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1 Introduction

Sound consists of pressure variations propagating threugtedium such as air. The common
digital representation of an acoustic signal is the sampieeform, where each sample represents
the sound pressure level at a particular time instant. Heweounds that as human listeners we
find meaningful are best represented inftilnae-frequency domain.

In contrast to the time-domain waveform, time-frequengyresentations explicitly represent the
time-varying frequency content of a sound and effectivédyalize the signal’s activity at any time-
frequency bin. These transforms are often complex-valaddreclude well known tools such as the
short-time Fourier transform, constant-Q transforms,elete, etc. However, because our hearing
system is more sensitive to the relative energy betweeerdifit frequencies, for most practical
applications we study the modulus of these transforms aswhdi the phase which is useful only in
special cases. These kinds of representations are edlgastianting the number of time-frequency
acoustic quanta that collectively make up complex soundes;esimilar to how we count words that
make up documents. With this representation we can use #iegnofbag of frequencies, which

we describe later in this document.

Historically, audio research (speech/sound recognifidah tracking, etc) has been focused on ana-
lyzing sounds that have been isolated. But as interest lifteasdstowards more ambitious goals such
as scene analysis, and also more applied goals, such ashispeegnition in noisy environments,
the problem of performing audio analysis on mixtures of stsuimas become increasingly prevalent.
The traditional signal processing framework has not beeqaate for these problems, but topic-like
models that operate on the time-frequency domain have beeempto be exceptional performers
for this job. This is for two predominant reasons. First audisearchers have generally come to
accept that the modulus of a time-frequency representafi@anmixture of two sounds is approx-
imately equal to the modulus of the two sounds isolated. &ldsvs us to talk about mixtures of
sounds as being mixtures of topics. Second, from a perspeaztihuman perception a mixture of
topics model is more in tune with how we interpret scenes.ikdnielated models like PCA, ICA,
etc, which use cross-cancellations to describe a mixtapé; tnodels decompose mixtures in addi-
tive terms which best map to our perceptual interpretatfeancauditory scene. This is because we
never think of what sounds are missing from a auditory sdemeonly of what sounds are added in
it.

In the following sections we highlight some of the applioas of topic models in audio analysis.
We describe models that have been successfully used fopengsed music transcription, source
separation, scene analysis, denoising, missing audioiatatation, and auditory user interfaces.
These applications are all based on topic models as appili¢idhe-frequency data and present an
exciting new direction of research that has been recently aetive, but still largely disjoint from
the general topic-modeling literature. We hope that thispntation will introduce some of the



main topic model approaches in the audio world and fosterenconss-pollination between these
two communities.

2 Bag of Frequencies

In this section we consider some applications of a bag offeagies approach. In contrast to the use
of a word count matrix in which each input element represtmfrequency of occurrence of a word
in a document, we use the time-frequency representatiochagrovides a sense of the occurrence
of each frequency at each point in time. So instead ¢fvard x documen} matrix we use a
{frequencyx time} matrix. The objective is to use this representation to cattyvarious tasks.
The basic model we start with is equivalent to PLSA where trezgal frame at time is modeled

as the result of repeated draws of frequengiésom latent multinomial distribution®( f|z), and

can be written as:
Pi(f) =Y _ Pi(2)P(fl2), (1)

whereP,(f) represents the probability of observing frequeriap the time frame, P(f|z) repre-
sents the probability of observing frequentygiven the latent variable, and P,(z) represents the
probability of z in thet-th frame.

2.1 Modeling a mixture of sources

When modeling mixtures in terms of known "acoustic topic® ean reformulate the basic model

as:

P(f)=)_Pi(s) Y Pilzls)P(fl2) )

s z€{z:}

where latent variable represents the constituent sourc%(s) is the probability of observing
sources in time framet, and{z,} represents the set of values thatan take for that source (or
"topic”). In a typical source separation scenario, we woagsume that we know the types of
sources that compose a mixture (e.g. the speaker and thgrbackl noise), and use regular PLSA
modeling to learn their frequency dictionarifs(f|z). Once these are known we can use them to
estimate theP;(z|s) and P;(s) of a given mixture and thus segment the time-frequencyibligton
to the two constituent sources. This approach has been wusedssfully to separate sounds in
monophonic mixtures, and to obtain some of the state-chtheesults. In the case where we know
one source but not the rest we can modify this procedure sovthastimate?; (z|s), P;(s) and only
the P, (f|z) of the sources that we do not know. This allows us to designcgoseparators which
can operate given only a known target, or only a known backgianodel. These algorithms are
described in [1].

2.2 Entropicpriors

It was observed that the use of the above approach did resubdeling the data using a dense mix-
ture of multinomials which often resulted in additional ®in the separations. In order to address
this issue we developed a sparse variant of the above mddsit finploying the entropic prior pro-
posed in [3]. Using this prior we can manipulate the entropgry of the estimated distributions.
The most practical case in the problem at hand is using tliegatprior to obtain minimal entropy
frequency bag activationB;(z|s). This results in a sparser representation of a mixture andezo
guently a cleaner quality of separation. As shown in [4] #pproach also helps learn overcomplete
models based solely on the training data without requirkiggeting a dictionary.

2.3 Useof sourceand relational priors

The use of priors in the topic modeling community is well kmoand has resulted in a lot of inter-
esting work. Likewise in the acoustic domain we can an LDpetynalysis [5] in order to enforce
a particular belief on the bag of frequency shape, actimatiand the source priors. Use of this was
done in [6] and was shown to improve the separation resultsti#er kind of prior that was used
was a relational prior which biased the estimated distidimstto be either more related to each other
or not, by optimizing their cross-entropy [7]. This alloweslto find groups of components that are
related to each other, but unrelated to other groups.



24 Missing data

Once we have a PLSA model of a sound’s time-frequency streiciue can also use it to per-
form data imputation. In [8] we present an iterative alduritthat recovers missing values in time-
frequency representations of sounds. Using either trgidita, or even the missing data input
itself, we can derive a model which is then used to find the rikedy values in the missing time-
frequency cells. Using this approach we can patch holec#rabe caused by user editing of sound
subtraction, but also upsample signals and recover fratg®that have been lost.

2.5 Sceneanalysisand object extraction

PLSA modeling has also been very useful for discoveringaibjii auditory scenes. A well-known
example is the case of discovering that music is made outtekriny examining piano recordings.
This was first reported using NMF in [9], but as shown in [10] ttie process is equivalent to a
PLSA model. In this example a topic analysis of a time-fregpyedecomposition of piano music
resulted in bag of frequencies which each individually esponded to a single piano note. Likewise
their activation weights showed when in time these notegwetive. This has by now become a
dominant model in music transcription because of its fléxjand lack of reliance on complex (yet
usually narrow) models of musical sound.

3 Bag of Spectrograms

The base model used in the previous section is a straigrafdriRLSA model. However in audio we
often observe shift-invariance in both time and frequemotaus we extended the basic formulation
to incorporate this feature. In the process we creategjaf spectrograms model which we describe
below. This model can discover topics which have not onlyifiadlie-frequency structure, but also
a shiftable temporal structure. This allows us to make nttedt unlike the ones in the previous
section use more of the temporal statistics and respeathg’s time order.

3.1 Convolutive Models

The shift-invariant version of PLSA was shown in [12]. Inghiase instead of modeling each
column of the input as a sum of multinomial distributions, medel each patch of the input as a
sum of shifted two-dimensional time-frequency distribus. This enforces structure in both time
and frequency as opposed to only the frequency dimensiomvénaee in PLSA. The full model in
that case is defined as:

P(x) =) (P(z) / P(w,7|2)P(h — T|2)dT) ©)

z

wherew andh are mutually exclusive subsets of componewtss {z;}, h = {z;}, such thak =
{w,h}. T is arandom variable that is defined over the same domdin By using convolution, the
now multi-dimensional topic®(w, 7|z) can shift around the space of the input in both frequency
and time. This allows us to model shift-invariance whichhie fudio domain is often seen in both
the frequency and the time axes. Interestingly enough ifemeove the latent variable and consider
the rank-1 decomposition this reduces to the Lucy-Riclard$3] deconvolution operation.

Because the convolution operator in the above model is caative there exists an ambiguity on
the structure ofw andh, and the way to resolve this is to use the entropic prior shabove.
Most usually we require that the activatiof§h — 7|z) of the estimated patchd’3(w, 7|z) are
maximally sparse, so that we discover a shift-invariantspaode. This model can be used to repeat
many of the operations shown using regular PLSA, but it preidantly most useful at extracting
information.

3.2 Object discovery

Performing the above decomposition on long recordings ofide we can find repeating patches of
sounds that seem to be statistically significant. A pardidylinteresting case of this is performing
this analysis on speech recordings trying to discover tlidibhg elements of speech. If we request



sparse activation codes the resulting patcRés, 7|z) end up resembling phonemes or phones,
which we accept to be the building blocks of speech. Likevfisen music recordings we can
recover entire notes or instrument phrases.

3.3 Musical priors

The frequency invariance is also very useful for musicalligppions. Using constant-Q tie-
frequency representations we ensure that a change in ditgh mstrument will result in only a
vertical shift of an otherwise constant bag of frequenchesshown in [14] this can be used to ex-
tract an instrument’s spectral character from a recordindpnat the same time estimating its pitch.
In addition to that we can impose spectral shape and tempondinuity priors [12] to ensure that
the pitch tracking is appropriately constrained to fit thetiament we wish to track.

3.4 Dereverb and echo canceling

Flnally, as will be shown in upcoming publications the comtive model allows us to perform
operations such as dereverberation and echo cancelatiattdipting to remove the repetitions
of a "series of topics” using this convolutive formulatiohis probabilistic reasoning for these
operations is a new way of thinking about signals and resultse opportunity to perform exciting
extensions and find new ways of treating some of the oldegigmts in signal processing.

4 Conclusions

In this abstract we have tried to communicate some of thaagijuns that topic models have found
in audio and music processing. Unfortunately a presemtatio paper is not as vivid as playing
example sounds which show how powerful these techniqgue®eabut we hope it has given the
flavor of some of the exciting new directions audio procegg@moving towards.
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