
Learning to Search in Branch-and-Bound Algorithms⇤

He He Hal Daumé III
Department of Computer Science

University of Maryland
College Park, MD 20740

{hhe,hal}@cs.umd.edu

Jason Eisner
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
jason@cs.jhu.edu

Abstract

Branch-and-bound is a widely used method in combinatorial optimization, in-
cluding mixed integer programming, structured prediction and MAP inference.
While most work has been focused on developing problem-specific techniques,
little is known about how to systematically design the node searching strategy
on a branch-and-bound tree. We address the key challenge of learning an adap-

tive node searching order for any class of problem solvable by branch-and-bound.
Our strategies are learned by imitation learning. We apply our algorithm to linear
programming based branch-and-bound for solving mixed integer programs (MIP).
We compare our method with one of the fastest open-source solvers, SCIP; and
a very efficient commercial solver, Gurobi. We demonstrate that our approach
achieves better solutions faster on four MIP libraries.

1 Introduction

Branch-and-bound (B&B) [1] is a systematic enumerative method for global optimization of non-
convex and combinatorial problems. In the machine learning community, B&B has been used as an
inference tool in MAP estimation [2, 3]. In applied domains, it has been applied to the “inference”
stage of structured prediction problems (e.g., dependency parsing [4, 5], scene understanding [6],
ancestral sequence reconstruction [7]). B&B recursively divides the feasible set of a problem into
disjoint subsets, organized in a tree structure, where each node represents a subproblem that searches
only the subset at that node. If computing bounds on a subproblem does not rule out the possibility
that its subset contains the optimal solution, the subset can be further partitioned (“branched”) as
needed. A crucial question in B&B is how to specify the order in which nodes are considered. An
effective node ordering strategy guides the search to promising areas in the tree and improves the
chance of quickly finding a good incumbent solution, which can be used to rule out other nodes.
Unfortunately, no theoretically guaranteed general solution for node ordering is currently known.

Instead of designing node ordering heuristics manually for each problem type, we propose to speed
up B&B search by automatically learning search heuristics that are adapted to a family of problems.

• Non-problem-dependent learning. While our approach learns problem-specific policies,
it can be applied to any family of problems solvable by the B&B framework. We use
imitation learning to automatically learn the heuristics, free of the trial-and-error tuning
and rule design by domain experts in most B&B algorithms.

• Dynamic decision-making. Our decision-making process is adaptive on three scales. First,
it learns different strategies for different problem types. Second, within a problem type, it
can evaluate the hardness of a problem instance based on features describing the solving
progress. Third, within a problem instance, it adapts the searching strategy to different
levels of the B&B tree and makes decisions based on node-specific features.

⇤This material is based upon work supported by the National Science Foundation under Grant No. 0964681.

1

−13/2
+∞

−13/3
+∞

−16/3
+∞

−3
−3

−4
−4

–22/5
+∞

INF INF

−3
−3

x = 5/2#
y = 3/2

x = 5/3#
y = 1

x = 5/3#
y = 2

x = 1#
y = 1

x = 1#
y = 12/5

x = 1#
y = 2

x = 0#
y = 3

y ≤ 1 y ≥ 2

x ≤ 1 x ≤ 1x ≥ 2 x ≥ 2

y ≤ 2 y ≥ 3

ub = +∞#
lb = −16/3

ub = −3#
lb = −22/5

ub = −4#
lb = −4

ub = −3#
lb = −16/3

node expansion
order

 global lower and
upper bound

optimal node

fathomed node

min −2x − y#
s.t. 3x − 5y ≤ 0#

 3x + 5y ≤ 15#
 x ≥ 0, y ≥ 0#

 x, y ∈ Z

training examples:

−13/3
+∞

−16/3
+∞

<

prune: −13/3
+∞

Figure 1: Using branch-and-bound to solve an integer linear programming minimization.

• Easy incorporation of heuristics. Most hand-designed strategies handle only a few heuris-
tics, and they set weights on different heuristics by domain knowledge or manual experi-
mentation. In our model, multiple heuristics can be simply plugged in as state features for
the policy, allowing a hybrid “heuristic” to be learned effectively.

We assume that a small set of solved problems are given at training time and the problems to be
solved at test time are of the same type. We learn a node selection policy and a node pruning policy
from solving the training problems. The node selection policy repeatedly picks a node from the
queue of all unexplored nodes, and the node pruning policy decides if the popped node is worth
expanding. We formulate B&B search as a sequential decision-making process. We design a simple
oracle that knows the optimal solution in advance and only expands nodes containing the optimal
solution. We then use imitation learning to learn policies that mimic the oracle’s behavior without
perfect information; these policies must even mimic how the oracle would act in states that the ora-
cle would not itself reach, as such states may be encountered at test time. We apply our approach to
linear programming (LP) based B&B for solving mixed integer linear programming (MILP) prob-
lems, and achieve better solutions faster on 4 MILP problem libraries than Gurobi, a recent fast
commercial solver competitive with Cplex, and SCIP, one of the fastest open-source solvers [8].

2 The Branch-and-Bound Framework: An Application in Mixed Integer
Linear Programming

Consider an optimization problem of minimizing f over a feasible set F , where F is usually discrete.
B&B uses a divide and conquer strategy: F is recursively divided into its subsets F1,F2, . . . ,Fp

such that F =

Sp
i=1 Fi. The recursion tree is an enumeration tree of all feasible solutions, whose

nodes are subproblems and edges are the partition conditions. Slightly abusing notation, we will use
Fi to refer to both the subset and its corresponding B&B node from now on. A (convex) relaxation
of each subproblem is solved to provide an upper/lower bound for that node and its descendants. We
denote the upper and lower bound at node i by `ub(Fi) and `lb(Fi) respectively where `ub and `lb
are bounding functions.

A common setting where B&B is ubiquitously applied is MILP. A MILP optimization problem has
linear objective and constraints, and also requires specified variables to be integer. We assume we
are minimizing the objective function in MILP from now on. At each node, we drop the integrality
constraints and solve its LP relaxation. We present a concrete example in Figure 1. The optimization
problem is shown in the lower right corner. At node i, a local lower bound (shown in lower half of
each circle) is found by the LP solver. A local upper bound (shown in upper part of the circle) is
available if a feasible solution is found at this node. We automatically get an upper bound if the LP
solution happens to be integer feasible, or we may obtain it by heuristics.

B&B maintains a queue L of active nodes, starting with a single root node on it. At each step,
we pop a node Fi from L using a node selection strategy, and compute its bounds. A node Fi

2

fathom?

rank

No

nodes

pop

root
(problem)

prune?

queue
empty?

Yes

No

Yes

push
children

solution

No

Yes
Algorithm 1 Policy Learning (⇡⇤

S , ⇡⇤
P)

⇡

(1)
P = ⇡

⇤
P ,⇡

(1)
S = ⇡

⇤
S ,DS = {},DP = {}

for k = 1 to N do
for Q in problem set Q do
D(Q)

S ,D(Q)
P COLLECTEXAMPLE(Q, ⇡(k)

P , ⇡(k)
S)

DS DS [D(Q)
S , DP DP [D(Q)

P

⇡

(k+1)
S ,⇡

(k+1)
P train classifiers using DS and DP

return Best ⇡(k)
S ,⇡

(k)
P on dev set

Figure 2: Our method at runtime (left) and the policy learning algorithm (right). Left: our
policy-guided branch-and-bound search. Procedures in the rounded rectangles (shown in blue) are
executed by policies. Right: the DAgger learning algorithm. We start by using oracle policies ⇡⇤

S
and ⇡⇤

P to solve problems in Q and collect examples along oracle trajectories. In each iteration,
we retrain our policies on all examples collected so far (training sets DD and DS), then collect
additional examples by running the newly learned policies. The COLLECTEXAMPLE procedure is
described in Algorithm 2.

is fathomed (i.e., no further exploration in its subtree) if one of the following cases is true: (a)
`lb(Fi) is larger than the current global upper bound, which means all solutions in its subtree can
not possibly be better than the incumbent; (b) `lb(Fi) = `ub(Fi); at this point, B&B has found the
best solution in the current subtree; (c) The subproblem is infeasible. In Figure 1, fathomed nodes
are shown in double circles and infeasible nodes are labeled by “INF”.

If a node is not fathomed, it is branched into children of Fi that are pushed onto L. Branching
conditions are shown next to each edge in Figure 1. The algorithm terminates when L is empty or
the gap between the global upper bound and lower bound achieves a specified tolerance level. In the
example in Figure 1, we follow a DFS order. Starting from the root node, the blue arrows points to
the next node popped from L to be branched. Updated global lower and upper bounds after a node
expansion is shown on the board under each branched node.

3 Learning Control Policies for Branch-and-Bound

A good search strategy should find a good incumbent solution early and identify non-promising
nodes before they are expanded. However, naively applying a single heuristic through the whole
process ignores the dynamic structure of the B&B tree. For example, DFS should only be used at
nodes that promise to lead to a good feasible solution that may replace the incumbent. Best-bound-
first search can quickly discard unpromising nodes, but should not be used frequently at the top
levels of the tree since the bound estimate is not accurate enough yet. Therefore, we propose to
learn policies adaptive to different problem types and different solving stages.

There are two goals in a B&B search: finding the optimal solution and proving its optimality. There
is a trade-off between the two goals: we may be able to return the optimal solution faster if we do
not invest the time to prove that all other solutions are worse. Thus, we will aim only to search for
a “good” (possibly optimal) solution without a rigorous proof of optimality. This allows us to prune
unpromising portions of the search tree more aggressively. In addition, obtaining a certificate of
optimality is usually of secondary priority for practical purposes.

We assume the branching strategy and the bounding functions are given. We guide search on the
enumeration tree by two policies. Recall that B&B maintains a priority queue of all nodes to be
expanded. The node selection policy determines the priorities used. Once the highest-priority node
is popped, the node pruning policy decides whether to discard or expand it given the current progress
of the solver. This process continues iteratively until the tree is empty or the gap reaches some
specified tolerance. All other techniques used during usual branch-and-bound search can still be
applied with our method. The process is shown in Figure 3.

3

Oracle. Imitation learning requires an oracle at training time to demonstrate the desired behavior.
Our ideal oracle would expand nodes in an order that minimized the number of node expansions
subject to finding the optimal solution. In real branch-and-bound systems, however, the optimal
sequence of expanded nodes cannot be obtained without substantial computation. After all, the effect
of expanding one node depends not only on local information such as the local bounds it obtains,
but also on how many pruned nodes it may lead to and many other interacting strategies such as
branching variable selection. Therefore, given our single goal of finding a good solution quickly, we
design an oracle that finds the optimal solution without a proof of optimality. We assume optimal
solutions are given for training problems.1 Our node selection oracle ⇡⇤

S will always expand the
node whose feasible set contains the optimal solution. We call such a node an optimal node. For
example, in Figure 1, the oracle knows beforehand that the optimal solution is x = 1, y = 2, thus it
will only search along edges y � 2 and x 1; the optimal nodes are shown in red circles. All other
non-optimal nodes are fathomed by the node pruning oracle ⇡⇤

P , if not already fathomed by standard
rules discussed in Section 2. We denote the optimal node at depth d by F⇤

d where d 2 [0, D] and F⇤
0

is the root node.

Imitation Learning. We formulate the above approach as a sequential decision-making process,
defined by a state space S , an action space A and a policy space ⇧. A trajectory consists of a
sequence of states s1, s2, . . . , sT and actions a1, a2, . . . , aT . A policy ⇡ 2 ⇧ maps a state to an
action: ⇡(st) = at. In our B&B setting, S is the whole tree of nodes visited so far, with the
bounds computed at these nodes. The node selection policy ⇡S has an action space {select node

Fi : Fi 2 queue of active nodes}, which depends on the current state st. The node pruning policy
⇡P is a binary classifier that predicts a class in {prune, expand}, given st and the most recently
selected node (the policy is only applied when this node was not fathomed). At training time, the
oracle provides an optimal action a

⇤ for any possible state s 2 S . Our goal is to learn a policy that
mimics the oracle’s actions along the trajectory of states encountered by the policy. Let � : Fi ! Rp

and : Fi ! Rq be feature maps for ⇡S and ⇡P respectively. The imitation problem can be reduced
to supervised learning [9, 10, 11]: the policy (classifier/regressor) takes a feature-vector description
of the state st and attempts to predict the oracle action a

⇤
t .

A generic node selection policy assigns a score to each active node and pops the highest-scoring
one. For example, DFS uses a node’s depth as its score; best-bound-first search uses a node’s
lower bound as its score. Following this scheme, we define the score of a node i as wT

�(Fi) and
⇡S(st) = select node argmaxFi2L wT

�(Fi), where w is a learned weight vector and L is the
queue of active nodes. We obtain w by learning a linear ranking function that defines a total order
on the set of nodes on the priority queue: wT

(�(Fi)� �(Fi0)) > 0 if Fi > Fi0 . During training,
we only specify the order between optimal nodes and non-optimal nodes. However, at test time,
a total order is obtained by the classifier’s automatic generalization: non-optimal nodes close to
optimal nodes in the feature space will be ranked higher.

DAgger is an iterative imitation learning algorithm. It repeatedly retrains the policy to make deci-
sions that agree better with the oracle’s decisions, in those situations that were encountered when
running past versions of the policy. Thus, it learns to deal well with a realistic distribution of situ-
ations that may actually arise at test time. Our training algorithm is shown in Algorithm 1. Algo-
rithm 2 illustrates how we collect examples during B&B. In words, when pushing an optimal node
to the queue, we want it ranked higher than all nodes currently on the queue; when pushing a non-
optimal node, we want it ranked lower than the optimal node on the queue if there is one (note that
at any time there can be at most one optimal node on the queue); when popping a node from the
queue, we want it pruned if it is not optimal. In the left part of Figure 1, we show training examples
collected from the oracle policy.

4 Analysis

We show that our method has the following upper bound on the expected number of branches.
Theorem 1. Given a node selection policy which ranks some non-optimal node higher than an

optimal node with probability ✏ , a node pruning policy which expands a non-optimal node with

probability ✏1 and prunes an optimal node with probablity ✏2, assuming ✏, ✏1, ✏2 2 [0, 0.5] under the

1For prediction tasks, the optimal solutions usually come for free in the training set; otherwise, an off-the-
shelf solver can be used.

4

Algorithm 2 Running B&B policies and collect example for problem Q

procedure COLLECTEXAMPLE(Q, ⇡S , ⇡P)
L = {F (Q)

0 }, training set D(Q)
S = {}, D(Q)

P = {}, i 0

while L 6= ; do
F (Q)

k ⇡S pops a node from L,
if F (Q)

k is optimal then D(Q)
P D(Q)

P [
n⇣

 (F (Q)
k), expand

⌘o

else D(Q)
P D(Q)

P [
n⇣

 (F (Q)
k), prune

⌘o

if F (Q)
k is not fathomed and ⇡P (F (Q)

k) = expand then
F (Q)

i+1 , F
(Q)
i+2 expand F (Q)

k , L L [{F (Q)
i+1 , F

(Q)
i+2}, i i+ 2

if an optimal node F⇤(A)
d 2 L then

D(Q)
S D(Q)

S [
n⇣

�(F⇤(Q)
d)� �(F (Q)

i0), 1

⌘

: F (Q)
i0 2 L and F (Q)

i0 6= F (Q)⇤
d

o

return D(Q)
S , D(Q)

P

policy’s state distribution, we have

expected number of branches

�(✏, ✏1, ✏2)

D
X

d=0

(1� ✏2)d + (1� ✏2)D+1 (1� ✏)✏1
1� 2✏1

+ 1

!

D,

where �(✏, ✏1, ✏2) =

⇣

1�✏2
1�2✏✏1

+

✏2
1�2✏1

⌘

✏✏1.

Let the optimal node at depth d be F⇤
d . Note that at each push step, there is at most one optimal

node on the queue. Consider a queue having one optimal node F⇤
d and m non-optimal nodes ranked

before the optimal one. The following lemma is useful in our proof:
Lemma 1. The average number of pops before we get to F⇤

d is

m
1�2✏✏1

, among which the number

of branches is NB(m, opt) =

m✏1
1�2✏✏1

, and the number of non-optimal nodes pushed after F⇤
d is

Npush(m, opt) =

m✏1
1�2✏✏1

⇥

2(1� ✏)2 + 2✏(1� ✏)
⇤

=

2m✏1(1�✏)
1�2✏✏1

, where opt indicates the situation

where one optimal node is on the queue.

Consider a queue having no optimal node and m non-optimal nodes, which means an optimal inter-
nal node has been pruned or the optimal leaf has been found. We have
Lemma 2. The average number of pops to empty the queue is

m
1�2✏1

, among which the number of

branches is NB(m, opt) =

m✏1
1�2✏1

, where opt indicates the situation where no optimal node is on

the queue.

Proofs of the above two lemmas are given in Appendix A.

Let T (Md,F⇤
d) denote the number of branches until the queue is empty, after pushing F⇤

d to a
queue with Md nodes. The total number of branches during the B&B process is T (0,F⇤

0). When
pushing F⇤

d , we compare it with all M nodes on the queue, and the number of non-optimal nodes
ranked before it follows a binomial distribution md ⇠ Bin(✏,Md). We then have the following two
cases: (a) F⇤

d will be pruned with probability ✏2: the expected number of branches is NB(md, opt);
(b) F⇤

d will not be pruned with probability 1 � ✏2: we first pop all nodes before F⇤
d , resulting in

Npush(md, opt) new nodes after it; we then expand F⇤
d , get F⇤

d+1, and push it on a queue with
Md+1 = Npush(md, opt) + Md � md + 1 nodes. Thus the total expected number of branches is
NB(md, opt) + T (Md+1,F⇤

d+1).

The recursion equation is

T (Md,F⇤
d)=Emd⇠Bin(✏,Md)

⇥

(1�✏2)
�

NB(md, opt)+1+T (Md+1,F⇤
d+1)

�

+✏2NB(Md, opt)
⇤

.

At termination, we have

T (MD,F⇤
D)=EmD⇠Bin(✏,MD)

⇥

(1�✏2)
�

NB(mD, opt)+NB(MD�mD, opt)

�

+✏2NB(MD, opt)

⇤

.

5

Note that we ignore node fathoming in this recursion. The path of optimal nodes may stop at F⇤
d

where d<D, thus T (Md,F⇤
d) is an upper bound of the actual expected number of branches. The

expectation over md can be computed by replacing md by ✏Md since all terms are linear in md.
Solving for T (0,F⇤

0) gives the upper bound in Theorem 1. Details are given in Appendix B.

For the oracle, ✏=✏1=✏2=0 and it branches at most D times when solving a problem. For non-
optimal policies, as for all pruning-based methods, our method bears the risk of missing the optimal
solution. The depth at which the first optimal node is pruned follows a geometric distribution and
its mean is 1/✏2. In practice, we can put higher weight on the class prune to learn a high-precision
classifier (smaller ✏2).

5 Experiments

Datasets. We apply our method to LP-based B&B for solving MILP problems. We use four problem
libraries suggested in [12]. MIK2 [13] is a set of MILP problems with knapsack constraints. Regions
and Hybrid are sets of problems of determining the winner of a combinatorial auction, generated
from different distributions by the Combinatorial Auction Test Suite (CATS)3 [14]. CORLAT [15]
is a real dataset used for the construction of a wildlife corridor for grizzly bears in the Northern
Rockies region. The number of variables ranges from 300 to over 1000; the number of constraints
ranges from 100 to 500. Each problem set is split into training, test and development sets. Details of
the datasets are presented in Appendix C. For each problem, we run SCIP until optimality, and take
the (single) returned solution to be the optimal one for purposes of training. We exclude problems
which are solved at the root in our experiment.

Policy learning. For each problem set, we split its training set into equal-sized subsets randomly and
run DAgger on one subset in each iteration until we have taken two passes over the entire set. Too
many passes may result in overfitting for policies in later iterations. We use LIBLINEAR [16] in the
step of training classifiers in Algorithm 1. Since mistakes during early stages of the search are more
serious, our training places higher weight on examples from nodes closer to the root for both policies.
More specifically, the example weights at each level of the B&B tree decay exponentially at rate
2.68/D where D is the maximum depth4, corresponding to the fact that the subtree size increases
exponentially. For pruning policy training, we put a higher weight (tuned from {1, 2, 4, 8}) on the
class prune to counter data imbalance and to learn a high-precision classifier as discussed earlier.
The class weight and SVM’s penalty parameter C are tuned for each library on its development set.

The features we used can be categorized into three groups: (a) node features, computed from the
current node, including lower bound5, estimated objective, depth, whether it is a child/sibling of
the last processed node; (b) branching features, computed from the branching variable leading to
the current node, including pseudocost, difference between the variable’s value in the current LP
solution and the root LP solution, difference between its value and its current bound; (c) tree features,
computed from the B&B tree, including global upper and lower bounds, integrality gap, number of
solutions found, whether the gap is infinite. The node selection policy includes primarily node
features and branching feature, and the node pruning policy includes primarily branching features
and tree features. To combine these features with depth of the node, we partition the tree into 10
uniform levels, and features at each level are stacked together. Since the range of objective values
varies largely across problems, we normalize features related to the bound by dividing its actual
value by the root node’s LP objective. All of the above features are cheap to obtain. Actually they
use information recorded by most solvers , thus do not result in much overhead.

Results. We compare with SCIP (Version 3.1.0) (using Cplex 12.6 as the LP solver), and Gurobi
(Version 5.6.2). SCIP’s default node selection strategy switches between depth-first search and
best-first search according a plunging depth computed online. Gurobi applies different strategies
(including pruning) for subtrees rooted at different nodes [17, 18]. Both solvers adopt the branch-

2Downloaded from http://ieor.berkeley.edu/

˜

atamturk/data

3Available at http://www.cs.ubc.ca/
˜

kevinlb/CATS/

4The rate is chosen such that examples at depth 1 are weighted by 5 and examples at 0.6D by 1.
5If the node is a child of the most recent processed node, its LP is not solved yet and its bounds will be the

same as its parent’s.

6

Dataset Ours Ours (prune only) SCIP (time) Gurobi (node)
speed OGap IGap speed OGap IGap OGap IGap OGap IGap

MIK 4.69⇥ 0.04‰ 2.29% 4.45⇥ 0.04‰ 2.29% 3.02‰ 1.89% 0.45‰ 2.99%
Regions 2.30⇥ 7.21‰ 3.52% 2.45⇥ 7.68‰ 3.58% 6.80‰ 3.48% 21.94‰ 5.67%
Hybrid 1.15⇥ 0.00‰ 3.22% 1.02⇥ 0.00‰ 3.55% 0.79‰ 4.76% 3.97‰ 5.20%
CORLAT 1.63⇥ 8.99% 22.64% 4.44⇥ 8.91% 17.62% 6.67% fail 2.67% fail

Table 1: Performance on solving MILP problems from four libraries. We compare two versions
of our algorithm (one with both search and pruning policies and one with only the pruning policy)
with SCIP with a node limit (SCIP (node)) and Gurobi with a time limit (Gurobi (time)). We
report results on three measures: speedup with respect to SCIP in default setting, the optimality
gap (OGap), computed as the percentage difference between the best objective value found and the
optimal objective value, the integrality gap (IGap), computed as the percentage difference between
the upper and lower bounds. Here ”fail” means the solver cannot find a feasible solution. The
numbers are averaged over all instances in each dataset. Bolded scores are statistically tied with the
best score according to a t-test with rejection threshold 0.05.

and-cut framework combined with presolvers and primal heuristics. Our solver is implemented
based on SCIP and also calls Cplex 12.6 to solve LPs.

We compare runtime with SCIP in its default setting, which does not terminate before a proved
status (e.g. solved, infeasible, unbounded). To compare the tradeoff between runtime and solution
quality, we first run our dynamic B&B algorithm and obtain the average runtime; we then run SCIP
with the same time limit. Since runtime is rather implementation-dependent and Gurobi is about
four times faster than SCIP [8], we use the number of nodes explored as time measure for Gurobi.
As Gurobi and SCIP apply roughly the same techniques (e.g. cutting-plane generation, heuristics) at
each node, we believe fewer nodes explored implies runtime improvement had we implemented our
algorithm based on Gurobi. Similarly, we set Gurobi’s node limit to the average number of nodes
explored by our algorithm.

The results are summarized in Table 1. Our method speeds up SCIP up to a factor of 4.7 with
less than 1% loss in objectives of the found solutions on most datasets. On CORLAT, the loss is
larger (within 10%) since these problems are generally harder; both SCIP and Gurobi failed to find
even one feasible solution given a time/node limit on some problems. Note that SCIP in its default
setting works better on Regions and Hybrid, and Gurobi better on the other two, while our adaptive
solver performs well consistently. This shows that effectiveness of strategies are indeed problem
dependent.

Ablation analysis. To assess the effect of node selection and pruning separately, we report details
of their classification performance in Tabel 2. Both policies cost negligible time compared with the
total runtime. We also show result of our method with the pruning policy only in Table 1. We can
see that the major contribution comes from pruning. We believe there are two main reasons: a) there
may not be enough information in the features to differentiate an optimal node from non-optimal
ones; b) the effect of node selection may be covered by other interacting techniques, for instance, a
non-optimal node could lead to better bounds due to the application of cutting planes.

Informative features. We rank features on each level of the tree according to the absolute values
of their weights for each library. Although different problem sets have its own specific weights and
rankings of features, a general pattern is that closer to the top of the tree the node selection policy
prefers nodes which are children of the most recently solved node (resembles DFS) and have better
bounds; in lower levels it still prefers deeper nodes but also relies on pseudocosts of the branching
variable and estimates of the node’s objective, since these features get more accurate as the search
goes deeper. The node pruning policy tends to not pruning when there are few solutions found and
the gap is infinite; it also relies much on differences between the branching variable’s value, its value
in the root LP solution and its current bound.

Cross generalization. To testify that our method learns strategies specific to the problem type, we
apply the learned policies across datasets, i.e., using policies trained on dataset A to solve problems
in dataset B. We plot the result as a heatmap in Figure 3, using a measure combining runtime and the

7

MIK CORLAT Regions Hybrid

Test Dataset

MIK

CORLAT

Regions

Hybrid

Po
lic

y
D

at
as

et

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1
/(tim

e
+

opt.gap)

Figure 3: Performance of policies cross
datasets. The y-axis shows datasets on which
a policy is trained. The x-axis shows datasets
on which a policy is tested. Each block shows
1/ (runtime+optimality gap), where runtime
and gap are scaled to [0, 1] for experiments on
the same test dataset. Values in each row are
normalized by the diagonal element on that row.

Dataset prune
rate

prune err comp
err

time (%)
FP FN selectprune

MIK 0.48 0.01 0.46 0.34 0.02 0.04
Regions 0.55 0.20 0.32 0.32 0.00 0.00
Hybrid 0.02 0.00 0.98 0.44 0.02 0.02
CORLAT 0.24 0.00 0.76 0.80 0.01 0.01

Table 2: Classification performance of the node
selection and pruning policy. We report the per-
centage of nodes pruned (prune rate), false posi-
tive (FP) and false negative (FN) error rate of the
pruning policy, comparison error of the selection
policy (only for comparisons between one optimal
and one non-optimal node), as well as the percent-
age of time used on decision making.

optimality gap. We invert the values so that hotter blocks in the figure indicate better performance.
Note that there is a hot diagonal. In addition, MIK and CORLAT are relatively unique: policies
trained on other datasets lose badly there. On the other hand, Hybrid is more friendly to other
policies. This probably suggests that for this library most strategies works almost equally well.

6 Related Work

There is a large amount of work on applying machine learning to make dynamic decisions inside
a long-running solver. The idea of learning heuristic functions for combinatorial search algorithms
dates back to [19, 20, 21]. Recently, [22] aims to balance load in parallel B&B by predicting the
subtree size at each node. Nodes of the largest predicted subtree size are further split into smaller
problems and sent to the distributed environment with other nodes in a batch. In [23], a SVM
classifier is used to decide if probing (a bound tightening technique) should be used at a node in
B&B. However, both prior methods handle a relatively simple setting where the model only predicts
information about the current state, so that they can simply train by standard supervised learning.
This is manifestly not the case for us. Since actions have influence over future states, standard
supervised learning does not work as well as DAgger, an imitation learning technique that focuses
on situations most likely to be encountered at test time.

Our work is also closely related to speedup learning [24], where the learner observes a solver solving
problems and learns patterns from past experience to speed up future computation. [25] and [26]
learned ranking functions to control beam search (a setting similar to ours) in planning and structured
prediction respectively. [27] used supervised learning to imitate strong branching in B&B for solving
MIP. The primary distinction in our work is that we explicitly formulate the problem as a sequential
decision-making process, thus take aciton’s effects on future into account. We also add the pruning
step besides prioritization for further speedup.

7 Conclusion

We have presented a novel approach to learn an adaptive node searching order for different classes of
problems in branch-and-bound algorithms. Our dynamic solver learns when to leave an unpromising
area and when to stop for a good enough solution. We have demonstrated on multiple datasets that
compared to a commercial solver, our approach finds solutions with a better objective and establishes
a smaller gap, using less time. In the future, we intend to include a time budget in our model so that
we can achieve a user-specified trade-off between solution quality and searching time. We are also
interested in applying multi-task learning to transfer policies between different datasets.

8

References
[1] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. 28:497–

520, 1960.
[2] Min Sun, Murali Telaprolu, Honglak Lee, and Silvio Savarese. Efficient and exact MAP-MRF inference

using branch and bound. In AISTATS, 2012.
[3] Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. Towards efficient and

exact MAP-inference for large scale discrete computer vision problems via combinatorial optimization.
In CVPR, 2013.

[4] Sebastian Riedel, David A. Smith, and Andrew McCallum. Parse, price and cut - delayed column and
row generation for graph based parsers. In EMNLP, 2012.

[5] Xian Qian and Yang Liu. Branch and bound algorithm for dependency parsing with non-local features.
In TACL, 2013.

[6] Alexander G. Schwing and Raquel Urtasun. Efficient exact inference for 3D indoor scene understanding.
In ECCV, 2012.

[7] Tal Pupko, Itsik Pe’er, Masami Hasegawa, Dan Graur, and Nir Friedman. A branch-and-bound algo-
rithm for the inference of ancestral amino-acid sequences when the replacement rate varies among sites:
Application to the evolution of five gene families. 18:1116–1123, 2002.

[8] Hans Mittelmann. Mixed integer linear programming benchmark (miplib2010), 2014.
[9] Umar Syed and Robert E. Schapire. A reduction from apprenticeship learning to classification. In NIPS,

2010.
[10] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML,

2004.
[11] Stéphane. Ross, Geoffrey J. Gordon, and J. Andrew. Bagnell. A reduction of imitation learning and

structured prediction to no-regret online learning. In Proceedings of AISTATS, 2011.
[12] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Automated configuration of mixed integer pro-

gramming solvers. 2010.
[13] Alper Atamtürk. On the facets of the mixedinteger knapsack polyhedron. 98:145–175, 2003.
[14] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combinatorial

auction algorithms. In Proceedings of ACM Conference on Electronic Commerce, 2000.
[15] Carla P. Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal. Connections in networks: a hybrid

approach. 2008.
[16] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A

library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.
[17] Zonghao Gu, Robert E. Bixby, and Ed Rothberg. The latest advances in mixed-integer programming

solvers.
[18] Ed Rothberg. Parallelism in linear and mixed integer programming.
[19] Matthew Lowrie and Benjamin Wah. Learning heuristic functions for numeric optimization problems. In

Proceedings of the Twelfth Annual International Computer Software & Applications Conference, 1988.
[20] Justin A. Boyan and Andrew W. Moore. Learning evaluation functions for global optimization and

boolean satisfiability. In National Conference on Artificial Intelligence, 1998.
[21] Sudeshna Sarkar, P. P. Chakrabarti, and Sujoy Ghose. Learning while solving problems in best first search.

28:535–242, 1998.
[22] Lars Otten and Rina Dechter. A case study in complexity estimation: Towards parallel branch-and-bound

over graphical models. In UAI, 2012.
[23] Giacomo Nannicini, Pietro Belotti, Jon Lee, Jeff Linderoth, François Margot, and Andreas Wächter. A

probing algorithm for minlp with failure prediction by svm. 2011.
[24] Alan Fern. Speedup learning. 2007.
[25] Yuehua Xu and Alan Fern. Learning linear ranking functions for beam search with application to planning.

10:1571–1610, 2009.
[26] Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large margin methods

for structured prediction. In ICML, 2005.
[27] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised machine learning

approach to variable branching in branch-and-bound. In ECML, 2014.

9

