
Earlybird: Real-Time Search at Twitter
Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and Jimmy Lin

Twitter
@michibusch @krishnagade @larsonite @plok @sam @lintool

Abstract— The web today is increasingly characterized by
social and real-time signals, which we believe represent two
frontiers in information retrieval. In this paper, we present
Earlybird, the core retrieval engine that powers Twitter’s real-
time search service. Although Earlybird builds and maintains
inverted indexes like nearly all modern retrieval engines, its
index structures differ from those built to support traditional web
search. We describe these differences and present the rationale
behind our design. A key requirement of real-time search is
the ability to ingest content rapidly and make it searchable
immediately, while concurrently supporting low-latency, high-
throughput query evaluation. These demands are met with a
single-writer, multiple-reader concurrency model and the tar-
geted use of memory barriers. Earlybird represents a point in
the design space of real-time search engines that has worked well
for Twitter’s needs. By sharing our experiences, we hope to spur
additional interest and innovation in this exciting space.

I. INTRODUCTION

Information retrieval (IR), particularly in the web context
(i.e., web search), is a mature technology. Through commercial
search engines, anyone can query billions of web pages in
milliseconds for free. From the information retrieval research
literature, much is known about many core aspects of web
search, e.g., machine-learned ranking algorithms [1], [2], [3],
techniques for exploiting log data [4], [5], [6], [7], web
crawling [8], and the systems engineering aspects of building
large-scale search engines [9], [10]. Although there continue
to be refinements and advances, it is unclear whether we can
expect major disruptive advances in core web search in the
near future.

There is, of course, more to information retrieval than
searching (relatively) static web content. The web today is in-
creasingly characterized by social and real-time signals, which
we believe form the next frontiers of information retrieval.
There has been a fair amount of work on social search (e.g.,
[11], [12]) and the use of social signals to personalize web
search has recently seen commercial deployments, but the
topic of real-time search appears to be largely unexplored in
the academic literature. This is the focus of our paper.

Twitter is a communications platform on which users can
send short, 140-character messages, called “tweets”, to their
“followers” (other users who subscribe to those messages).
Conversely, users can receive tweets from people they follow
via a number of mechanisms, including web clients, mobile
clients, and SMS. As of Fall 2011, Twitter has over 100 million
active users worldwide, who collectively post over 250 million
tweets per day. One salient aspect of Twitter is that users
demand to know what’s happening right now, especially in
response to breaking news stories such as the recent death of

Steve Jobs, upcoming birth of Beyoncé’s baby, or protests in
Tahrir Square and on Wall Street. For that, they frequently turn
to real-time search: our system serves over two billion queries
a day, with an average query latency of 50 ms. Usually, tweets
are searchable within 10 seconds after creation.

This paper describes Earlybird, the retrieval engine that lies
at the core of Twitter’s real-time search service. We view this
work as having two main contributions. First, we describe an
approach to organizing inverted indexes that supports the de-
mands of real-time search. Second, we present a single-writer,
multiple-reader lock-free algorithm that takes advantage of
Java’s concurrency model to perform real-time indexing with
highly-concurrent query evaluation.

Roadmap. The remainder of the paper is organized as follows:
We begin by discussing the requirements of real-time search
(Section II) and then provide background on traditional web
search architectures and algorithms (Section III). An overview
of Earlybird is provided in Section IV, followed by detailed
discussions of its index organization (Section V) and con-
currency model (Section VI). We describe the deployment
status of Earlybird and provide some performance figures in
Section VII. Future directions are presented in Section VIII
before concluding.

II. REQUIREMENTS OF REAL-TIME SEARCH

We begin by describing the salient requirements of real-
time search, which to a large extent dictates the design of
Earlybird. With the exception of the first, these requirements
are somewhat different from those of web search.

Low-latency, high-throughput query evaluation. When it
comes to search, users are impatient and demand results
quickly, and of course, any successful search engine must
cope with large query volumes. Web search engines are no
stranger to the requirements of low query latency and high
query throughput, and these desired characteristics apply to
real-time search as well.

High ingestion rate and immediate data availability. In real-
time search, documents1 may arrive at a very high rate, often
with sudden spikes corresponding to the “flash crowd” effect.
Regardless of arrival rate, users expect content to be searchable
within a short amount of time—on the order of a few seconds.
In other words, the indexer must achieve both low latency and

1Following standard IR parlance, we refer to the basic unit of indexing as
a “document”, even though in actuality it may be a web page, a tweet, a PDF,
a fragment of code, etc.



high throughput. This requirement departs from common as-
sumptions in typical search environments: that indexing can be
considered a batch operation. Although modern web crawlers
achieve high throughput, it is not expected that crawled content
be available for searching immediately. Depending on the type
of content, an indexing delay of minutes, hours, or even days
may be acceptable. This allows engineers to trade off latency
for throughput in running indexing jobs on batch systems
such as MapReduce [13]. Alternatively, substantially more
machine resources can be brought to bear to reduce indexing
latency using an architecture such as the one implemented by
Percolator [14], but this alternative still does not appear to
approach the speed required for real-time search.

Concurrent reads and writes. As a result of the previous
two requirements, real-time search engines must contend with
large volumes of concurrent reads and writes. That is, index
structures must be continuously updated as documents are
ingested, while the same index structures are accessed to
serve queries. This stands in contrast to web search, which is
mostly read-only (albeit, highly concurrent) from static index
structures. As a simple solution, indexes can be deployed in
atomic swaps, from an older to a newer version of the index,
meaning that it is fairly easy to design architectures where
indexes are never read from and written to concurrently.

Dominance of the temporal signal. The very nature of
real-time search means that the timestamp of the document
is a very important (if not the most important) signal for
ordering results. By default, a real-time search engine could
display hits in reverse chronological order (initial implemen-
tation of Twitter real-time search). Even when other relevance
signals are incorporated to improve this ordering (as Twitter
currently does), the temporal signal remains dominant. This
stands in contrast to web search, where the timestamp of
a web page has a relatively minor role in determining the
relevance ranking (news search being the obvious exception).
The practical implication of this is that the query evaluation
algorithm should traverse inverted index postings in reverse
chronological order.2 This is an access pattern that is foreign
to standard web search engines.

III. BACKGROUND AND RELATED WORK

A. Distributed Search Architectures

A web search service, especially at scale, is first and
foremost a complex, geographically-distributed system [9],
[10]. User queries are first routed to an appropriate datacenter
based on a variety of considerations: query load, link latencies,
and even the cost of electricity [15], [16], [17]. Within each
datacenter, search is served by large clusters consisting of
hundreds to thousands of machines. Most frequently, these
machines are organized in a replicated, broker-coordinated,
document-partitioned distributed search architecture (or some
variant thereof).

2Although this is not an absolute requirement and other alternatives are
possible, it is perhaps the most natural implementation.

At scale, the document collection is usually partitioned
logically (i.e., sharded) into disjoint segments and individual
machines are responsible for serving indexes that correspond
to these document partitions [18], [19]. A broker is responsible
for forwarding requests to the partition servers and integrating
partial results from each before passing the final output back to
the requester. Partitioning reduces query and indexing latency
since each partition operates independently. Robustness of
the search service is achieved via replication, i.e., multiple
instances of the same service running independently to share
the incoming request load. Replication has little impact on
latency, but increases throughput in a linearly scalable fashion.

Finally, search engines also take advantage of caching [20],
[21]. Most modern systems serve indexes from main memory,
but caching can be applied to results of frequent queries as
well as documents and other data that are frequently accessed,
e.g., the webgraph [22]. Overall, these designs are not IR-
specific, but represent general principles for building large-
scale distributed systems [23], [24].

Despite the importance of these architectural issues, they
are not the focus of this paper. Rather, we focus on query
evaluation on a single machine, over a small subset (i.e.,
partition) of the entire collection of documents.

B. Query Evaluation

At the level of individual machines, query evaluation in
modern web retrieval is generally divided into two phases [25],
[26], [27]. In the first phase, a fast, “cheap” algorithm is
applied to generate a candidate list of potentially-relevant
documents. For example, documents might be scored with a
linear combination of a relevance measure such as BM25 [28]
and a query-independent measure such as PageRank [29],
HITS [30], page quality score [31], etc. Candidate documents
from the first phase are then reranked by a slower, “expensive”
but higher quality (usually, machine-learned) algorithm, typi-
cally considering richer features (e.g., term proximity, anchor
text). The wide range of implementations include gradient
boosted regression trees [32], [2], additive ensembles [33], and
cascades of rankers [26], [34], just to name a few.

The inverted index lies at the heart of nearly all modern
retrieval engines. Conceptually, it holds a mapping from
vocabulary terms to postings lists. Each postings list contains
a number of postings, typically one for every document that
contains the term. Each posting, in turn, holds a document
id and a payload. Most often, the payload consists of the
term frequency, and in positional indexes, is augmented with
term position information. Alternatively, the payload can hold
pre-computed quantized scores known as impacts [35], [36].
The two standard designs are to sort postings by document
ids ascending or by the payload descending (i.e., higher term
frequency or impact scores first). The two approaches manifest
different tradeoffs (e.g., in compression schemes) and support
different types of query evaluation algorithms. Generally, there
is an affinity between document-sorted indexes and document-
at-a-time query evaluation [37], [38], [39]. Similarly, impact-
or frequency-sorted indexes usually take advantage of term-



at-a-time evaluation strategies [37], [35], [40]. The intricacies
of these different algorithms, as well as variants and hybrids,
are beyond the scope of this paper, but Zobel and Moffat [18]
provide a good (although a bit dated) overview. However, as
Section V will discuss in more detail, much of the work cited
above is difficult to adapt to real-time search.

C. Other Considerations

Prior to ingestion into a search service, content has to be
acquired. For web search, this involves crawling the web—
which itself requires a complex, geographically-distributed
system that must delicately balance latency, throughput, and
freshness. For example, a crawler must infer the rate at which
a particular piece of content changes and decide how often
to re-crawl it, taking into account other factors such as page
quality, server latency, etc. Crawling must also be accompanied
by extraction of the link graph, to provide both a source of
additional crawl targets and a source of relevance signals for
ranking documents. A review of the myriad of strategies and
algorithms is beyond the scope of this paper, but we refer the
reader to a recent survey [8]. In the case of Twitter, however,
we do not need to deal with most of these complexities, at
least for the problem of searching tweets.

Of course, it has long been recognized that the web is
not homogeneous, and different types of content benefit from
different treatments. This has generally evolved into two types
of partitioning strategies. Dividing the web into “verticals”, for
example, news, images, the academic literature, etc., allows a
search service to develop custom strategies and algorithms.
For example, news sites are crawled far more frequently than
the general web, and the temporal signal plays a larger role in
ranking than in general web search. The creation of verticals,
however, creates a new problem known as vertical integration,
e.g., when and where to insert news stories into general web
search results [41]. Twitter faces a similar issue, in that tweets
may not be the only search results relevant to a user. For
example, sometimes users are looking for a specific account
(to follow), in which case a user profile is the best result.
Twitter recently introduced a “Top News” section to showcase
relevant recent news articles about a certain topic. Deciding
whether (and potentially where) to insert these different types
of content is a vertical integration problem.

Another standard strategy is to divide indexes into “tiers”
in terms of quality [42], [43], as captured by human editorial
judgments, automatic classifiers, or some combination of the
two. A common two-tier index would have “high quality”
documents in an upper tier and everything else in a separate
lower tier. Strategies for querying the tiers (either sequentially
or in parallel) manifest different tradeoffs in efficiency and
effectiveness. Twitter currently does not adopt this strategy.

Note that this type of “semantic” content partitioning (by
vertical, by tier) is not to be confused with the logical
partitioning described in Section III-A. For example, the index
of the news vertical might be partitioned across several phys-
ical machines. For more details, see alternative architectures
described in Risvik et al. [42].

Fig. 1. Architecture of Twitter’s real-time search service, showing the role
of Earlybird servers, which index new tweets from the ingestion pipeline and
serve front-end “Blenders”.

IV. EARLYBIRD OVERVIEW

Earlybird is Twitter’s real-time retrieval engine, built on top
of the open-source Lucene search engine3 and adapted to meet
the requirements discussed in Section II. Since it is specifically
designed to handle tweets (and only tweets), we implemented
a few optimizations that may not be applicable in the general
case. Earlybird exists within the architecture shown in Figure 1
that provides Twitter real-time search.

Tweets enter the ingestion pipeline, where they are tok-
enized and annotated with additional metadata (for example,
language). To handle large volumes, the tweets are hash
partitioned across Earlybird servers, which index the tweets as
soon as they have been processed. The search service currently
performs relevance filtering and personalization using three
types of signals:

• Static signals, directly added at indexing time.
• Resonance signals, dynamically updated over time (e.g.,

number of retweets a tweet receives).
• Information about the searcher, provided at search time

(see below).
A component called the “Updater” pushes dynamic resonance
signals to the Earlybird servers.

At query time, a “Blender” (front-end) server parses the
user’s query and passes it along with the user’s local social
graph to multiple Earlybird servers. These servers use a
ranking function that combines relevance signals and the user’s
local social graph to compute a personalized relevance score
for each tweet. The highest-ranking, most-recent tweets are

3http://lucene.apache.org/



returned to the Blender, which merges and re-ranks the results
before returning them to the user. In production, Earlybird
servers receive load from the front ends while simultaneously
indexing new tweets from the ingestion pipeline. End-to-end,
we typically observe a 10 second indexing latency (from tweet
creation time to when the tweet is searchable) and around 50
ms query latency.

The overall distributed search architecture is beyond the
scope of this paper, but for an informal description we refer
the reader to a 2010 Twitter Engineering blog post.4 Also, we
will not be discussing the relevance algorithm, and so for the
purposes of this paper, Earlybird simply returns a list of tweets
that satisfy a boolean query, in reverse chronological order.

Earlybird is written completely in Java, primarily for three
reasons: to take advantage of the existing Lucene Java code-
base, to fit into Twitter’s JVM-centric development environ-
ment, and to take advantage of the easy-to-understand memory
model for concurrency offered by Java and the JVM. Although
this decision poses inherent challenges in terms of perfor-
mance, with careful engineering and memory management we
believe it is possible to build systems that are comparable in
performance to those written in C/C++.

As with nearly all modern retrieval engines, Earlybird main-
tains an inverted index, which maps terms to lists of postings.
Postings are maintained in forward chronological order (most
recent last) but are traversed backwards (most recent first);
this is accomplished by maintaining a pointer to the current
end of each postings list. We see this index organization as
an interesting and noteworthy aspect of Earlybird, which we
detail in Section V.

Earlybird supports a full boolean query language consist-
ing of conjunctions (ANDs), disjunctions (ORs), negations
(NOTs), and phrase queries. Results are returned in reverse
chronological order, i.e., most recent first. Boolean query
evaluation is relatively straightforward, and in fact we use
Lucene query operators “out of the box”, e.g., conjunctive
queries correspond to intersections of postings lists, disjunctive
queries correspond to unions, and phrase queries correspond to
intersections with positional constraints. Lucene provides an
abstraction for postings lists and traversing postings—we pro-
vide an implementation for our custom indexes, and are able
to reuse existing Lucene query evaluation code otherwise. The
actual query evaluation algorithm isn’t particularly interesting,
but the way in which we handle concurrency (concurrent index
reads and writes) in a multi-threaded framework is worth
discussing. Section VI is devoted to that topic.

V. INDEX ORGANIZATION

As a quick recap, Earlybird indexes must support low-
latency, high-throughput retrieval (query evaluation) while
concurrently indexing tweets. Operationally, this means many
concurrent reads and writes to index data structures. This
section focuses on the organization of Earlybird indexes to

4http://engineering.twitter.com/2011/05/engineering-behind-twitters-new-
search.html

support these demands; discussion of concurrency manage-
ment is deferred to the next section.

Our strategy for managing complexity is to isolate and
limit the scope of index updates. This is accomplished as
follows: each instance of Earlybird manages multiple index
segments (currently 12), and each segment holds a relatively
small number of tweets (currently, 223 ∼ 8.4 million tweets).
Ingested tweets first fill up a segment before proceeding to the
next one. Therefore, at any given time, there is at most one
index segment actively being modified, whereas the remaining
segments are read-only. Once an index segment ceases to
accept new tweets, we can convert it from a write-friendly
structure into an optimized read-only structure.

A. Dictionary Organization

Twitter real-time search currently does not support any
query operators on terms, such as wildcards, that require the
term dictionary to be sorted. Therefore, the term dictionary is
implemented as a simple hash table. Java’s default HashMap is
a poor choice, because its chained-hashing approach requires
multiple objects and object pointers per entry—this is par-
ticularly bad for garbage collection due to the large number
of long-living objects in the dictionary. Instead, our custom
implementation uses open addressing, which requires only a
small number of primitive Java arrays, independent of the
number of entries.

Each dictionary term is assigned a unique, monotonically-
increasing term id (i.e., a newly-encountered term is assigned
the next available term id). Term data are held in parallel
arrays, and contain the following two pieces of information
(simplified for illustrative purposes):

• Number of postings in the postings list.
• Pointer to the tail of the postings list (see next section

for more details).
Storing term data in parallel arrays is both memory efficient

(dense packing, few objects) and provides fast access; lookup
is accomplished by using the term id as the index into the
relevant array.

B. Segment Layout: Active Index

This section provides a description of the write-friendly
“active” index segment, which can support low-latency, high-
throughput tweet indexing. As outlined in Section III-B, the
two primary strategies for organizing inverted indexes from the
information retrieval literature are to either sort by document
ids (ascending) or by impact scores (descending). Unfortu-
nately, neither approach appears to be entirely appropriate for
real-time search. Since it is desirable to traverse postings in
reverse temporal order for query evaluation (see Section II),
we can rule out impacted-sorted indexes.

What about document-sorted indexes? If we assign doc-
ument ids to new tweets in ascending order, there are two
obvious possibilities:

First, we could append new postings to the ends of post-
ings lists. However, this would require us to read postings
backwards to achieve a reverse chronological traversal order.



Unfortunately, this is not directly compatible with modern
index compression techniques. Typically, document ids are
converted into document gaps, or differences between con-
secutive document ids. These gaps are then compressed with
integer coding techniques such as γ or Rice codes, or more
recently, PForDelta [44], [45]. It would be tricky for gap-based
compression (also commonly known as delta compression) to
support backwards traversal. Prefix-free codes (γ and Rice
codes) are meant to be decoded only in the forward direc-
tion. More recent techniques such as PForDelta are block-
based, in that they code relatively large blocks of integers
(e.g., 512 document ids) at a time. Reconciling this with the
desire to have low-latency indexing would require additional
complexity, although none of these issues are technically
insurmountable.

Alternatively, we could prepend new postings to the begin-
nings of postings lists. This would allow us to read postings
in the forward direction and preserve a reverse chronological
traversal order. However, this presents memory management
challenges, i.e., how would space for new postings be allo-
cated? We are unaware of any work in the academic literature
that has explored this strategy. Note that the naı̈ve implemen-
tation using linked lists would be hopelessly inefficient. First,
linked list traversal is slow since it is not a cache friendly
operation, due to the lack of reference locality and predictable
memory access patterns. Second, linked lists have rather large
memory footprints due to object overhead and the need to
store “next” pointers.

Based on the above analysis, it does not appear that real-
time search capabilities can be efficiently realized with obvious
extensions or adaptations of existing techniques.

For Earlybird, we implemented a much simpler approach.
Each posting is simply a 32-bit integer: 24-bits are devoted to
storing the document id, and 8-bits for the term position. Since
tweets are limited to 140 characters, 8 bits are sufficient to
hold term positions.5 Therefore, a list of postings is simply an
integer array, and indexing new documents involves inserting
elements into a pre-allocated array (we discuss “extending”
the arrays below). Postings traversal in reverse chronological
order corresponds to iterating through the array backwards.
This organization also allows every array position to be a
possible entry point for postings traversal to evaluate queries
(while postings continue to be inserted). In addition, it allows
for binary search (to find a particular document id), and doesn’t
require any additional skip-list data structure to enable faster
traversal through the postings lists. Finally, this organization
is cache friendly, since array traversal involves linear scans
through memory and this predictable access pattern provides
prefetch cues to the hardware.

The next issue to address is the allocation of space for
postings lists. Obviously, this process needs to be dynamic,
since postings list growth is only bounded by the size of
the collection itself. There are a few challenges to over-

5If a term appears in the tweet multiple times, it will be represented with
multiple postings.

Linking the slices

21

24

27

211

slice size

available

allocated

current list

Friday, October 14, 2011

Fig. 2. Organization of the active index segment where tweets are ingested.
Increasingly larger slices are allocated in the pools to hold postings. Except
for slices in pool 1 (the bottom pool), the first 32 bits are used for storing the
pointer that links the slices together. Pool 4 (the top pool) can hold multiple
slices for a term. The green rectangles illustrate the the “current” postings list
that is being written into.

come: Postings lists vary significantly in size, since term and
document frequencies are Zipfian. That is, a typical index
contains a few very long postings lists and lots of short
postings lists. As a result, it is tricky to choose the correct
amount of memory to allocate for each term’s postings (i.e.,
size of the integer array). Selecting a value that is too large
leads to inefficient memory utilization, because most of the
allocated space for storing postings will be empty. On the
other hand, selecting a value that is too small leads to waste:
time, obviously, for memory allocation, but also space because
non-contiguous postings require pointers to chain together (in
the limit, allocating one posting at a time is akin to a linked
list). During postings traversal, blocks that are too small may
also result in suboptimal memory access patterns (e.g., due to
cache misses, lack of memory prefetching, etc.).

Our approach to address these issues is to create four
separate “pools” for holding postings. Conceptually, each pool
can be treated as an unbounded integer array. In practice, pools
are large integer arrays allocated in 215 element blocks; that
is, if a pool fills up, another block is allocated, growing the
pool. In each pool, we allocate “slices”, which hold individual
postings belonging to a term. In each pool, the slice sizes are
fixed: they are 21, 24, 27, and 211, respectively (see Figure 2).
For convenience, we will refer to these as pools 1 through 4,
respectively. When a term is first encountered, a 21 integer
slice is allocated in the first pool, which is sufficient to hold
postings for the first two term occurrences. When the first slice
runs out of space, another slice of 24 integers is allocated in
pool 2 to hold the next 24 − 1 term occurrences (32 bits are
used to serve as the “previous” pointer, discussed below). After
running out of space, slices are allocated in pool 3 to store
the next 27 − 1 term occurrences and finally 211 − 1 term
occurrences in pool 4. Additional space is allocated in pool 4
in 211 integer blocks as needed.

One advantage of this strategy is that no array copies are
required as postings lists grow in length—which means that
there is no garbage to collect. However, the tradeoff is that we
need a mechanism to link the slices together. Addressing slice
positions is accomplished using 32-bit pointers: 2 bits are used
to address the pool, 19–29 bits are used to address the slice
index, and 1–11 bits are used to address the offset within the
slice. This creates a symmetry in that postings and addressing
pointers both fit in a standard 32-bit integer. The dictionary
maintains pointers to the current “tail” of the postings list



using this addressing scheme (thereby marking where the next
posting should be inserted and where query evaluation should
begin). Pointers in the same format are used to “link” the
slices in different pools together and, possibly, multiple slices
in pool 4. In all but the first pool, the first 32 bits of the slice
are used to store this “previous” pointer.

In summary, in the active index segment of Earlybird,
postings are not stored in a compressed format to facilitate
rapid tweet indexing. Extending postings lists is accomplished
via a block allocation policy that escalates to successively-
larger block sizes (capped at 211 postings). This structure
works well because each index segment is theoretically capped
at 224 document ids (and in current practice, we restrict to 223

tweets). The velocity of arriving tweets means that each index
segment fills up relatively quickly, and therefore doesn’t spend
much time in an uncompressed form.

C. Segment Layout: Optimized Index

Once an active index segment stops accepting new tweets,
it is converted into an optimized read-only index. Index
optimization occurs in the background; a new copy of the
index is created without touching the original version. Upon
completion, the original index is dropped and replaced with the
optimized version. Since pools holding the postings slices are
allocated in large, fixed-sized blocks, dropping index segments
creates relatively little garbage.

Because the optimized read-only index cannot accept new
tweets, we know exactly how much space to allocate for each
postings list. Thus, postings can essentially be laid out “end-to-
end” in memory as a large array of integers, and the dictionary
simply holds pointers into this array.

Postings lists are divided into two types, “long” and “short”,
with 1000 as the arbitrary threshold. For short postings lists,
we store each posting exactly as before (24-bit document id
plus 8-bit position), except reversed in terms of sort order (i.e.,
postings are sorted reverse chronologically, therefore iterating
through the array forwards yields the desired traversal order).

For long postings lists, we adopt a block-based compression
scheme similar in spirit to PForDelta [44], [45] and the
Simple9 [46] family of techniques. Postings are stored in
multiple fixed-size blocks of 64 integers (i.e., 256 bytes). The
first 4 bytes holds the first posting uncompressed; the second
4 bytes holds block headers (see below), leaving 248 bytes
(1984 bits) to encode a variable number of postings. The
original postings are traversed in reverse chronological order
and converted into a sequence of (document gap, position)
pairs. The goal is to encode n pairs, where each document
gap and position are coded in a fixed number of bits, such
that the following relation is satisfied:

n · (dlog2(gapmax)e+ dlog2(posmax)e) ≤ 1984

where gapmax and posmax are the maximum gap and position
values observed in the n document gaps and positions, re-
spectively. The value of n and the number of bits necessary to
encode the gaps and positions are stored in the block header.

This postings compression scheme is not only space effi-
cient, but also very fast to decompress, especially compared
to variable-length integer coding, which suffers from the well-
known problem of processor-level branch mispredicts. As an
additional optimization, since the range of possible values for
dlog2(gapmax)e and dlog2(posmax)e is relatively small, it is
easy to precompute the masks and bit shifts necessary for de-
coding the postings under each possible case and store them all
in a lookup table. Thus, decoding becomes simply a problem
of applying a pre-specified “template” of bit operations. This
technique is also used in the Simple9 family and PForDelta.
Finally, since the first posting in each block is stored in an
uncompressed format, it can be used for efficient skipping, a
well-known technique in information retrieval [38].

VI. CONCURRENCY MANAGEMENT

An important requirement of real-time search is the abil-
ity to concurrently handle index writes (i.e., ingesting new
tweets) and index reads (i.e., query evaluation) in a multi-
threaded environment. Note that this only applies to the active
index segment ingesting tweets. The other index segments
are read only, and do not suffer from concurrency-induced
issues: multiple query evaluation threads can traverse postings
concurrently. Since the later case is straightforward, we focus
only on the active index segment in this section.

The complex problem of concurrent index reads and in-
dex writes can be simplified by limiting writes to a single
thread. That is, a single index writer thread is responsible
for ingesting tweets and updating the inverted index. On the
other hand, queries are concurrently evaluated on separate
index reader threads. In this context, it is important that index
reader threads are presented with an up-to-date and consistent
view of the index structures. This is accomplished through
synchronization mechanisms, but in general, there exists a
tradeoff between amount of synchronization and performance.
Too much synchronization hurts performance, but too little
synchronization can lead to inconsistent or incorrect results.
Striking the right balance is perhaps the most difficult aspect
of concurrent programming. Fortunately, Java and the JVM
provide an easy-to-understand memory model for concurrency,
which we exploit.

We begin this section by briefly describing the indexing
process, and then discuss how concurrent query evaluation
is enabled by use of a memory barrier, which ensures that
memory writes made by the index writer thread are visible to
index reader threads.

Indexing of a new tweet by the single index writer thread
proceeds as follows: for each term in the tweet, Earlybird first
looks up the corresponding dictionary entry (see Section V-A).
In the dictionary, terms are mapped to term ids, which serve
as indices into the parallel arrays holding the term data. Based
on the pointer to the tail of the current postings list, a new
posting is added. If there isn’t sufficient space to insert this
new posting, additional slices are allocated, as described in
Section V-B. If a term has never been encountered, it is added
to the dictionary and assigned the next available term id. A



slice is allocated in the first pool for the new posting. In both
cases (existing or new term), the term occurrence count and the
tail pointer of the postings list are then updated. After all terms
in a tweet have been processed in this manner, we increment
the maxDoc variable, which holds the current largest document
id that has been encountered—indicating that the tweet has
been successfully ingested.

Concurrent queries are handled by separate threads (one per
thread). Each query evaluation thread begins by reading the
maxDoc variable, then looks up the postings list tail pointer
corresponding to each term. These are used to initialize the
appropriate postings list abstractions in Lucene, and query
evaluation begins thereafter. As previously mentioned, this is
simply standard Lucene code.

There are two aspects to Earlybird’s consistency model.
First, individual postings lists must always be internally
consistent. For example, the tail pointers of the postings
lists should always be valid. Second, we need to maintain
consistency across postings lists: an index reader should see
a consistent view of the index structures up to a certain,
well-defined point. In this regard, Earlybird guarantees search
correctness defined over all tweets with document ids less than
or equal to maxDoc, at the point when the index reader begins
query evaluation.

Maintaining consistency in a multi-threaded environment
is challenging. Thread execution can occur in arbitrarily
interleaved orders and there is no guarantee when memory
writes from one thread are visible to another thread. One
solution would be to make tweet indexing an atomic operation,
and therefore the index reader threads are guaranteed to see
consistent, up-to-date index structures. However, this level of
synchronization trades off too much performance and is not
practical for the volumes of tweets that we need to handle.

To guarantee search correctness in the most lightweight
possible manner, we place a memory barrier at the maxDoc
increment (the final step in tweet ingestion). This is accom-
plished by the volatile keyword in Java, which guarantees that
all writes to a volatile field are visible to subsequent reads. In
other words, reading a volatile field is guaranteed by the JVM
to yield the most up-to-date value (see Figure 3).

To better explain, it is necessary to provide a brief overview
of Java’s memory model [47]:

• Program order rule. Each action in a thread happens-
before every action in that thread that comes later in the
program order.

• Volatile variable rule. A write to a volatile field happens-
before every subsequent read of that same field.

• Transitivity. If A happens-before B, and B happens-
before C, then A happens-before C.

In the index writer thread, all mutations to postings lists
happen-before the maxDoc increment. Query evaluation be-
gins by reading maxDoc, to make sure that the memory
barrier is crossed. This happens-before subsequent traversal of
postings. By transitivity, it is therefore guaranteed (without any
other additional synchronization mechanism) that the query
evaluation thread sees all mutations of the index structures

index writer index reader

ingest tweeti
add postings
. . .
maxDoc++

read maxDoc
ingest tweeti+1 traverse postings
add postings . . .
. . .

Fig. 3. Synchronization between the indexing thread (index writer) and
a query evaluation thread (index reader), with “time” running from top
to bottom. Using Java’s volatile keyword, a memory barrier is placed at
maxDoc (denoted by the solid line). In the index writer thread, index mutation
happens-before the maxDoc increment. In the index reader thread, reading
maxDoc happens-before subsequent postings traversal. Therefore, combining
the volatile variable rule and transitivity, all index mutations (from indexing
a new tweet) prior to the memory barrier are guaranteed to be visible to the
index reader, without any additional synchronization.

that occur prior to the increment of the maxDoc variable (e.g.,
insertion of new postings). The transitivity property ensures
that postings lists are internally consistent.

Memory barriers are lightweight and therefore yield good
concurrent performance, but there is a downside: the non-
atomic nature of tweet indexing means that Earlybird needs
to explicitly handle consistency across multiple postings lists.
The Java memory model guarantees that a thread’s memory
writes are visible by other threads after the memory barrier.
However, the writes may actually be available to other threads
sooner—that is, writes “leak through”. This creates a number
of special situations that threaten search correctness. Here, we
illustrate one example: During query evaluation, it may be the
case that postings lists contain document ids that are larger
than maxDoc. This occurs if the index reader begins query
evaluation in the middle of indexing a tweet that contains
the query terms. In this case, postings may have already
been added, but maxDoc has not been incremented yet since
there are remaining terms to be processed. If the newly-added
postings become visible (i.e., “leak through”) to the index
reader thread, it may see postings with document ids larger
than maxDoc. This is a relatively simple case to handle: the
algorithm ignores postings whose document ids are larger than
maxDoc. However, there are corner cases which are more
subtle, the exact explication of which is beyond the scope
of this paper.

In summary, Earlybird first simplifies the concurrency man-
agement problem by adopting a single-writer, multiple-reader
design. The select use of a memory barrier around the maxDoc
variable supports an easy-to-understand consistency model
while imposing minimal synchronization overhead.

VII. DEPLOYMENT AND PERFORMANCE

Earlybird was introduced in October 2010, and the search
architecture shown in Figure 1 was launched in May 2011.
Both replaced infrastructure that was created by Summize, a
company Twitter acquired in July 2008. As a first-generation



system, it offers an interesting reference point for comparison.
The Summize search infrastructure used Ruby on Rails for
the front end and MySQL for the back end. Inverted indexes
were constructed in MySQL, leveraging transactions and its
B-tree data structures to support concurrent indexing and
retrieval. We were able to scale our MySQL-based solution
surprisingly far by partitioning the index across multiple in-
memory databases and replicating the Rails front-end. In
2008, Twitter search handled an average of 20 tweets per
second (TPS) and 200 queries per second (QPS). Just before it
was retired in October 2010, the MySQL-based solution was
handling 1000 TPS and 12000 QPS on average.

The basic configuration of an Earlybird server is a com-
modity machine with two quad-core processors and 72 GB
memory. We typically allocate 64 GB heap space for the
JVM. A fully-loaded active index segment with 16 million
documents occupies about 6.7 GB memory. Index optimization
typically saves around 55% memory (i.e., the optimized read-
only index is a bit less than half the size of the original). On
a single index segment with 16 million tweets, we achieve
17000 QPS with a 95th percentile latency of <100 ms and
99th percentile latency of <200 ms using 8 searcher threads.
Pushing the query load even higher results in increases of the
95th and 99th percentile latencies to unacceptably high levels.
On a fully-loaded Earlybird server (144 million tweets), we
can achieve about 5000 QPS with 95th percentile latency of
120 ms and 99th percentile latency of 170 ms.

In a stress test, we evaluated Earlybird indexing perfor-
mance under heavy query load. Starting with an index of
around 110 million tweets (as to nearly saturate memory) and
adjusting the query load to achieve near 100% CPU utilization,
we simulated different tweet arrival rates (in terms of tweets
per second). Under these conditions, we achieve 7000 TPS
indexing rate at 95th percentile latency of 150 ms and 99th
percentile latency of 180 ms. We observe that indexing latency
is relatively invariant with respect to tweet arrival rate; at 1000
TPS we observe roughly the same latencies as at 7000 TPS.
Attempting to push the tweet arrival rate even higher results
in unacceptable latencies, primarily due to thread contention.

VIII. FUTURE DIRECTIONS

The purpose of real-time search is to provide users with
a tool to understand events as they unfold and to discover
items of interest. In this respect, a simple reverse chronological
listing of tweets that satisfies a boolean query provides the user
limited insight—especially for queries where matching tweets
are arriving at a high rate. In the Twitter context, the most
popular queries are the most difficult, because they tend to
revolve around popular topics to which many are contributing
tweets that vary widely in terms of quality. Therefore, the
biggest challenge of real-time search is the development
of relevance algorithms that separate truly valuable content
from “noise”. While the current search service does indeed
incorporate relevance ranking, it is a feature that we have only
begun to explore.

The notion of relevance has occupied the attention of
information science and information retrieval researchers for
decades. The literature is vast and deep, and for the interested
reader, Mizzaro [48] provides a good starting point. Tradi-
tionally, the information retrieval community has focused on
topical relevance, with more recent explorations in orthogonal
notions such as novelty and diversity. Yet, against this rich
backdrop, it is not entirely clear if we (both Twitter and
the research community) have a good understanding of what
relevance means in the real-time context.

Just to provide one example of an unresolved problem: a 5-
grade relevance judgment (“poor”, “fair”, “good”, “excellent”,
“perfect”) is widely accepted in the community for assessing
topical relevance. But how do different relevance grades in-
teract with the age of the tweet? In more concrete terms, is
a “perfect” tweet from five minutes ago better than a “good”
tweet from five seconds ago? What about compared to a “fair”
tweet from one second ago? Does it depend on the type of
query and its velocity? Does it depend on the particular user?
Obviously, relevance grades must be subjected to some type
of temporal discounting when computing utility or “gain” for
a user, but the shape and parameterizations of these “response
curves” remain open questions.

To further increase complexity, we believe that relevance
should be personalized to leverage social and interest signals
that are present in the follower graph and other graphs implic-
itly defined by user behaviors. Personalization creates many
challenges, ranging from the extraction of salient features to
handling data sparsity issues when training a personalized
algorithm. Despite these challenges, it seems clear that per-
sonalization is necessary to deliver high-quality results.

Information retrieval is an empirical, metrics-driven disci-
pline, built on the ability to quantify, however imperfectly, the
quality of system results. And without a clear understanding of
real-time search relevance, it is difficult to formulate metrics
that “make sense” to guide progress in the community. This
is a challenge we are addressing, both internally and in
collaboration with the community. For example, Twitter aided
the development of a real-time search task at the 2011 Text
Retrieval Conference (TREC), which is an annual evaluation
forum for information retrieval researchers to work on shared
tasks, sponsored by the National Institute of Standards and
Technology (NIST). We hope that by engaging the community,
we can jointly make progress on these challenging issues.

Beyond real-time search relevance, we have identified other
areas of interesting future work. The first goes back to the
fundamental question of what a “document” is in the real-time
search context. We have been operating under the assumption
that the tweet is the relevant unit of retrieval, but there are
several observations that challenge this. For example, many
tweets contain hyperlinks: these may point to web pages (blog
posts, news stories, etc.), to images, or any other web content.
This means, potentially, that real-time search interacts with
web and image search in non-obvious ways—we have only
begun to explore these issues and welcome support from the
community in tackling these problems.



Another interesting area of work is the synthesis of infor-
mation across multiple tweets, e.g., a cluster of tweets about
the same topic or event, expressing the same opinion, sharing
a tightly-knit group of participants, etc. To accomplish this, we
need to develop basic text analysis tools, which falls under the
domain of natural language processing (NLP). Indeed, there
has been work on part-of-speech tagging [49], named-entity
detection [50], text normalization [51], and other capabilities,
specifically for Twitter. However, the idiosyncratic nature of
tweets, compared to say, the newswire texts that the NLP
community traditionally focuses on, remains a stumbling block
to developing robust tools. Furthermore, the NLP community
for the most part cares little about the efficiency (i.e., speed)
of their algorithms—which limits the applicability of research
results in a production context. To give a simple example,
language identification is generally considered to be a solved
problem by the community—using, for example, character
language models. However, it is more challenging than one
might think in the Twitter context. Not only is there far
less text (at most 140 characters) to base a classification
decision on, we also observe frequent code switching (mixing
of multiple languages) as well as many other idiosyncratic
properties and user behaviors. On top of all these challenges,
the language identification module must operate under tight
time constraints.

IX. CONCLUSION

In this paper, we present salient aspects of Earlybird, which
powers Twitter’s real-time search service. Due to the demands
of real-time search, the Earlybird design uses two types of
indexes: an optimized, read-only index format and an active
“write-friendly”, block-allocated index that supports both rapid
tweet indexing and query evaluation. In the latter type of index,
we adopt a single-writer, multiple-reader model that enforces
consistency using a simple memory barrier.

The Earlybird project has been highly successful in laying
the foundation for real-time search at Twitter. However, we
have only begun to develop the suite of capabilities necessary
to deliver individually-personalized, highly-relevant results,
and more broadly, the technology to keep millions of users
around the world plugged into “what’s happening”. Real-time
search forms an exciting frontier in information retrieval, and
it is our hope that this paper spurs more exploration.

ACKNOWLEDGMENTS

The following engineers at Twitter contributed to the real-
time search architecture described in this paper: Paul Burstein,
Stephen Fedele, Mike Hayes, Justin Hurley, Eric Jensen, Abhi
Khune, Frost Li, Zhenghua Li, Jake Mannix, Gilad Mishne,
Raghavendra Prabu, Jonathan Reichhold, Aneesh Sharma,
Tian Wang, and Yi Zhuang. We would also like to acknowl-
edge the following managers for their dedication to the search
product at Twitter: Michael Abbott, Abdur Chowdhury, Doug
Cook. Thanks also goes out to Jeff Dalton, Donald Metzler,
and Ian Soboroff for comments on earlier drafts of this paper.

REFERENCES

[1] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and
Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[2] Y. Ganjisaffar, R. Caruana, and C. V. Lopes, “Bagging gradient-boosted
trees for high precision, low variance ranking models,” in Proceedings
of the 34rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2011), Beijing, China,
2011, pp. 85–94.

[3] H. Li, Learning to Rank for Information Retrieval and Natural Language
Processing. Morgan & Claypool Publishers, 2011.

[4] H. Cui, J.-R. Wen, and W.-Y. Ma, “Probabilistic query expansion using
query logs,” in Proceedings of the Eleventh International World Wide
Web Conference (WWW 2002), Honolulu, Hawaii, 2002, pp. 325–332.

[5] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user
interaction models for predicting Web search result preferences,” in
Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2006),
Seattle, Washington, 2006, pp. 3–10.

[6] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay, “Evaluating the accuracy of implicit feedback from clicks and
query reformulations in Web search,” ACM Transactions on Information
Systems, vol. 25, no. 2, pp. 1–27, 2007.

[7] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury, and O. Frieder,
“Automatic classification of Web queries using very large unlabeled
query logs,” ACM Transactions on Information Systems, vol. 25, no. 2,
pp. 1–29, 2007.

[8] C. Olston and M. Najork, “Web crawling,” Foundations and Trends in
Information Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[9] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28,
2003.

[10] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri,
“Challenges on distributed web retrieval,” in Proceedings of the IEEE
23rd International Conference on Data Engineering (ICDE 2007),
Istanbul, Turkey, 2007, pp. 6–20.

[11] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de Cas-
tro Reis, and B. Ribeiro-Neto, “Efficient search ranking in social
networks,” in Proceedings of the Sixteenth International Conference
on Information and Knowledge Management (CIKM 2007), Lisbon,
Portugal, 2007, pp. 563–572.

[12] D. Horowitz and S. D. Kamvar, “The anatomy of a large-scale social
search engine,” in Proceedings of the 19th International World Wide Web
Conference (WWW 2010), Raleigh, North Carolina, 2010, pp. 431–440.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proceedings of the 6th USENIX Symposium
on Operating System Design and Implementation (OSDI 2004), San
Francisco, California, 2004, pp. 137–150.

[14] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in Proceedings of the 9th
USENIX Symposium on Operating System Design and Implementation
(OSDI 2010), Vancouver, British Columbia, Canada, 2010, pp. 251–264.

[15] B. B. Cambazoglu, V. Plachouras, and R. Baeza-Yates, “Quantifying
performance and quality gains in distributed web search engines,” in
Proceedings of the 32nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2009),
2009, pp. 411–418.

[16] B. B. Cambazoglu, E. Varol, E. Kayaaslan, C. Aykanat, and R. Baeza-
Yates, “Query forwarding in geographically distributed search engines,”
in Proceedings of the 33rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2010),
Geneva, Switzerland, 2010, pp. 90–97.

[17] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and
C. Aykanat, “Energy-price-driven query processing in multi-center web
search engines,” in Proceedings of the 34rd Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR 2011), Beijing, China, 2011, pp. 983–992.

[18] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 6, pp. 1–56, 2006.

[19] F. Leibert, J. Mannix, J. Lin, and B. Hamadani, “Automatic management
of partitioned, replicated search services,” in Proceedings of the 2nd
ACM Symposium on Cloud Computing (SoCC ’11), Cascais, Portugal,
2011.



[20] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri, “The impact of caching on search engines,” in Proceedings
of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2007), Amsterdam,
The Netherlands, 2007, pp. 183–190.

[21] G. Skobeltsyn, F. P. Junqueira, V. Plachouras, and R. Baeza-Yates,
“ResIn: A combination of results caching and index pruning for high-
performance web search engines,” in Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2008), Singapore, 2008, pp. 131–138.

[22] M. Najork, “The Scalable Hyperlink Store,” in Proceedings of the 20th
ACM Conference on Hypertext and Hypermedia (HT 2009), Torino, Italy,
2009, pp. 89–98.

[23] J. Hamilton, “On designing and deploying Internet-scale services,”
in Proceedings of the 21st Large Installation System Administration
Conference (LISA ’07), Dallas, Texas, 2007, pp. 233–244.

[24] L. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Morgan & Claypool,
2009.

[25] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien, “Efficient
query evaluation using a two-level retrieval process,” in Proceedings of
the Twelfth International Conference on Information and Knowledge
Management (CIKM 2003), New Orleans, Louisiana, 2003, pp. 426–
434.

[26] I. Matveeva, C. Burges, T. Burkard, A. Laucius, and L. Wong, “High
accuracy retrieval with multiple nested ranker,” in Proceedings of the
29th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2006), Seattle, Washington,
2006, pp. 437–444.

[27] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira, “Posting list inter-
section on multicore architectures,” in Proceedings of the 34rd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2011), Beijing, China, 2011, pp. 963–972.

[28] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and
M. Gatford, “Okapi at TREC-3,” in Proceedings of the 3rd Text REtrieval
Conference (TREC-3), Gaithersburg, Maryland, 1994, pp. 109–126.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Stanford University, Stanford
Digital Library Working Paper SIDL-WP-1999-0120, 1999.

[30] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[31] J. Lin, D. Metzler, T. Elsayed, and L. Wang, “Of Ivory and Smurfs:
Loxodontan MapReduce experiments for web search,” in Proceedings
of the Eighteenth Text REtrieval Conference (TREC 2009), Gaithersburg,
Maryland, 2009.

[32] C. J. C. Burges, “From RankNet to LambdaRank to LambdaMART: An
overview,” Microsoft Research, Tech. Rep. MSR-TR-2010-82, 2010.

[33] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao,
Z. Zheng, and J. Degenhardt, “Early exit optimizations for additive
machine learned ranking systems,” in Proceedings of the Third ACM
International Conference on Web Search and Data Mining (WSDM
2010), New York, New York, 2010, pp. 411–420.

[34] L. Wang, J. Lin, and D. Metzler, “A cascade ranking model for efficient
ranked retrieval,” in Proceedings of the 34th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2011), Beijing, China, 2011, pp. 105–114.

[35] V. N. Anh, O. de Kretser, and A. Moffat, “Vector-space ranking
with effective early termination,” in Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2001), New Orleans, Louisiana, 2001, pp.
35–42.

[36] V. N. Anh and A. Moffat, “Simplified similarity scoring using term
ranks,” in Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR 2005), Salvador, Brazil, 2005, pp. 226–233.

[37] H. Turtle and J. Flood, “Query evaluation: Strategies and optimizations,”
Information Processing and Management, vol. 31, no. 6, pp. 831–850,
1995.

[38] A. Moffat and J. Zobel, “Self-indexing inverted files for fast text
retrieval,” ACM Transactions on Information Systems, vol. 14, no. 4,
pp. 349–379, 1996.

[39] T. Strohman, H. Turtle, and W. B. Croft, “Optimization strategies for
complex queries,” in Proceedings of the 28th Annual International

ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2005), Salvador, Brazil, 2005, pp. 219–225.

[40] T. Strohman and W. B. Croft, “Efficient document retrieval in main
memory,” in Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR 2007), Amsterdam, The Netherlands, 2007, pp. 175–182.

[41] F. Diaz, “Integration of news content into web results,” in Proceedings
of the Second ACM International Conference on Web Search and Data
Mining (WSDM 2009), Barcelona, Spain, 2009, pp. 182–191.

[42] K. M. Risvik, Y. Aasheim, and M. Lidal, “Multi-tier architecture for
web search engines,” in Proceedings of the 1st Latin American Web
Congress, Santiago, Chile, 2003, pp. 132–143.

[43] R. A. Baeza-Yates, V. Murdock, and C. Hauff, “Efficiency trade-offs
in two-tier web search systems,” in Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2009), 2009, pp. 163–170.

[44] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in Proceedings of the
18th International World Wide Web Conference (WWW 2009), Madrid,
Spain, 2009, pp. 401–410.

[45] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted
list caching in search engines,” in Proceedings of the 17th International
World Wide Web Conference (WWW 2008), Beijing, China, 2008, pp.
387–396.

[46] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,” Information Retrieval, vol. 8, no. 1, pp. 151–166,
2005.

[47] B. Goetz, Java Concurrency in Practice. Addison-Wesley, 2006.
[48] S. Mizzaro, “How many relevances in information retrieval?” Interacting

With Computers, vol. 10, no. 3, pp. 305–322, 1998.
[49] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,

M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith, “Part-of-
speech tagging for Twitter: Annotation, features, and experiments,”
in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL-HLT
2011), Portland, Oregon, 2011, pp. 42–47.

[50] A. Ritter, S. Clark, Mausam, and O. Etzioni, “Named entity recognition
in Tweets: An experimental study,” in Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP
2010), Edinburgh, Scotland, 2011, pp. 1524–1534.

[51] S. Gouws, D. Metzler, C. Cai, and E. Hovy, “Contextual bearing on
linguistic variation in social media,” in Proceedings of the ACL-HLT
2011 Workshop on Language in Social Media, Portland, Oregon, 2011.


