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Abstract

Most existing face verification systems rely on precise
face detection and registration. However, these two com-
ponents are fallible under unconstrained scenarios (e.g.,
mobile face authentication) due to partial occlusions, pose
variations, lighting conditions and limited view-angle cov-
erage of mobile cameras. We address the unconstrained
face verification problem by encoding face images directly
without any explicit models of detection or registration. We
propose a selective encoding framework which injects rel-
evance information (e.g., foreground/background probabil-
ities) into each cluster of a descriptor codebook. An ad-
ditional selector component also discards distractive im-
age patches and improves spatial robustness. We evaluate
our framework using Gaussian mixture models and Fisher
vectors on challenging face verification datasets. We ap-
ply selective encoding to Fisher vector features, which in
our experiments degrade quickly with inaccurate face local-
ization; our framework improves robustness with no extra
test time computation. We also apply our approach to mo-
bile based active face authentication task, demonstrating its
utility in real scenarios.

1. Introduction
As face recognition techniques have gradually matured

over the past few decades, the research focus has shifted
from recognizing faces with controlled variations to uncon-
strained real-world scenarios [3]. Modern approaches based
on high dimensional feature encoding [4, 13, 16, 19] and
deep neural networks [20, 21] have recently emerged and
achieved promising results on unconstrained face databases
[6, 25]. However, most existing face recognition systems
depend on accurate face detection and registration. Unfor-
tunately, these two components are a significant source of
error in real-world environments or real-time applications.

In the application of mobile face authentication, for ex-
ample, faces recorded from a front-facing smartphone cam-
era often exhibit rare non-horizontal poses (i.e., neither
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Figure 1. Performance of Viola-Jones (OPENCV) multi-scale face
detector on a mobile based video face authentication dataset [5]
with a total of 19,158 sampled video clips each 30 frames long.
The x-axis is the number of frames in each video and the y-axis
shows the percentage of video clips with at least the corresponding
number of frames having faces detected. While all of the video
clips contain faces, only 54% of the videos have at least one face
detected and 22% have faces detected across all the 30 frames.

frontal nor profile) and are often partly outside the camera’s
viewpoint. This problem is exacerbated when users are per-
forming other tasks (as opposed to actively ensuring that
their face is within the camera view) in which case the fa-
cial video quality becomes even worse, further challenging
existing face detection and registration systems. For exam-
ple, one of our experiments shows that the popular Viola-
Jones face detector [23] fails on a significant portion of a
smartphone-recorded face dataset [5] (Fig. 1).

Most current face recognition datasets use images
viewed from a distance for benchmarking. This type of data
involves other challenges, compared to those from mobile
applications: low image resolution and background distrac-
tions, because of which we can still expect some degree of
errors in the detection step, i.e., improper estimation of face
centers and bounding box sizes. A statistical illustration of
the face detection errors using FDDB benchmark data [7] is
shown in Fig. 2.

Motivated by these observations, we explore the possi-
bility of addressing unconstrained face verification prob-
lems without explicit face detection or registration. The
central idea of our approach is that the codebook can be op-
timized to encode additional information for discriminating
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Figure 2. Viola-Jones (OPENCV) multi scale face detection results
on Face Detection Dataset and Benchmark (FDDB) [7]: the rela-
tive centroid errors are computed as the centroid distance between
detected faces and their closest ground truths, divided by the aver-
aged axis length of ground truth ellipses. The chart shows 68% of
faces are detected faces while the other 32% are false alarms with
no overlap with any of the ground truth faces. Notably, 50% of
the detected faces produce some levels of offsets from 0% to 25%
where the peak is around 20% of the face size (e.g., for 150× 150
faces, the peak of errors is 30 pixels).

relevant image patches from irrelevant background distrac-
tions. We propose a unified codebook-based framework,
named “selective encoding”, the core of which is a compo-
nent named “selector” which injects trained relevance infor-
mation into codewords via a set of “relevance weights” and
utilizes these weights to select semantically relevant patch
descriptors and codewords at test time. Patch descriptors
and codewords that successfully pass the selector will be
used for encoding images. The selector essentially finds a
good relevant sub-matrix of the posterior probability (as-
signment) matrix for feature encoding.

For recognizing unreliably localized faces, we define
the descriptor relevance as foreground probabilities, so
image patches belonging to the facial region are se-
lected over those that do not. The relevance distribu-
tion training involves counting for each codeword the fore-
ground/background distribution of its assigned patch de-
scriptors. These distributions are used for computing the
foreground probability of each newly observed patch in test-
ing. Background distractions are thereafter removed from
the descriptor set so that the encoded representation can
achieve spatial robustness.

Fisher vector encoding [18] is one of the most powerful
codebook based feature encoding techniques. However, its
most recent applications in face verification require face de-
tection and registration. One of our experiments shows that
this method degrades quickly with inaccurate estimation of
face centers and bounding box sizes due to the inclusion of
more distractive patches. We validate our framework using
the Fisher vector encoding on public datasets and show that
our method is capable of robustifying such encoding tech-
nique with respect to uncertain face localization. We further
apply our framework to a mobile based active face authenti-
cation task to show its applicability in real-world scenarios.

Contribution. The main contributions of our work in-

clude (1) a generic and unified framework for selecting and
encoding relevant features which does not require accurate
detection or registration, (2) its application to Fisher vector
encoding for spatially robust face verification, and (3) its
application to mobile based active face authentication.

2. Related work
Feature encoding. The bag of visual words model [10]

is the most popular feature encoding framework for many
computer vision tasks. In this model, a codebook is built
using K-means clustering and each feature is assigned a
weight for each cluster center (aka. codeword) according
to their distances. An image is thereafter represented by the
distribution (histogram) of those assignments. Most mod-
ern feature encoding techniques are extensions of this code-
book model such as Fisher vectors [14] and the vector of
locally aggregated descriptors [8]. The central idea is that,
instead of using only an assignment distribution, an image
can also be represented using the first order (mean of differ-
ence) and the second order (standard deviation) statistics of
all the (soft or hard) assigned features for each codeword.
Fisher vector encoding is now among the state-of-the-art on
various computer vision applications such as image classifi-
cation [14, 16, 18], image retrieval [15] and face verification
[13]. Our work is built upon Fisher vectors and integrates
additional supervised information into the codebook for en-
coding semantically relevant patches.

Unconstrained face recognition. The upsurge of re-
search on unconstrained face recognition gave rise to the
creation of Labeled faces in the wild (LFW) dataset [6].
Besides the Fisher vector faces [19], many works have been
developed on this topic, such as high dimensional local bi-
nary patterns [4], deep learning based approaches [20, 21]
and sparse coding based approaches [24, 26]. Considering
that face recognition problems are often challenged by pose
variations, many works try to improve recognition accuracy
by means of robust facial alignment and correction using
sophisticated 3D models or shape matching [2, 3, 21, 24].
However, the vulnerablility of face detectors under real-
world scenarios is usually overlooked and most existing
face verification methods generally assume that detected
and well aligned faces are given [13, 19]. The goal of our
work is to remove the strong dependency on face detection
by improving the encoding scheme to be significantly more
robust to spatial misalignment.

Joint localization and classification. The general im-
age object classification task is also affected by the perfor-
mance of object localization. Most approaches try to find
good localization and segmentation of the objects to relieve
the subsequent recognition task [1, 22]. However, detec-
tion is even harder than classification in some sense (e.g.,
robust bounding box estimation). A few recent approaches
are motivated by the idea of jointly detecting and classifying
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Figure 3. The proposed selective encoding framework: Images or videos with unreliably localized faces are the direct input to our model.
Posterior probabilities (assignment) for densely sampled local descriptors are computed according to the trained codebook model. The
relevance weight of each descriptor is calculated according to its posterior probability distribution and the relevance of corresponding
codewords. The selector component is trained offline using weakly supervised features. A subset of the assignment matrix (or a new
assignment matrix) is generated by thresholding (or re-weighting using) the descriptor relevance, and used for image feature encoding.

objects in images in the hope that the two tasks help each
other. Nguyen et al. [12] proposed to jointly localize dis-
criminative regions and train a region-based SVM for im-
age categorization. Lan et al. [9] proposed a figure-centric
model learned by latent SVM for joint action localization
and recognition. The most similar work to ours is object-
centric pooling [17]. Its main idea is to infer, jointly with
classification, tight object bounding boxes and pool features
within detected regions. They developed an MIL-like SVM
formulation for joint object localization and classification.
However, our work differs in that (1) instead of finding
perfect detections, we explore the implicit feature selection
power of the codebook, and (2) our framework is designed
for feature encoding and does not depend on any subsequent
classification.

3. Preliminary – Fisher vector encoding

The Fisher vector (FV) encoding was first proposed in
[14] and applied to face verification problems in [19] and
[13]. The central idea of Fisher vector encoding is to
aggregate higher order statistics of each codebook into a
high dimensional feature vector. More specifically, a Gaus-
sian mixture model (GMM) is trained as the visual code-
book. First-order and second-order distance statistics w.r.t.
each of the Gaussian mixture components are concatenated
into the final feature representation. Let xp be the p-
th descriptor and (µk, σ

2
k) be the k-th Gaussian compo-

nent. The assignment coefficient (posterior probabilities)
of xp with respect to the k-th Gaussian is represented us-
ing αk(xp). Let X = [x1, . . . ,xN ] be the descriptor set,
the Fisher vector representation is computed as φ(X) =

[Φ
(1)
1 ,Φ

(2)
1 , . . . ,Φ
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K ,Φ

(2)
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)2
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]
. (2)

Most algorithms using Fisher vectors apply signed square
root and `2 normalization to the feature vectors which tend
to further improve the representation capability of Fisher
vectors [16, 19].

4. Our approach – Selective encoding
4.1. Framework overview

The proposed selective encoding framework is illus-
trated in Fig. 3. Existing codebook based face recognition
approaches require detection and registration beforehand,
while our framework reduces the need for such prerequi-
sites. Generally speaking, our framework is composed of
three main stages: (1) building a vocabulary (2) descriptor
and codeword selection (selector) and (3) feature encoding.
The key component for achieving spatial robustness is the
selector, which selects relevant descriptors and codewords
for the feature encoding stage. The selector is trained with
weakly supervised prior knowledge on the descriptor rele-
vance (i.e., rough detection bounding boxes). An advantage
of our framework is that we do not require any extra com-
putational cost during testing because the selector is essen-
tially performed on the matrix of posterior probabilities (as-
signment) for the codebook, which is necessarily computed
in the conventional codebook framework.

4.2. Vocabulary

Descriptor extraction. Following [19], we extract
densely sampled SIFT descriptors [11] at 5 different scales.
The 128-D descriptors are further reduced to 64-D by prin-
cipal component analysis. Fisher vectors are often learned
using an augmented descriptor which adds two additional
dimensions for the spatial coordinates of each SIFT descrip-
tor. A normalization is utilized for the augmented dimen-
sion, i.e., [xaug, yaug] = [ xw − 0.5, yh − 0.5] where w, h are
the width and height of the window.

Codebook construction. The Fisher vector encoding
uses Gaussian mixture models to provide softer structures
and capture smoother feature distributions in the encoding
than the K-means clustering based codebook. As [19], we
use 512 Gaussian components for our experiments.



4.3. Selector

The selector consists of two parts: (1) descriptor selec-
tion and (2) codeword selection. Both stages are executed
based on the trained relevance weights of each codeword
and their corresponding posterior probabilities w.r.t. newly
observed image patches.

Codeword relevance. Given a trained codebook (Gaus-
sian mixture model), the selector is trained to associate
additional foreground/background information with each
codeword (Gaussian component). The training involves cal-
culation of the relevance weights for each codeword.

Let xi be the i-th patch descriptor, θk be the k-th Gaus-
sian mixture component and their corresponding posterior
probability be p(θk|xi). The selector is trained using n-
dimensional patch descriptors xi ∈ Rn with their binary
labels yi ∈ {0, 1} which represent whether they should be
selected for feature encoding, by counting for each code-
word the expected descriptor relevance, i.e.,

pcs(θk) =

∑N
i=1 p(θk|xi)yi∑N
i=1 p(θk|xi)

. (3)

The codeword relevance value ranges between 0 and 1.
Codewords with higher relevance weights (larger than 0.5)
are more likely to aggregate foreground descriptors while
those with lower relevance weights (lower than 0.5) have
higher chance of being background. Although keeping un-
necessary codewords will not damage the encoding space,
discarding those background codewords naturally reduces
the feature dimension and in some cases improves the
recognition accuracy (Fig. 11(b)).

For recognizing unregistered faces, the training patches
and their semantic labels are obtained by using images with
valid detection outputs. Those features located within de-
tected face bounding boxes are labeled as 1 and those out-
side labeled as 0. In our experiments we are using loose
detection bounding boxes which contain background areas;
however, the learned relevance distributions is sufficient for
improving the encoding robustness.

Descriptor relevance. At test time, the posterior prob-
abilities for each patch descriptor are given from the code-
book model. The descriptor relevance weight is then com-
puted by counting the relevance contribution from each
codeword with respect to their posterior probabilities, i.e.,

pds(xi) =

K∑
k=1

p(θk|xi)p
c
s(θk) . (4)

The posterior probability can be computed via either soft
or hard assignment (in hard assignment settings, the high-
est posterior probability for each descriptor is lifted to 1
and all the others reduced to 0). The descriptor relevance
also ranges between 0 and 1, similar to codeword rele-
vance. Intuitively, the descriptor selection plays a key role

in achieving spatial robustness of feature encoding by re-
moving background patches. In our experiment, we remove
all descriptors with relevance lower than 0.5 (a threshold
for separating foreground from background) for patch se-
lection.

4.4. Encoding

The encoding stage receives from the selector a subset
(or a modified version) of the posterior probability matrices
and encodes them as Fisher vectors (as described in Section
3). The encoded Fisher vectors can be further reweighed
or reduced to lower dimensions by multiple metric learn-
ing approaches; however, with restricted training samples,
learning a low rank metric is difficult [19]. The mobile face
authentication problem comes with a limited training set –
users are not likely to spend much time actively training
the smartphones. So in our experiments, we employ the `2

metric and diagonal metric learning (i.e., training a diago-
nal metric using support vector machines) proposed in [19]
for evaluating encoding performance.

4.5. Learning with spatial-sensitive features

Intuitively, the location features help when the face im-
ages are properly registered. However, when the registra-
tion is poor, augmented location information may instead
hurt the performance. The GMM model can smooth out
the Gaussian component on the location dimensions (Fig. 4)
and may also learn the location distribution of patches when
the training images have some underlying mis-registration
patterns. However, the robustness to localization errors is
not sufficient for unconstrained spatial patterns, in which
case performance drops quickly and becomes worse than
ignoring location information altogether. The main reason
is because patches belong to the same facial part are as-
signed to different codewords due to the influence of the
augmented location dimension. However, our framework
can adapt to such location sensitive augmented features.
The central idea is that we can identify relevant patches in
the codebook and renormalize the augmented dimensions
of their corresponding descriptors so that patches belonging
to close facial parts can be aggregated into the same code-
words.

Since the augmented dimensions are spatially sensi-
tive, they should not be involved in learning the descrip-
tor and codeword relevance distributions. As a result, we
use the appearance-based dimensions (first 64D) of each
Gaussian mixture component when computing the rele-
vance weights of codewords and descriptors. Once patches
are selected, the last two augmented dimensions of corre-
sponding descriptors are reduced by their mean values, i.e.,
[x′aug, y

′
aug] = [xaug − x̄aug, yaug − ȳaug], and the updated de-

scriptors are used in feature aggregation and encoding.
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Figure 4. LFW: averaged variance of Gaussian components on
augmented location dimensions vs. (a) window side length with
zero offset and vs. (b) standard deviation of window offsets (win-
dow side length 200). As the window spatial uncertainty increases,
the learned GMM increases the variance of Gaussian distributions
on location dimensions, which essentially reduces the influence of
location information on codeword assignment.

5. Experiments

We validate our approach on three face datasets with dif-
ferent foci: (a) image based face verification (b) video based
face verification and (c) mobile based face authentication.
In the first two datasets, we perform random shifts to the
detected face bounding box to compare the spatial robust-
ness of the original Fisher vector encoding and the proposed
selective Fisher vector encoding.

5.1. Image based face verification

Labeled faces in the wild (LFW) [6] is an image based
face verification dataset. The dataset contains 13,233 im-
ages of 5,749 celebrities. The evaluation set is divided into
10 disjoint splits each of which contains 600 image pairs.
Of these 300 are positive pairs describing the same person
and the other 300 are negatives representing different iden-
tities. Two protocols are used for the benchmark: restricted
and unrestricted. The restricted protocol prohibits using any
outside data for training the models while the unrestricted
version allows that. We validate our framework on the re-
stricted protocol to show its performance with limited ac-
cess to training data.

Perturbation generation. To study the sensitivity of
localization, we randomly shift the annotated face centers
(which are detected by Viola-Jones detector) using a Gaus-
sian distribution N(0, σ2) where σ is chosen from 0, 25, 35
and 50 pixels. We set the window side length to 200 pixels,
around 1.7 times the size of the tight facial bounding box.

Evaluation. Performance is evaluated using true posi-
tive rates at equal error rate (TPR@EER) averaged over the
10 splits. The codebook is trained using perturbed images
with 512 Gaussian mixture components. For selective en-
coding, codeword relevance distributions are learned using
150 × 150 windows at the face center detected by Viola-
Jones detector in the training set. It is worth noting that
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Figure 5. LFW: Original FV vs. hard selective FV encoding with
PCA-SIFT descriptors with (a) `2 and (b) diagonal metric learn-
ing; original FV vs. soft selective FV encoding with augmented
descriptors with (c) `2 and (d) diagonal metric learning.

these windows do not tightly bound the faces.
Comparison with original Fisher vectors. Compari-

son with the original Fisher vectors is shown in Fig. 5 using
both appearance and augmented descriptors. The proposed
selective encoding outperforms conventional Fisher vectors
using both `2 metric and diagonal metric learning with 64-D
PCA-SIFT descriptors. Interestingly, our method performs
better even when there is no centroid perturbation. This
might be because even the true facial bounding box includes
a small number of distractive patches from the background.
With augmented descriptors, a 1% performance drop of our
framework is observed with no center offset using `2 met-
ric. However, this performance gap vanishes using diagonal
metric learning. Our approach also produces more stable
performance across multiple levels of window offsets.

Comparison with perfect face localization. Since our
goal is to make the original encoding technique more robust
to localization, we compare our framework with the ideal
case, where the ground truth face bounding box is known
(this will serve as an upper bound on performance, since lo-
calization will be perfect). The results with both PCA-SIFT
and augmented descriptors are shown in Fig. 6, where under
`2 metric there is less than 0.5% difference between our ap-
proach and the ideal one. A larger gap is seen with diagonal
metric learning. The ideal case is about 2% better with off-
set σ = 0, 25, 35; our approach performs better when more
severe face occlusions occur with offset σ = 50.

Appearance-only vs. augmented descriptors. Fisher
vectors are usually computed over descriptors augmented
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Figure 6. LFW: Hard selective FV encoding on perturbed images
vs. Original FV encoding on ground truth facial windows with
PCA-SIFT descriptors with (a) `2 and (b) diagonal metric learn-
ing; and Soft selective FV encoding on perturbed images vs. FV
encoding on ground truth facial windows with augmented descrip-
tors with (c) `2 and (d) diagonal metric learning.
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Figure 7. LFW: Histogram of relative distances (window side
length equals 200 and standard deviation of offset 25) between
mean of selected patch locations to true face centers.

with their spatial coordinates, encoding spatial structures
into the feature representation. These coordinate features
are spatially sensitive and not suitable for learning fore-
ground/background distributions. However, our frame-
work can adapt to such spatially sensitive features by “re-
centering” selected patches. Fig. 7 shows the relative dis-
tance between the true face center and the mean coordi-
nates of those selected patches when the window side length
is 200 and offset standard deviation is 25. The peak er-
ror is around 5% (i.e., 10 pixels). Our experiments suggest
that, compared to appearance-only descriptors, the spatially
augmented descriptors perform better with low spatial un-
certainty (85.63 ± 1.53 vs. 83.27 ± 1.26 with zero offset
and 200 window side length) and gradually degrades with
similar performance when the spatial uncertainty increases
(80.77 ± 1.42 vs. 80.53 ± 2.28 with 35 offset standard devi-

(a) (b) (c) (d)

Figure 8. Sample perturbed face images in Youtube Faces dataset:
(µscale, σscale, soffset) = (a) (1, 0, 0), i.e., labeled face bounding box,
(b) (2, 0, 0), (c) (2, 0, 0.5) and (d) (2, 0.5, 0.5).

ation and 200 window side length).

5.2. Video based face verification

Youtube Faces (YTF) [25] is a benchmark for video
based face verification. The dataset contains 3,425 videos
for 1,595 celebrities collected from YouTube movies. All of
the faces are localized by the Viola-Jones face detector. The
evaluation set is composed of 5,000 pairs of tracks which
are also divided into 10 splits. In each split, 250 pairs are
positive and the other 250 are negative. For each of the 10
runs, 9 splits are used for training and the remaining split is
used for testing. Similar to LFW, the dataset has restricted
and unrestricted protocols. Our experiment adopts the re-
stricted protocol in which only 4,500 pairs of videos are
available for training the model and the similarity metric.

Data preparation. Youtube Faces contains a set of
original video frames (faces and background) and a set of
cropped and registered face videos. We randomly shift the
annotated centers of the faces on each of original videos
obeying a uniform distribution U [−soffsetW, soffsetW ] in
both x and y directions to guarantee that perturbed images
have intersections with detector bounding boxes, where
soffset is a scale factor and W is the side length of the de-
tected facial bounding box, which differs from person to
person. We choose the scale factor soffset among values 0,
0.25, 0.5 and 0.75. For the scale of the windows, we en-
large the side length with another scale factor chosen from
a Gaussian distribution N(µscale, σ

2
scale). The mean µscale is

chosen between 1 (original size) and 2 (double size). The
σscale values are chosen from 0, 0.25 and 0.5. We resize all
of the perturbed windows to 150×150 for feature encoding.
Sampled perturbed images are shown in Fig. 8.

Evaluation. Verification accuracy is also evaluated us-
ing TPR@EER, averaged over 10 splits. We downsample
each video to 5 frames long. It is worth noting that increas-
ing the sample rate to 20 frames per video produces only
0.04% higher TPR@EER (80.88%) on tightly bounded de-
tected faces than 80.84% obtained from sampling 5 frames
per video. Following [13], we apply the incremental “video
pooling” for encoding each video, i.e., patch descriptors
across frames from the same video are pooled together
before being encoded into one Fisher vector. We train
PCA and GMM using perturbed training images and learn
codeword relevance distributions using detection bounding



Table 1. Youtube Faces: TPR@EER averaged over 10 folds for
different perturbation settings using augmented PCA-SIFT de-
scriptors and diagonal metric learning, comparing the proposed
selective encoding with original Fisher vectors. Each row repre-
sents a setting of face window scaling and relative centroid offset
distributions. The better result for each setting is annotated in red.

µscale σscale soffset Original FV Selective FV
1 0 0 80.84± 1.91 81.00± 2.32

2 0 0 76.72± 3.33 77.24± 2.02

2 0 0.5 74.52± 1.81 76.96± 1.73

2 0.25 0 76.84± 2.27 77.40± 1.53

2 0.25 0.25 75.04± 1.92 77.72± 2.40

2 0.25 0.5 74.44± 1.26 75.76± 2.08

2 0.25 0.75 69.64± 1.87 72.88± 1.60

2 0.5 0 74.52± 1.90 75.32± 1.60

2 0.5 0.5 70.92± 1.35 72.72± 2.07

boxes in sampled training frames for each split.
Result. The results comparing the proposed selective en-

coding and the original Fisher vectors are shown in Tab. 1,
with different configurations of window scale and offset un-
certainty. Both methods use the augmented descriptors and
the selector in our approach is trained with soft assignment
and tested with no codewords discarded. The results show
that our approach outperforms the original Fisher vectors
in all settings. Even for the true detected face windows
(µscale = 1, σscale = soffset = 0), our approach obtains
slightly improved accuracy. Both approaches experience a
3% performance drop when µscale is increased from 1 to 2,
which is due to the decrease in face resolution, and a 2%
drop when σscale increases from 0.25 to 0.5 with no win-
dow offset. Fortunately such high scale uncertainty is typi-
cally rare for face detectors and mobile applications. When
the scale uncertainty ranges between 0 and 0.25, the encod-
ing quality is relatively stable. The performance gap be-
tween the two approaches becomes larger when offset un-
certainty increases (over 3% gain when µscale = 2, σscale =
0.25, soffset = 0.75).

5.3. Active face authentication on mobile devices

The use of mobile devices has increased dramatically
over the last decades. The privacy protection of mobile
phone users has always been an important problem. Ver-
ifying the faces recorded by the smartphone camera plays
a central role in identifying the users. However, authenti-
cation is passively performed in the background, and users
may not be actively trying to ensure that their face is viewed
clearly by the camera. This results in face videos with un-
constrained poses, some of which are raised faces because
users are likely to read while their smartphones are below
their faces instead of looking directly at the phone.

Dataset. We validate our approach on a dataset that
contains 750 long videos recorded from the viewpoint of
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Figure 9. Distribution of the video numbers in (a) training set and
(b) gallery set. Identities are sorted in ascending order of their
video numbers. Orange bars show the number of videos with no
face detected at any of their frames and the blue bars show the
number of those with at least one face detected. The training set
contains 393 videos in total and the gallery set contains in average
43 videos clips per person.

mobilephone cameras when user activities are present [5].
More specifically, there are 50 persons (subjects) partici-
pated in the video recording. Each subject is asked to use
the same smartphone to perform 5 different tasks, i.e., En-
rollment, Scrolling, Popup, Picture and Document, under
three different lighting conditions, i.e., well-lit, dim-lit and
natural. The Enrollment task is to ask the user to record
their faces in different poses and this data will be the gallery
in the face verification protocol. All the other four tasks in-
volve the users performing some activities on the cellphone
(refer [5] for details); these videos make up the probe set.

In practice, it is sufficient to identify users every few sec-
onds. So we sample 30 short clips, each 30 frames long (ap-
proximately one second) for each test video. For the gallery
set, each enrollment video is segmented into consecutive
clips of 30 frames uniformly instead of random sampling.
We use the Enrollment data of 10 persons for training and
use those of the remaining 40 persons for constructing the
gallery set. The lengths of enrollment videos vary for dif-
ferent persons. Fig. 9 shows the distribution of the training
videos and the gallery. Eventually, we have a training set
of 393 video clips and a gallery set that contains on average
43 video clips per person. The probe set contains 4 tasks
for each person out of 40 for each of the 3 illumination con-
ditions, i.e., 360 video clips per person and 14,400 in total.

Evaluation. The evaluation protocol is different from
LFW and YTF datasets because, for face authentication,
each device has access to only the videos of the owner. So
during test time, only the gallery of the corresponding iden-
tity is accessible. More specifically, each test clip is com-
pared to all the gallery clips of the corresponding person
and a maximum similarity score is calculated. Thereafter,
an ROC curve can be generated either by averaging over
identities with independent similarity score thresholding or
by using a global similarity threshold for all persons. Ac-
cording to our experiments, there is no significant difference
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Figure 10. Probe identity #17: (a) patch centers with relevance
(color annotated) larger than 0.5 are shown on top of the origin im-
age and (b) max dot product similarity scores between the Fisher
vector of selected patches and that of each gallery video clip. Red
color shows the similarity for the ground truth identity.

between using person-specific thresholds and using a global
threshold. So, in all of our experiments, we use global
thresholding for ROC curves. Equal error rates (EER) are
also used for performance evaluation and comparison.

Result. We use the training clips which cover only 10
identities (Fig. 9) for training PCA and GMM of SIFT de-
scriptors. Also we use all of the images with detected faces
in the training set for learning the relevance distribution for
selective encoding. Sometimes, real applications may not
have large amount of data available for training. So we
use such limited training data to evaluate the generalization
ability of our trained selector. This experiment is based on
appearance descriptors without location features.

We first run an example experiment on a sampled video
frame from identity #17. The frame is taken under dark
lighting condition and the chin of the identity is slightly out
of sight. We apply the selector to dense multi-scale descrip-
tors extracted over the image and obtain for each descriptor
a relevance weight. The centroids of patches with higher
than 0.5 relevance are plotted on top of the original im-
age in Fig. 10(a). Most patches within the facial area are
selected, although we still see a few background patches
selected above the face on the ceiling. These incorrectly
selected patches have an insignificant influence on the de-
scriptor distribution when pooled with a large number of
facial patches. We use these selected patch descriptors and
the selected codewords (with 0.5 relevance or higher) for
encoding the image and compare the feature representation
with those from the 40 gallery sets using dot product simi-
larity (equivalent to `2 since features are normalized). Simi-
larity scores are shown in Fig. 10(b). The top scored identity
is the ground truth and its score is over 0.2 larger than that
of the second most similar identity which shows that even
using such a dark and low quality image, we are still able to
distinguish the identity from all other 39 identities.

The face authentication results are shown in Fig. 11. We
compare our selective encoding framework (based on hard
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Figure 11. Results on active authentication dataset: (a) Equal error
rate (EER) for each person and (b) ROC curves. Three approaches
are compared: the original Fisher vector (Original FV), selective
encoding with only codeword selection (Selected Codeword), se-
lective encoding with both descriptor selection and codeword se-
lection (Selected Desc+Codeword).

assignment selector) with the original Fisher vectors and
a variant of our framework which discards only the code-
words with relevance weights lower than 0.5. While the
original Fisher vectors achieve 0.455 equal error rate, our
approach improves significantly and achieves 0.036 equal
error rate. Using only codeword selection achieves 0.157
equal error rate. That means the codeword selection is use-
ful; however the selection of visual descriptors plays a more
central role in robustifying feature encoding.

It is worth noting that the detector used for learning the
relevance distribution is not specifically tuned in this exper-
iment, so it might still produce errors. However, the exper-
imental results suggest that our selection strategy is robust
and does not require accurate registration.

6. Conclusion
We have proposed a generic selective encoding frame-

work for representing objects of interest that are unreliably
localized in images. Our framework introduces the selector
component into the codebook model so that it does not re-
quire test time detection or registration and becomes robust
to localization errors in real scenarios. Our method is also
computationally efficient which can benefit real-time appli-
cations. We have applied selective encoding to general face
verification and mobile phone face authentication. Experi-
mental results suggest that our approach is able to improve
the spatial robustness of feature encoding when face detec-
tors produce errors or even fail to localize faces. We expect
that our framework could be applied to general image clas-
sification and object recognition in the future.
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