3 shows the absolute endorsement rates for each of the
test item types before and after Session 2 for the participants
and the Shift and Expand model. The model underestimates
people’s absolute endorsement rates for all of the items, ex-
cept Girl and Wizch items. In particular, before they are even
exposed to the new speech, participants accept Wetch items
as words 39% of the time, whereas the model barely reaches
this endorsement rate after updating its categories with the
unfamiliar accent. Similarly, the model accepts Weech items
around 35% of the time, but participants accept them as words
between 60-70% of the time. Participants accept Loke and
Tuke items about 30% of the time, but the model accepts them
far less often. On the other hand, the model predicts that partic-
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Figure 3: Absolute endorsement percentages by participants
in Maye et al. (2008) and Shift and Expand model.

ipants accept Girl item types over 90% of the time, despite the
fact that participants are only accepting these words around
80% of the time. Therefore, there are aspects of the experi-
mental data that the model does not seem to be capturing.

One possible explanation for why we observe this differ-
ence between the participants and our models is that unlike
our models, people have had exposure to many different types
of accents before. If they have heard accents that affect vowels
in similar ways as the accent in this experiment, then perhaps
they already have a representation for this type of speech and
accept it more willingly. The models have only had exposure
to a standard American accent. Incorporating some knowl-
edge of other accents would be likely to increase the models’
acceptance of these test item types.

Discussion

This paper explores how people adapt their sound categories
in response to novel accents. We simulated the Maye et al.
(2008) experiment using four different models, each of which
adapted categories differently. In one version, categories were
adapted by being shifted, but not expanded (Shift hypothesis).
In a second version, categories were expanded, but not shifted
(Expand hypothesis). In the third model, categories were
shifted and expanded (Shift and Expand hypothesis). The final
Vowel Mapping model directly learned the category mapping
between accents. All models captured the data reasonably
well, though the expansion models seemed to fare slightly
better than the Shift and Vowel Mapping models. Crucially,
this was the case on data that have been used to argue that
people use the Shift strategy, rather than the Expand strategy.

How is Expansion able to capture the data? Maye et al.
(2008) argue that only a Shift strategy can explain why partici-
pants show an increase in endorsement rates for Wetch items,
but not Weech items, yet we found that expansion hypotheses
were able to capture this asymmetry. Their assumption of
symmetry is true if the affected vowels are all equidistantly
spaced along a line. In any space where this is not true, such
as F1-F2 space, their argument does not hold. On top of that,
their test item groups differed in the number of items involving
each vowel pair. For example, there were fifteen Weech items
involving [1] raising to [i], but only six Werch items involving
[i] lowering to [1]. Because some vowels are closer together
than others, such differences could produce endorsement rate
asymmetries between different test item types that are not
reflective of listeners’ adaptation strategy. Contrary to their as-

sumption, an Expand model can lead to asymmetric responses
in lexical decision tasks, as they observed in their data.

We only tested one instantiation of each of the Shift, Expand,
and Shift and Expand models; therefore, the conclusions we
can draw about which of these models best capture the experi-
mental findings are limited. There may, for example, be other
instantiations of the Shift hypothesis (i.e. with different mean
and covariance confidence parameters) that outperform the
models discussed here. Overall, however, all three adaptation
models are able to capture, to a better or worse degree, the
main qualitative findings from Maye et al. (2008).

Most work on accented speech perception has suggested
that category expansion is a component of accent adaptation.
A key exception comes from Maye et al. (2008), who argue
that people shift their categories, without expanding them.
Although their experimental results may intuitively support a
Shift strategy, building a model of the results shows that this
argument is not conclusive. In fact, the Shift & Expand and
Expand strategies explain these findings equally well to, or
potentially better than the Shift hypothesis. Taken together
with the rest of the accent adaptation literature, this work
suggests that people may be relying on expansion strategies in
accent adaptation.

Acknowledgments We thank the reviewers, the UMD Probabilistic
Modeling group, and the audience at NECPhon 9 for helpful feedback.
This work was supported by NSF grant IIS-1421695.

References

Clarke, C. M., & Garrett, M. F. (2004). Rapid adaptation to foreign-
accented english. The Journal of the Acoustical Society of America,
116(6), 3647-3658.

Eisner, F., Weber, A., & Melinger, A. (2010). Generalization of
learning in pre-lexical adjustments to word-final devoicing. The
Journal of the Acoustical Society of America, 128(4), 2323-2323.

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995).
Acoustic characteristics of american english vowels. The Journal
of the Acoustical society of America, 97(5), 3099-3111.

Kleinschmidt, D. F., & Jaeger, T. F. (2015). Robust speech perception:
Recognize the familiar, generalize to the similar, and adapt to the
novel. Psychological review, 122(2), 148.

Maye, J., Aslin, R. N., & Tanenhaus, M. K. (2008). The weckud
wetch of the wast: Lexical adaptation to a novel accent. Cognitive
Science, 32(3), 543-562.

Norris, D. (2006). The bayesian reader: explaining word recognition
as an optimal bayesian decision process. Psychological review,
113(2), 3217.

Olive, J. P,, Greenwood, A., & Coleman, J. (1993). Acoustics of
american english speech: a dynamic approach. Springer Science
& Business Media.

Schmale, R., Cristia, A., & Seidl, A. (2012). Toddlers recognize
words in an unfamiliar accent after brief exposure. Developmental
Science, 15(6), 732-738.

Weatherholtz, K. (2015). Perceptual learning of systemic cross-
category vowel variation. Doctoral dissertation, The Ohio State
University.

Weide, R. (1998). The cmu pronunciation dictionary, release 0.6.
Carnegie Mellon University.

White, K. S., & Aslin, R. N. (2011). Adaptation to novel accents by
toddlers. Developmental Science, 14(2), 372-384.

Witteman, M. J., Weber, A., & McQueen, J. M. (2010). Rapid and
long-lasting adaptation to foreign-accented speech. The Journal
of the Acoustical Society of America, 128(4), 2486-2486.



