
Int J Digit Libr
DOI 10.1007/s00799-009-0056-2

Techniques to audit and certify the long-term integrity of digital
archives

Sangchul Song · Joseph JaJa

© Springer-Verlag 2009

Abstract A fundamental requirement for a digital archive
is to set up mechanisms that will ensure the authenticity of
its holdings in the long term. In this article, we develop a
new methodology to address the long-term integrity of dig-
ital archives using rigorous cryptographic techniques. Our
approach involves the generation of a small-size integrity
token for each object, some cryptographic summary infor-
mation, and a framework that enables cost-effective regular
and periodic auditing of the archive’s holdings depending on
the policy set by the archive. Our scheme is very general,
architecture and platform independent, and can detect with
high probability any alteration to an object, including mali-
cious alterations introduced by the archive or by an external
intruder. The scheme can be shown to be mathematically cor-
rect as long as a small amount of cryptographic information,
in the order of 100 KB/year, can be kept intact. Using this
approach, a prototype system called ACE (Auditing Control
Environment) has been built and tested in an operational large
scale archiving environment.

Keywords Integrity auditing · Digital archives ·
Data integrity · Authenticity of digital archives

1 Introduction

A large portion of the scientific, business, cultural, and gov-
ernment digital information being created today needs to be

S. Song (B) · J. JaJa
Institute for Advanced Computer Studies and Department of
Electrical and Computer Engineering, University of Maryland,
College Park, MD 20742, USA
e-mail: scsong@umd.edu

J. JaJa
e-mail: joseph@umiacs.umd.edu

maintained and preserved for future use of periods ranging
from a few years to decades and sometimes centuries. Since
the mid-nineties, the issue of long-term preservation of digi-
tal information has received considerable attention by major
archiving communities, library organizations, government
agencies, scientific communities, and individual research-
ers. These studies have identified major challenges regarding
institutional and business models, technology infrastruc-
ture, and social and legal frameworks, which need to be
addressed to achieve long-term reliable access to digital
information.

One of the most challenging problems identified through
these studies is how to ensure the integrity of each object of
the archive’s holdings throughout the lifetime of the object.
Digital information is, in general, very fragile due to many
potential risks ranging from hardware and software failures
to major technology changes rendering current software and
hardware unusable, to the ever-growing number of computer
and networking security breaches. For instance, it is reported
in [1] that disk drive failures alone contributed 400,000
instances of data corruption over a period of 41 months in
1.53 millions of disk drives.

Note also that most of an archive’s holdings may be
accessed very infrequently, and, hence, several cycles of tech-
nology evolution may occur in between accesses to digital
objects, thereby causing corrupted files to go undetected until
it is too late. In addition, there is also the possibility of human
mishandling of the archive holdings (such as operational
errors) as well as the possibility of natural hazards and disas-
ters such as fires and floods. We also must be able to handle
the possibility of malicious alterations. Most of these prob-
lems may cause unnoticeable changes to the archive, which
may last for a long time before they are detected.

Two additional factors should also be taken into account
when considering long-term digital archives. First, a number

123

S. Song, J. JaJa

of transformations may be applied to a digital object during
its lifetime. For example, format obsolescence can lead to
a migratory transformation to a new format. Second, cryp-
tographic techniques, used by all current integrity checking
mechanisms, are likely to become less immune to potential
attacks over time, and hence they will need to be replaced by
stronger techniques. Therefore, these two problems need to
be also addressed in any approach to ensure the integrity of
a digital archive.

A number of bit-level integrity checking techniques tai-
lored for storage systems have been described in the lit-
erature [15–17]. However, these techniques fall short of
the requirements of a long-term digital archive. Other
techniques have been developed specifically for digital
archives, including those that appeared in [4,11,12,21],
but none seems to offer a general approach that is appli-
cable to the different emerging architectures for digital
archives (including centralized, peer to peer, and distrib-
uted archives) and that is capable of proactively monitoring
and detecting any alterations to the data in a cost effective
way.

The main focus of our study is the development of
a rigorous methodology to certify the integrity of any
object in the archive’s holdings, and detect any alterations,
including malicious alterations. More specifically, we intro-
duce efficient cryptographic techniques and related pro-
cedures to periodically audit the integrity of the various
objects held in the archive, which will be able, with high
probability, to discover any changes made to any object in
the archive, including changes introduced by a malicious
user. In fact, our methodology allows a party independent
of the archive to audit any object in the archive and cer-
tify its integrity with extremely high probability, as long
as around 100 KB/year of cryptographic information is kept
intact.

We note that a number of schemes can be used to correct
errors once they are identified by our method, depending
on the architecture of the archive. For a centralized archive
with an isolated dark archive, a master copy can be retrieved
to correct the corrupted object. For a federated or peer-to-
peer distributed archive, a certified (by our scheme) remote
replica can be used to replace the corrupted object using a
mechanism that will depend on the technical details of the
infrastructure.

2 Related work

In this section, we describe some of the most common strat-
egies used to ensure data integrity starting with the basic
techniques for bit streams stored on various types of media
or transmitted over a network.

2.1 Basic techniques

Data residing on storage systems or being transmitted across
a network can get corrupted due to media, hardware, or soft-
ware failures. Disk errors, for example, are not uncommon,
and data on disk can get corrupted silently without being
detected because a faulty disk controller causes misdirected
writes [17]. This type of errors remains undetected because
most storage software expects the media to function properly
or fail explicitly rather than mis-operate at any point during
its life time. The integrity of data can also get compromised
because of software bugs. For example, data read from a stor-
age device can get corrupted due to a faulty device driver or
a buggy file system which can cause data to become inacces-
sible [17]. Moreover, data integrity can be violated because
of accidental use or operational errors. Unintended user’s
activity might cause the integrity to be broken. For instance,
deletion of a file might lead to a malfunction of specific
application/system software that depends on the accidentally
deleted file. As a result of this action, integrity violations may
occur.

The simplest technique for implementing integrity checks
is to use some form of replication such as mirroring. The
integrity verification can then be made by comparing the
replicas against each other. This method can easily detect
a change in the stored data only if the modification is not
carried out in all the replicas and no errors are introduced
during data movement. While maintaining at least one copy
of a replica is inevitably necessary to recover from a potential
data corruption, performing constant bit-by-bit replica com-
parisons to detect integrity violation for every object in an
archive is an expensive operation that is prone to errors and
that cannot counter malicious alterations.

A well-known approach used in RAID storage is based on
coding techniques, the simplest of which is parity checking
[15]. The parity across the RAID array is computed using
the XOR logical function. The parity value is stored together
with the data on the same disk array or on a different array
dedicated to the parity itself. When the disk containing the
data or the parity fails, the data or parity can sometimes be
recovered using the remaining disk and performing the XOR
operation [15]. The XOR parity is a very special type of era-
sure codes, which can be much more powerful [16]. They
all involve expanding the data using some types of algebraic
operations in such a way that some errors may be detected and
corrected. While these techniques are critical in maintaining
some level of bit-level integrity on storage systems, they are
not designed to support high-level data integrity since decod-
ing will be required every time the data accessed, and they
entail a significant expansion of the data. Moreover, since
only certain errors can be corrected, they still require that a
“master copy” be stored in some kind of a back-up system
or a “dark archive”.

123

Techniques for digital archives

A widely used method is based on cryptographic hashing
(also called checksum) techniques. In this approach, a check-
sum of the bit-stream is computed and is stored persistently
either with the data or separately. The checksum is calculated
using a cryptographic hash algorithm. In general, a crypto-
graphic hash algorithm takes an input of arbitrary length and
converts it into a single fixed-size value known as a digest or
hash value. A critical property of cryptographic hash algo-
rithms is that they are based on one-way functions, that is,
given the hash value of a bit-stream A, it is computationally
infeasible to find a different bit-stream B that has the same
hash value [8,13]. Assuming that the hash values are correct,
data integrity can be verified by comparing the stored hash
value with a newly computed hash from the data. Although
no known hash function has been proven to be truly one-way,
the most common hash functions in use are MD5, SHA-1,
SHA-256, and RIPEMD-160, all of which seem to work well
in practice (in spite of the recent attacks that illustrated how
to break MD5 [19] and SHA-1 [20]). The major problem
with this scheme is that it cannot detect malicious alterations
since the hash function used by an archive is usually known,
and hence an intruder or a malicious user within the archive
can change an object and the corresponding hash value so
that they still match.

2.2 Techniques for digital archives

We now describe some of the most notable methods that have
been suggested for integrity verification for digital archives.

The most popular and, perhaps, the most important
method for addressing integrity checking of digital archives
is to compute a hash for each object in the archive and store
the hashes in a separate, secure, and reliable registry (the
hash could in addition be stored with the object as well).
Integrity auditing involves periodic sampling of the content
of the archive, computing the hash of each object, and com-
paring the computed hash with the stored hash value of the
object. While such a scheme may be sufficient for small,
centralized archives, it has two serious shortcomings rela-
tive to our stated goals. The first is that a malicious user
within the archive or an external intruder can modify both
an object and its corresponding hash value (since the hash
function is known), in which case there will be no way to
detect such an error. The second shortcoming is the fact that
the whole scheme depends on ensuring the integrity of all
the hash values, which will grow linearly with the number
of objects in the archive. Even in the absence of malicious
alterations, this is a non-trivial problem for large archives
over the long term, especially because the hashing schemes
themselves will inevitably change over time in which case
we have to track the particular hashing scheme used at any
specific time. In the method that we will propose, we only
need to ensure the integrity of a single hash value per day,

independent of the number of objects in the archive, which
is a substantially easier problem to manage.

Another approach uses a combination of replication and
hashing. In this approach, each digital object is replicated
over a number of repositories. Integrity checking can be per-
formed by computing the hash of each copy locally, and send-
ing all the hashes to an auditor. A majority vote enables the
auditor to discover the faulty copies, if any. This is the pri-
mary integrity scheme used in LOCKSS [12], which is a
peer-to-peer replication system for archiving electronic jour-
nals in which each participating library collects its own copy
of the journals of interest. LOCKSS uses a peer-to-peer inter-
cache protocol (LCAP) which is a cache auditing protocol.
It runs LCAP continuously among all the caches to detect
and correct any damage to cached contents. The process is
similar to opinion polls in which all the caches vote. When a
storage peer in LOCKSS calls for an audit of a digital object,
each peer that owns a replica computes the corresponding
hash value and sends back the value to the audit initiator. If
the computed digest agrees with the overwhelming major-
ity of the replies, then the object is believed to be intact.
If the digest disagrees with the overwhelming majority, the
object is believed to be tampered with, and the copy is dis-
carded while a new copy is fetched from the publisher or
one of the caches with the right copy. As such, LOCKSS
is the only scheme described in this sub-section which han-
dles both detection and correcting simultaneously. However,
this approach depends crucially on the assumption that there
are many replicas for each object. While this assumption
may be reasonable for archiving electronic journals at dif-
ferent libraries, many of the current archives do not use the
peer-to-peer infrastructure, or create many replicas of each
archival object. A replica voting approach can be expensive,
requiring a significant communication overhead. In general,
achievement of consensus among distributed nodes that do
not trust each other (and some of which may be faulty) is
a difficult problem that has been studied extensively in the
distributed computing literature. In fact, as reported in [5],
about 50 malicious nodes could abuse the LOCKSS protocol
to prevent a network of 1000 nodes from auditing their con-
tents. We note that additional set of defenses [5] including
admission control, desynchronization, and redundancy can
be used to counter such an attack but clearly this makes the
scheme significantly more complicated and costly.

Another possible approach is to make use of digital signa-
tures [3] based on public key cryptography. In essence, such
a scheme involves a private–public key pair for performing
signing/verification operations, and a supporting public-key
infrastructure. The basic premise is that the private key is only
known to the owner, and the public key is widely available.
A message signed by a private key can be verified using the
corresponding public key. The digital signature technology
takes direct advantage of this property. The digital object is

123

S. Song, J. JaJa

signed using the private key (note that the signature depends
on the digital object and the private key), and anybody can
verify the signature using the corresponding public key. If the
verification process succeeds, the digital object is considered
intact (and the identity of the author of the signature verified).
Hence, a possible approach to preserving the integrity of dig-
ital archives would be to sign each digital object using a pri-
vate key only known to the archive. However, the certificates
(public keys signed by a widely trusted certificate authority)
have a finite life with a fixed expiration date. Hence, we need
to have a trusted and reliable method to track the various pub-
lic keys used over time. In general, this is a difficult problem
that can be solved using sophisticated techniques based on
Byzantine agreement protocols [9] and threshold cryptogra-
phy [2], which shed serious doubts on its practicality in a
production environment. Also, should the private key of the
archive be compromised, the whole archive becomes at risk.
This implies that a malicious user within the archive or an
intruder, who gets access to the private key can easily com-
promise the contents of the whole archive. Another potential
problem with this scheme is its complete dependence on a
third party, such as certificate authorities, which may or may
not exist over time.

We now introduce the time-stamping technique, which
provides an alternative approach to the digital signature
scheme outlined above. A time stamp of a digital object D
at time T is a record that can be used any time in the future
(later than T) to verify that D existed at time T . The record
typically contains a time indicator (date and time) and a guar-
antee (that depends on the time-stamping service) that D
existed in exactly this form at time T . One way to implement
time stamping is through a Time Stamping Authority (TSA)
that attaches a time designation to the object (or its hash)
and signs it using the private key of the TSA. The British
Library [4] uses this strategy through an independent TSA.
With the usage of the public key of the TSA, any alteration
to any object, malicious or otherwise, can be detected, which
in fact achieves one of our major objectives. However, the
verification procedure depends completely on the trustwor-
thiness of a single entity, namely, the TSA. Should the TSA be
compromised or disappear sometime in the future, the whole
scheme breaks down completely. Moreover, this scheme is
computationally expensive, and we still have to deal with the
problem of tracking the various public keys used by the TSA
over time.

Another approach to time stamping, which will be used
as the basis for our scheme, makes use of linked (or chained)
hashing [7], which amounts to cryptographically chaining
objects together in a certain way such that a temporal order-
ing among the objects can be independently verified. In this
approach, there is no need for a fully trusted third party or
for tracking certificates over time. In an attempt to address
the problem of tracking public keys in a digital signature

scheme, the linked hashing technique was also suggested to
time stamp the public keys [10]. Our scheme directly applies
the linked hashing to target objects, thereby eliminating the
necessity of maintaining the public-key infrastructure.

In the next section, we will describe the linked hashing
technique as used in our approach and demonstrate its ability
to achieve our goals in a cost-effective way without depend-
ing on a fully trusted archive or a third party.

3 Our approach

As can be seen from the previous section, the previous integ-
rity checking schemes revolve around the following tech-
niques:

– Majority voting using replicated copies of the object or
their hashes.

– Computing and saving a digest (“fingerprint”) for each
object, using some well-known hash functions. The audit-
ing process consists of computing the digest from the
object and comparing it to the saved digest.

– Creating a digital signature of the object and saving it
“with the object.” The auditing process makes use of the
public key of either the archive or a third party depending
on the particular scheme used. Either way, the integrity
of the scheme requires a fully trusted third party and the
tracking of certificates over time.

We start by introducing the formal notion of a crypto-
graphic hash function. Such a function compresses an arbi-
trarily long bit-string into a fixed length bit-string, called the
hash value, such that the function is easy to compute but it
is computationally infeasible to determine an input string for
any given hash value. More formally, we would like our hash
function H to satisfy the following two properties.

– Preimage resistance (one-way property): Given any hash
value x , it is computationally infeasible to find any bit-
string m such that x = H(m).

– Weak collision resistance: Given any bit-string m, it is
computationally infeasible to determine a different bit-
string m′ such that H(m) = H(m′).

Another property that is sometimes a requirement of cryp-
tographic hash functions is given here.

– Collision resistance: It is computationally infeasible to
determine any two different strings m and m′ such that
H(m) = H(m′).

These assumptions are the basis for many well-known
cryptographic algorithms, including those used in public-key

123

Techniques for digital archives

cryptography (see, for example, [13]). Unfortunately, none
of the available hash functions can be shown to satisfy these
properties. However, several are accepted by the community
as reasonably secure and are currently in widespread use.
As noted in Sect. 2, recent study has shown how to break
the schemes based on MD5 and SHA-1, but the actual threat
posed by such study is not clear and, moreover, there are
other schemes that remain intact. It is anticipated that stron-
ger algorithms will be developed over time and, hence, any
auditing strategy for long-term digital archives has to pro-
vide mechanisms to integrate the newer algorithms without
compromising the integrity of the objects that used earlier
algorithms.

3.1 Constructing integrity tokens and witness values

A starting point of our approach is a scheme that computes a
digest for each object and stores the corresponding digests in
a separate registry. A digest is typically the result of apply-
ing a one-way hash function on the object, but for our pur-
poses, we will not exclude other techniques for generating
digests especially for multimedia objects. As mentioned ear-
lier, a major problem with this scheme is how to ensure the
integrity of the digest registry over the long term, especially
because the registry grows linearly with the number of objects
ingested into the archive. Clearly “attaching” the digest to the
object does not solve this problem either.

One can address this problem by compressing all the
digests into a small number of hash values, which we will
call witness values, using collision-resistant, one-way hash
functions. For example, we can generate one witness value
per day, which cryptographically represents all the objects
processed during that day, and hence the total size of all the
witness values over a year is quite small (around 100 KB),
independent of the number of objects processed during the
year.

Given the small size of the witness values, they can be
saved on reliable read-only media such as newspapers or
archival quality optical media, and hence their integrity can
be assured under reasonable assumptions about caring for the
media and refreshing the content often as necessary. However
it will be extremely time-consuming to conduct regular audits
on a large scale archive using the witness values because
the auditing of a single object will require the retrieval of
the digests of all the objects processed during a day as well
as reading the corresponding witness value from a reliable
medium. We next show how to counter this problem in a cost
effective way.

In order to simplify the presentation, we consider the typi-
cal scenario where the generation of the cryptographic infor-
mation necessary for integrity auditing is placed at the end
of the ingestion process, just before an object is archived.
We organize the processing of objects into rounds, each of

which covers some time interval that is dynamically deter-
mined. The length of the time interval depends on the oper-
ation of the archive, and may correspond to a fixed duration
such as a minute or an hour, a number of objects between a
certain minimum and a certain maximum, or may correspond
to the time it takes to process a batch of objects according to
the archive’s schedule. During each round, digests of all the
objects being processed can be compressed using any num-
ber of schemes, including, for example, the trivial scheme of
hashing a concatenation of all the digests in a certain order.

A particular class of such schemes is based on the so-
called hash linking, which was introduced to ensure that the
relative temporal ordering of the objects processed during a
round is preserved and cannot be altered without changing the
final value. We will make use of the Merkle tree [14], which
is one of the most widely used hash linking schemes. More
specifically, the digests of all the objects being processed in
a round form the leaves of a balanced binary tree such that
the value stored at each internal node is the hash value of the
concatenated values at the children. A random digest value
may also be inserted into the tree at each level to ensure that
the number of nodes at each level is even (except for the
root). The value computed at the root of the tree is the round
hash value, which represents the compressed value of all the
digests (and objects) processed during the round. That is, a
change to any of the objects will result in a different round
hash value, and, moreover, it is computationally infeasible
to determine another set of objects (including reordering the
objects) that will yield the same round hash value.

We now define the proof of the digest of an object, rep-
resented in a leaf of the Merkle tree, as the sequence of the
hash values of the siblings of all the nodes on the unique path
from that leaf to the root.

Consider, for example, a round involving eight objects
with the digest values h1, h2, . . . , h8 (See Fig. 1 for the corre-
sponding tree). The values of the internal nodes are given by:

h12 = H(h1||h2) h34 = H(h3||h4)

h56 = H(h5||h6) h78 = H(h7||h8)

h1234 = H(h12||h34) h5678 = H(h56||h78)

rh = H(h1234||h5678)

The proof of the object whose digest value is h5 will be
the following sequence:

P R5 = 〈(h6, r), (h78, r), (h1234, l)〉,
where r designates right sibling and l left sibling.

In general,

P Ri = 〈(h j , r or l) | h j is the sibling of each node

on the unique path from hi to root〉
The proof is an essential part of the integrity token that

is generated for each object. In essence, the integrity token

123

S. Song, J. JaJa

h1234 h5678

rh

h1 h2 h3 h4 h5 h6 h7 h8

h12 h34 h56 h78

Shaded values are the proof for h5

Fig. 1 Merkle tree

consists of the digest, the proof, and a time stamp of the
round. It also includes other information that will be needed
over the long term, which will be briefly described in the next
section.

Given the integrity token of an object, we can quickly
compute the round hash value by following the path
defined by the proof and performing the concatenation/hash
operations as appropriate. For example, with the above
P R5, the round hash value can be computed from rh =
H(h1234||((h5||h6)||h78)). Note that the length of such a path
is logarithmic in the number of objects processed during a
round and, hence, it is quite small relative to the number of
objects.

We reiterate the process by compressing the ordered set
of round hash values using one of the hash linking schemes
such as Merkle’s tree. The resulting value serves as a witness
value. The granularity of this process can be set dynamically
depending on the archive’s schedule. Here, we assume that
all the round hash values during a day are linked together
to generate a witness value. This process can of course be
repeated n times, making n-layers of hash linking trees.
In our prototype, we stopped at n = 2, since the result-
ing witness values were quite small (less than 100 KB a
year).

Once determined, the witness values are stored in
reliable read-only media. Our approach depends only on
the correctness of the witness values, which is a very
reasonable assumption given the total size of the witness
values. Based on this assumption, we can achieve the
following:

– Our scheme can detect an alteration to any digital object
in the archive, malicious or otherwise.

– There is a cost-effective procedure that can periodically
audit the contents of the archive to discover any alteration
on any object within a short time after the alteration was
made.

– Any party, independent of the archive, can audit any
object in the archive and assert its integrity based on the
witness values.

– No fully trusted third party is needed.

We will later describe our ACE (Auditing Control Envi-
ronment) system that accomplishes all the goals stated above.
We next show how our approach can be adapted to deal with
object transformations and updating the hash schemes used
by the archive.

3.2 Updating integrity information

There are two cases in which the integrity information must
be updated. The first case is when the archive decides to
substitute a stronger hash function for one of the hash func-
tions currently in use because of some recently discovered
potential threats. The second is when the archive decides to
apply certain transformations to some of the objects (because
of the possibility of a format becoming outdated, for exam-
ple). There is an existing solution to deal with renewing the
integrity information for the first case by re-registering each
related object with the old integrity token attached to it (see,
for example, [6]). Such a solution will ensure our ability
to verify the integrity of the object since its ingestion into
the archive as articulated in this earlier study. This process
increases the size of the integrity token, but has no impact on
the sizes of the other integrity components.

We now discuss how to renew the integrity information
in the case when the object is subjected to a transformation.
A possible solution would be to re-register the new object
by concatenating the hashes of the old and the new form of
the object and an identifier of the transformation, and use
the resulting string as if it were the hash of an object to be
registered. However, this scheme could be computationally
demanding and too complicated to be of practical use. We
assume that an archive has to preserve certain (sometimes all)
versions of an object which can form an authenticity chain
between the original version and the current version of the
object. The chain may consist of the current version and the
original version of the object. Since a transformation will
lead to a new version of the object, and, hence, a new object
with its own identifier (could be the old identifier concate-
nated with the version number), it will participate in a hashing
round to obtain its new cryptographic information using the
same method as before. However, in this case, we will include
the unique identifier of the previous version in the authentic-
ity chain in the integrity token. Note that the integrity of an
object should be verified before it is transformed into a new
format to ensure its authenticity at this time of its history.
The inclusion of the identifiers of previous versions in the
integrity tokens will enable us to go through the authenticity

123

Techniques for digital archives

chain and establish the integrity of each version as well as
the validity of the corresponding transformation.

4 Putting the ideas together—the ACE tool

Making use of the ideas described in the previous section,
we presented in [18], an early implementation of the ACE
(Auditing Control Environment) prototype system. More
recently, we released Version 1.0 of ACE, which includes
some refinements to the earlier prototype. Here, we present
a brief overview of the ACE architecture, illustrate its audit-
ing processes, and report on its performance on a large scale
production environment.

4.1 ACE components

ACE consists of two major components: the first, called IMS
(Integrity Management System), is a third-party service pro-
vider that generates the integrity tokens upon request from
an archive. A single IMS can simultaneously serve multiple
archives, including multiple nodes of a distributed archive.
It also maintains the round hash values and generates the
witness values. In ACE, the integrity tokens contain sev-
eral pieces of information in addition to the proof and the
time stamp (for example, the ID of the hash algorithm used,
the version number of object, and last time the object was
audited). Also, ACE links consecutive round hash values
sequentially. The second major component is the Audit Man-
ager (AM), which is local to an archive and functions as a
bridging component between the IMS and the archive. In
particular, the AM sends requests to the IMS to generate the
integrity tokens for a number of objects, and once received,
the tokens are stored in a local registry. Figure 2 shows the
overall ACE architecture of the general case of a distributed
archive with dispersed nodes operating asynchronously.

4.2 ACE workflow

In this subsection, we discuss a typical workflow with ACE,
which includes two major operations: registration and audit-
ing described next.

4.2.1 Registration

For an object to be registered into ACE, the audit manager
creates a registration request and submits it to the IMS. When
the IMS issues an integrity token for the object, the audit man-
ager stores it locally in a special registry for the archive (local
node, if it is a distributed archive). In the meantime, the IMS
runs a continuous series of aggregation rounds. Each round
closes either when the round receives the maximum num-
ber of registration requests, or when the maximum amount

Archiving
Node

Archiving System Middleware

Archiving
Node

Integrity Management System
(IMS)

Audit Manger
(AM)

Audit Manger
(AM)

Fig. 2 ACE architecture

of time allocated for a round is reached, whichever comes
first. These parameters are assigned by the IMS administra-
tor. This round interval policy can be also overridden through
a special object registration request, which forces the current
round to immediately close and return an integrity token.
Object registration requests received during a round are
aggregated together along with a number of random val-
ues through the Merkel-tree hash-linking. The random
values are added as necessary to ensure a minimum
number of hash-linking participants in a round. The resulting
round hash value is managed internally within the IMS, and
an integrity token is issued to each AM who originally sent
a registration request.

At the end of each day, the IMS constructs a witness value
using the hash round values of the day, sends it to the partic-
ipating archives, and stores it in a reliable medium (the cur-
rent ACE implementation publishes witnesses to a Google
group, and stores the value on a CD-ROM). These witnesses
are cryptographically dependent on round hash values, which
are themselves cryptographically linked to the hashes of the
objects registered during that day.

4.2.2 The auditing process

ACE currently performs periodic auditing on the archive’s
objects following the policy set by the manager of the archive.
The policy can be set at an object or collection level. For
example, the policy for a certain collection could involve
auditing all the objects in the collection every three months,
while the policy set for another collection could be to audit
all the objects in that collection every six months. A default
policy will be set during registration time unless the archive
manager sets it differently. Moreover, the auditing process
can be invoked by the archive manager at any time on any
object.

123

S. Song, J. JaJa

Table 1 ACE performance
Collection No. of files Size (GB) Audit time

CDL 46,762 4,291 20 h 32 min

SIO-GDC 197,718 815 6 h 49 min

ICPSR 4,830,625 6,957 122 h 48 min

NC state 608,424 5,465 32 h 14 min

When applied to a specific object O , the auditing process
consists of the following steps:

1. The audit manager computes the hash value of O and
retrieves its integrity token.

2. Making use of the computed hash value of O and the
proof contained in the integrity token, the audit manager
computes the round hash value.

3. Making use of the round time stamp contained in the
integrity token, the audit manager requests the corre-
sponding round hash value from the IMS.

4. The audit manager successfully terminates the auditing
process if the computed hash value in Step 1 is equal to
the hash value stored in the integrity token, and the two
round hash values computed in Steps 2 and 3 are equal.
Otherwise, it sends an error alert to the archive manager.

It is clear that if the two hash values, as well as the two
round hash values, computed through the auditing process
are equal, then the object and the integrity token are intact
with a very high probability. A more elaborate process, which
will happen infrequently, will involve the witness values as
follows. The audit manager requests from the IMS the proof
for the round hash value. On receiving this request, the IMS
aggregates all the round hash values for the day to determine
the proof, and returns the proof to the audit manager. Mak-
ing use of the proof, the AM computes the corresponding
witness value of the day and compares it to the value stored
on the read-only media. This elaborate process will ensure
the trustworthiness of the IMS. A failure of this process will
automatically invalidate the object under the auditing pro-
cess.

We note that the same process can be applied by a party
independent of the archive to verify the integrity of an object.
The independent party will request the integrity token from
the archive, and then the round hash value and its proof from
the IMS. Making use of this information, she/he can quickly
compute the witness value of the day on which the object
was registered into ACE. She/he can then compare it with the
corresponding witness value stored in the read-only media.
Any alterations introduced by the archive or the IMS will be
detected with very high probability.

4.3 ACE preliminary performance evaluation

ACE Version 1.0 has been deployed against a variety of col-
lections managed by the Chronopolis archiving environment.
Chronopolis is a collaboration between the San Diego Super-
computer Center(SDSC)/UCSD Libraries, National Center
of Atmospheric Research (NCAR), and the University of
Maryland (UMD), which involves a distributed archiving
architecture with three geographic nodes at SDSC, NCAR,
and UMD. Chronopolis is currently managing substantial
collections from NDIIPP partners, including the Califor-
nia Digital Library (CDL) Web-at-Risk collection, the In-
terUniversity Consortium for Political and Social Research
(ICPSR) collection, and collections from the Scripps Institu-
tion of Oceanography–Geological Data Center (SIO–GDC),
and North Carolina Geospatial Data Archiving Project (NC
State). ACE has been operational during the past six months
within the Chronopolis environment. The current default
ACE auditing policy is to audit files at the University of
Maryland every 30 days. Table 1 illustrates the performance
of a single audit manager on the collections audited at UMD,
amounting to approximately 6 million files. A large fraction
of the time is spent on accessing the collections across the
network.

During the audit period on the CDL collection, a single
audit manager was able to run at the rate of about 60 MB
per second on average, almost fully utilizing the file transfer
bandwidth available. For the other collections, where there
were more small files, the audit speed was further limited by
the overhead accessing each file. For example, on the ICPSR
collection, the audit manager ran at the rate of 13 MB per sec-
ond, having to open up each of about 4.8 million files. These
results indicate that the actual time spent by an audit man-
ager to perform the core audit process is negligible. It is small
enough to be effectively hidden by the unavoidable overhead
for accessing the collections. We note that multiple audit
managers can be run concurrently on different collections to
increase the performance almost linearly as necessary.

5 Conclusion

In this article, we presented a new methodology to address
the integrity of long-term archives using rigorous crypto-

123

Techniques for digital archives

graphic techniques. Our approach depends only on the use
of hash functions and linking schemes, and is independent
of an external infrastructure such as PKI. The computational
requirements of our approach are minimal and the overall
solution can be implemented on any archive architecture. We
built ACE as a complete prototype that executes this strategy
and showed its effectiveness on large collections in Chronop-
olis. More details about ACE can be found in [18].

Acknowledgement This research study was supported in part by the
National Science Foundation and the Library of Congress, grant number
IIS-0455995, under the DIGARCH program.

References

1. Bairavasundaram, L.N., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H., Goodson, G.R., Schroeder, B.: An analysis of data corrup-
tion in the storage stack. ACM Trans. Storage 4(3), 1–28 (2008).
http://doi.acm.org/10.1145/1416944.1416947

2. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: CRYPTO
’89: Proceedings on advances in cryptology, pp. 307–315.
Springer-Verlag, New York, Inc., New York, NY, USA (1989)

3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE
Trans. Inf. Theory IT-22(6), 644–654 (1976)

4. Farquhar, A., Martin, S., Boulderstone, R., Dooher, V., Masters, R.,
Wilson, C.: Design for the long term: Authenticity and object rep-
resentation. In: Proceedings of Archiving 2005. IS&T, pp. 104–108
(2005)

5. Giuli, T.J., Maniatis, P., Baker, M., Rosenthal, D.S.H., Rousso-
poulos, M.: Attrition defenses for a peer-to-peer digital preserva-
tion system. In: ATEC’05: Proceedings of the USENIX Annual
Technical Conference 2005, pp. 163–178. USENIX Association,
Berkeley, CA, USA (2005)

6. Haber, S., Kamat, P.: Content integrity service for long-term digital
archives. In: Proceedings of Archiving 2006. IS&T, pp. 159–164
(2006)

7. Haber, S., Stornetta, W.S.: How to time-stamp a digital document.
J. Cryptol. 3(2), 99–111 (1991)

8. Kaufman, C., Perlman, R., Speciner, M.: Network Security:
Private Communication in a Public World. 2nd edn. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (2002)

9. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals prob-
lem. ACM Trans. Program Lang. Syst. 4(3), 382–401 (1982). http://
doi.acm.org/10.1145/357172.357176

10. Maniatis, P., Baker, M.: Enabling the archival storage of signed
documents. In: FAST ’02: Proceedings of the 1st USENIX Confer-
ence on File and Storage Technologies, p 3. USENIX Association,
Berkeley, CA, USA (2002)

11. Maniatis, P., Giuli, T., Baker, M.: Enabling the long-term archi-
val of signed documents through time stamping. Technical Report
arXiv:cs.DC/0106058, Computer Science Department, Stanford
University, Stanford, CA, USA (2001)

12. Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal, D.S.H.,
Baker, M.: The LOCKSS peer-to-peer digital preservation system.
ACM Trans. Comput. Syst. 23(1), 2–50 (2005). http://doi.acm.org/
10.1145/1047915.1047917

13. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA
(1996)

14. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE
Symposium on Security and Privacy, pp. 122–134. (1980)

15. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays
of inexpensive disks (RAID). In: SIGMOD ’88: Proceedings of the
1988 ACM SIGMOD international conference on Management of
data, pp. 109–116. ACM Press, New York, NY, USA (1988). http://
doi.acm.org/10.1145/50202.50214

16. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance
in RAID-like systems. Softw. Pract. Exp. 27(9), 995–1012 (1997)

17. Sivathanu, G., Wright, C.P., Zadok, E.: Ensuring data integrity in
storage: techniques and applications. In: StorageSS ’05: Proceed-
ings of the 2005 ACM workshop on Storage security and surviv-
ability, pp. 26–36. ACM Press, New York, NY, USA (2005). http://
doi.acm.org/10.1145/1103780.1103784

18. Song, S., JaJa, J.: Ace: a novel software platform to ensure the
integrity of long term archives. In: Proceedings of Archiving 2007,
pp. 90–93. IS&T (2007)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In:
EUROCRYPT. 19–35 (2005)

20. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1.
In: CRYPTO. 17–36 (2005)

21. Weatherspoon, H., Wells, C., Kubiatowicz, J.: Naming and integ-
rity: self-verifying data in peer-to-peer systems. In: Future Direc-
tions in Distributed Computing, pp. 142–147 (2003)

123

http://doi.acm.org/10.1145/1416944.1416947
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/1047915.1047917
http://doi.acm.org/10.1145/1047915.1047917
http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/1103780.1103784
http://doi.acm.org/10.1145/1103780.1103784

	Techniques to audit and certify the long-term integrity of digital archives
	Abstract
	1 Introduction
	2 Related work
	2.1 Basic techniques
	2.2 Techniques for digital archives

	3 Our approach
	3.1 Constructing integrity tokens and witness values
	3.2 Updating integrity information

	4 Putting the ideas together---the ACE tool
	4.1 ACE components
	4.2 ACE workflow
	4.3 ACE preliminary performance evaluation

	5 Conclusion
	Acknowledgement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

