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Abstract

We improve “learning to search” approaches to structured prediction in two ways.
First, we show that the search space can be defined by an arbitrary imperative
program, reducing the number of lines of code required to develop new structured
prediction tasks by orders of magnitude. Second, we make structured prediction
orders of magnitude faster through various algorithmic improvements.

1 Introduction

In structured prediction problems, the goal is creating a good set of joint predictions. As an exam-
ple, consider recognizing a handwritten word where each character might be recognized in turn to
understand the word. Here, it is commonly observed that exposing information from related predic-
tions (i.e. adjacent letters) aids individual predictions. Furthermore, optimizing a joint loss function
can improve the gracefulness of error recovery. Despite this, it is empirically common to build
independent predictors in settings where structured prediction naturally applies. Why? Because
independent predictors are much simpler, easier and faster to train. Our primary goal is to make
structured prediction algorithms as easy and fast as possible to both program and compute.

A new programming abstraction, together with several algorithmic pearls, radically reduce the com-
plexity of programming and the running time of our solution.

1. We enable structured prediction as a library which has a function PREDICT(...) returning
predictions. The PREDICT(...) interface is the minimal complexity approach to producing a
structured prediction. Surprisingly, this single library interface is sufficient for both testing
and training, when augmented to include label “advice” from a training set. This means
that a developer need only code desired test time behavior and gets training “for free.”

2. Although the PREDICT(...) interface is the same as the interface for an online learning
algorithm, the structured prediction setting commonly differs in two critical ways. First,
the loss may not be simple 0/1 loss over subproblems. For optimization of a joint loss, we
add a LOSS(...) function which allows the declaration of an arbitrary loss for the joint set
of predictions. The second difference is that predictions are commonly used as features for
other predictions. This can be handled either implicitly or explicitly, but the algorithm is
guaranteed to work either way.

Here PREDICT(...) and LOSS(...) enable a concise specification of structured prediction problems.

Basic sequence labeling as shown in algorithm 1 is the easiest possible structured prediction prob-
lem, so it forms a good use case. The algorithm takes as input a sequence of examples (consider
features of handwritten digits in words), and predicts the meaning of each element in turn. This
is a specific case of sequential decision making, in which the ith prediction may depend on previ-
ous predictions. In this example, we make use of the library’s support for implicit feature-based
dependence on previous predictions.
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Algorithm 1 SEQUENTIAL_RUN(examples)
1: for i = 1 to LEN(examples) do
2: prediction← PREDICT(examples[i], examples[i].label) // make a prediction on the ith example
3: if output.good then
4: output « ’ ’ « prediction // if we should generate output, append our prediction
5: end if
6: end for

The use of this function for decoding is clear, but how can the PREDICT(...) interface be effective?
There are two challenges to overcome in creating a viable system.

1. Given the available information, are there well-founded structured prediction algorithms?
For Conditional Random Fields [Lafferty et al., 2001] and structured SVMs [Taskar et al.,
2003, Tsochantaridis et al., 2004], the answer is “no”, because we have not specified the
conditional independence structure of the system of predicted variables. Instead, we use a
system that implements search-based structured prediction methods such as Searn [Daumé
III et al., 2009] or DAgger [Ross et al., 2011]. These have formal correctness guarantees
which differ qualitatively from the conditional log loss guarantees of CRFs. For example,
given a low regret cost-sensitive classification algorithm, Searn guarantees competition
according to LOSS(...) with an oracle policy and local optimality w.r.t. one-step deviations
from the learned policy. We discuss how these work below.

2. A sequential program has only one execution stack, which is used by the decoding algo-
rithm above. This conflicts because the learning algorithm would naturally also use the
stack. We refactor the learning algorithm into a state machine which runs before the RUN
function is called and after the various library calls are made. In essence, RUN is invoked
many times with different example sequences and different versions of PREDICT(...) so as
to find a version of PREDICT(...) with a small LOSS(...).

Given this high level design, the remaining challenge is computational. How do we efficiently and
effectively find a PREDICT(...) which achieves a small LOSS(...)?

2 Learning to Search

A discrete search space is defined by states s ∈ S and a mapping m : S → 2S defining the set of
valid next states. One of the states is a unique start state a while some of the others are end states
s ∈ E. A loss function l(s) is defined for any end state s ∈ E on the training set. We are interested
in algorithms which learn the transition function f : Xs → S which uses the features of an input
state (Xs) to choose a next state so as to minimize the loss l on a heldout test set. Two canonical
algorithms to solve this problem are Searn [Daumé III et al., 2009] and DAgger [Ross et al., 2011]
which we review next.

Searn uses some oracle transition function f∗ which is defined on the training set, but not on the
heldout test set. As searn operates it learns a sequence of transition functions f0, f1, ...., fn where
f0 = f∗ and fn is entirely learned. At each iteration i ∈ {1, ..., n}, Searn uses fi−1 to generate
a set of cost-sensitive examples. A cost-sensitive example is defined using local features, features
which express previous predictions, and a set of costs defined for each possible next state. The costs
are derived by rollouts: for each s′ ∈ m(s), the transition function is applied until an end state
s ∈ E is observed and a loss l(s) is computed. This vector of losses, one for each s′ ∈ m(s), forms
the vector of costs. Together with local features it is fed to the cost sensitive learning algorithm.
The cost-sensitive learning algorithm generates a classifier ci : Xs → S, then a new policy fi =
(1 − α)fi−1 + αci is defined using stochastic interpolation. In essence, with probability α ci is
used to define the transition while with probability 1−α fi−1 is used to define the transition matrix.
Since the probability of calling f∗ decreases exponentially, a fully learned policy is quickly found.

DAgger differs from Searn in two computationally helpful ways: it mixes datasets rather than poli-
cies and uses a loss function l′ defined on all states, so rollouts are not required. When a loss is only
defined for end states, a DAgger style algorithm can operate with rollouts.
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Algorithm 2 TDOLR(X)
1: s← a
2: while s 6∈ E do
3: Compute Xs from X and s
4: s← O(Xs)
5: end while
6: return LOSS(s)

The rollout versions of the previous algorithms require O(t2knp) where t is the average end state
depth (i.e. sequence length), k = |m(s)| is the number of next states (i.e. branching factor), n is the
number of distinct searches (i.e. sequences), and p is the number of data passes. Three computational
tricks: online learning [Collins, 2002, Bottou, 2011], memoization, and rollout collapse allow the
computational complexity to be reduced toO(tkn), similar to independent prediction. For example,
we can train a part-of-speech tagger 100 times faster than CRF++ [Kudo, 2005] which is unsurprising
since Viterbi decoding in a CRF is O(tk2). Surpringly we can do it with 6 lines of “user code,”
versus almost 1000.

We show that learning to search can be implemented with the library interface in section 3. This
provides a radical reduction in the coding complexity of solving new structured prediction problems
as discussed. We also radically reduce the computational complexity as discussed next in section 4,
then conduct experiments in section 5.

3 System Equivalences

Here we show the equivalence of a class of programs and search spaces. The practical implication
of this equivalence is that instead of specifying a search space, we can specify a program, which can
radically reduce the programming complexity of structured prediction.

Search spaces are defined in the introduction, so we must first define the set of programs that we
consider. Terminal Discrete Oracle Loss Reporting (TDOLR) programs:

1. Always terminate.

2. Takes as input any relevant feature information X .

3. Make zero or more calls to an oracle O : X ′ → Y which provides a discrete outcome.

4. Report a loss L on termination.

To show equivalence, we prove a theorem. This theorem holds for the case where the number of
choices is fixed in a search space (and, hence, m(s) is implicitly defined).

Theorem 1. For every TDOLR program there exist an equivalent search space and for every search
space there exists an equivalent TDOLR program.

The practical implication of this theorem is that instead of speicfying search spaces, we can specify
a TDOLR program (such as algorithm 1), and apply any learning to search algorithm such as Searn,
DAgger, or variants thereof.

Proof. A search space is defined by (a,E, S, l). We show there is a TDOLR program which can
simulate the search space in algorithm 3. This algorithm does a straightforward execution of the
search space, followed by reporting of the loss on termination. This completes the second claim.

For the first claim, we need to define, (a,E, S, l) given a TDOLR program such that the search
space can simulate the TDOLR program. At any point in the execution of TDOLR, we define an
equivalent state s = (O(X1), ..., O(Xn)) where n is the number of calls to the oracle. We define a
as the sequence of zero length, and we define E as the set of states after which TDOLR terminates.
For each s ∈ E we define l(s) as the loss reported on termination. This search space manifestly
outputs the same loss as the TDOLR program.
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Algorithm 3 LEARN(X)
1: T ← 0
2: ex← []
3: Define PREDICT(x, y) := { ex[++T]← x; return fi(x, y) }
4: Define SNAPSHOT(...) := RECORDSNAPSHOT(...)
5: RUN(X)
6: for t0 = 1 to T do
7: losses← []
8: for a0 = 1 to M(ex[t0]) do

9: Define PREDICT(...) :=

{
return a0 if t = t0
return fi(...) if t 6= t0

10: Define SNAPSHOT(...) :=

{
JUMPTO(t0) if t < t0
TRYFASTFORWARD(...) if t > t0
no op if t = t0

11: Define LOSS(val) := { losses[a0] += val }
12: RUN(X)
13: end for
14: Online update with cost-sensitive example (ex[t0], losses)
15: end for

4 Imperative Structured Prediction

The full learning algorithm (for a single structured input, X) is depicted in Algorithm 4. In lines 1–5,
an “initialization” pass of RUN is executed. RUN can generally be any TDOLR program as discussed
in appendix 3, with a specific example being algorithm 1. In this pass, predictions are made accord-
ing to the current policy, fi, and every time SNAPSHOT is called, the results are memoized for future
use (on the current example). Furthermore, the examples (feature vectors) encountered during pre-
diction are stored in ex, indexed by their position in the sequence (T).

The algorithm then initiates one-step deviations from this initial trajectory. For every time step,
(line 6), we generate a single cost-sensitive classification example; its features are ex[t0], and there
are M(ex[t0]) possible labels (=actions). For each action (line 8), we compute the cost of that action.
To do so, we execute RUN again (line 12) with a “tweaked” PREDICT that at a particular time-step
(t0) simply returns the perturbed action a0. Finally, the LOSS function simply accumulates the loss
for the query action. Finally, a cost-sensitive classification is generated (line 14) and fed into an
online learning algorithm.

When the learning-to-search algorithm is Searn, this implies a straightforward update of the next
policy. The situation with online DAgger is more subtle—in essence a dependence on the reference
policy must be preserved for many updates to achieve good performance. We do this using policy
interpolation (as in Searn) between the reference policy and learned policy.

Without any speed enhancements, each execution of RUN takes O(t) time, and we execute it tk+ 1
times, yielding an overall complexity ofO(kt2) per structured example. For comparison, structured
SVMs or CRFs with first order Markov dependencies run in O(k2t) time.

To improve this running time, we make two optimizations using the idea of SNAPSHOTs. Together,
they reduce the overall runtime to O(kt), when paths collapse frequently (this is tested empirically
in Section 6.1). These optimizations take advantage of the fact that most predictions only depend
on a small subset of previous predictions, not all of them. In particular, if the ith prediction only
depends on the i − 1st prediction, then there are at most tk unique predictions ever made.1 This
is what enables dynamic programming for sequences (the Viterbi algorithm). We capitalize on this
observation in a more generic way: memoization. A program is allowed to SNAPSHOT its state
before making a prediction. Because the SNAPSHOT encapsulates its entire state, we can efficiently
store that state together with relevant statistics in a hash table.

1We use tied randomness [Ng and Jordan, 2000] to ensure that for any time step, the same policy is called.
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4.1 Optimization 1: JumpTo

In Algorithm 4, suppose that when we execute RUN on line 12, we have t0 = T − 1. Naïvely,
one must execute T − 1 PREDICTs in order to reach the desired state at which we vary a0. This is
inefficient. Instead, assuming that RUN recorded a snapshot at time T − 1 during the initialization
(line 5), we simply restore that stored state the first time SNAPSHOT is called: the t < t0 condition
in line 10. Even when we cannot restore the state precisely to T − 1 (for instance, perhaps the most
recent snapshot was at T − 2), we can additionally memoize the previous results of PREDICT and
regurgitate those predictions. This alone savesO(td) time, where d is the time to make a prediction.

Correctness. In line 14, the learned policy changes. For policy mixing algorithms (like Searn),
this is fine and correctness is guaranteed. However, for data mixing algorithms (like DAgger),
this potentially changes fi, implying the memoized predictions may no longer be up-to-date so the
recorded snapshots may no longer be accurate. Thus, for DAgger-like algorithms, this optimization
is okay if the policy does not change much. We evaluate this empirically in Section 6.1. The next
section has the same correctness properties.

4.2 Optimization 2: TryFastForward

The second optimization is fast forwarding to the end of the sequence using TRYFASTFORWARD.
For example, suppose t0 = 2. After perturbing the action at time point 2 we have t > 2. Every
time SNAPSHOT is called, the snapshotted data might exactly match a previous snapshot. Suppose
at t = 3 it does not, because the perturbation at t = 2 cascaded and changed the prediction at t = 3.
But perhaps at t = 4 there is a perfect match (paths have collapsed). We remember that a match has
occurred and then at t = 5, we can “fast forward” to t = T because all subsequent predictions are
identical.

This intuitive explanation is correct, except for accumulating LOSS(...). If LOSS(...) is only declared
at the end of RUN, then we must execute T − t0 time steps making (possibly memoized) predictions.
However, for many problems, it is possible to declare loss early as with Hamming loss (= number
of incorrect predictions). There is no need to wait until the end of the sequence to declare a per-
sequence loss: one can declare it after every prediction, and have the total loss accumulate (hence
the “+=” on line 11). We generalize this notion slightly to that of a history-independent loss:
Definition 1 (History-independent loss). A loss function is history-independent at state s0 if, for any
final state e reachable from s0, and for any sequence s0s1s2 . . . si = e: it holds that LOSS(e) =
A(s0) +B(s1s2 . . . si), where B does not depend on any state before s1.

For example, Hamming loss is history-independent: A(s0) corresponds to Hamming loss up to and
including s0 and B(s1 . . . si) is the Hamming loss after s0.2

When the loss function being optimized is history-independent, we allow LOSS(...) to be declared
early, allowing an additional SNAPSHOT optimization. In the previous example, at time t = 4 the
snapshot matched. Suppose that at this time, a total loss of 2 had been accumulated (this corresponds
toA(. . .)). Then at time t = 5 we can immediately jump to the end of the sequence t← T , provided
that we’ve memoized the total loss incurred from t = 5 to t = T on this trajectory (this corresponds
to B(. . .)), which may be 0. The total cost for this a0 perturbation is then 2 + 0 = 2.

4.3 Overall Complexity

Suppose that the cost of calling the policy is d.3 Then the complexity of the unoptimized learning
function is O(t2kd). By adding the memoization optimizations only, and assuming paths collapse
after a constant number of steps, this drops toO(t2k+tkd). (The first term is from retrieving memo-
ized predictions, the second from executing the policy a constant number of times for each perturbed
sequence.) Adding the SNAPSHOT restoration in addition to the memoization, the complexity drops

2Any loss function that decomposes over structure, as required by structured SVMs, is guaranteed to also
be history-independent; the reverse is not true. Furthermore, when structured SVMs are run with a non-
decomposible loss function, their runtime becomes exponential in t. When our approach is used with a loss
function that’s not history-independent, our runtime increases by a factor of t.

3Because the policy is a multiclass classifier, d might hide a factor of k or log k.
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POS NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN

Pierre Vinken , 61 years old , will join the board as a nonexecutive director . . .

NER
LOC︷ ︸︸ ︷

Germany ’s rep to the

ORG︷ ︸︸ ︷
European Union ’s committee

PER︷ ︸︸ ︷
Werner Zwingmann said . . .

Figure 1: Example inputs (below, black) and desired outputs (above, blue) for part of speech tagging
task and named entity recognition task.

further to O(tkd). In comparison, a first order CRF or structured SVM for sequence labeling has a
complexity of O(tk2f), where f is the number of features and d ≈ fk or ≈ f log k depending on
the underlying classifier used.

5 Experimental Results

We conduct two experiments based on variants of the sequence labeling problem (Algorithm 1). The
first is a pure sequence labeling problem: Part of Speech tagging based on data from the Wall Street
Journal portion of the Penn Treebank. The second is a sequence chunking problem: named entity
recognition using data from the CoNLL 2003 dataset. See Figure 1 for example inputs and outputs
for these two tasks.

We use the following freely available systems/algorithms as points of comparison:

CRF++ The popular CRF++ toolkit [Kudo, 2005] for conditional random fields [Lafferty et al.,
2001], which implements both L-BFGS optimization for CRFs [Nash and Nocedal, 1991,
Malouf, 2002] as well as “structured MIRA” [Crammer and Singer, 2003, McDonald et al.,
2004].

CRF SGD A stochastic gradient descent conditional random field package [Bottou, 2011].
Structured Perceptron An implementation of the structured perceptron [Collins, 2002] due to

[Chang et al., 2013].
Structured SVM The cutting-plane implementation [Joachims et al., 2009] of the structured SVMs

[Tsochantaridis et al., 2004] for “HMM” problems.
Structured SVM (DEMI-DCD) A multicore algorithm for optimizing structured SVMs called DE-

coupled Model-update and Inference with Dual Coordinate Descent.
VW Search Our approach is implemented in the Vowpal Wabbit [Langford et al., 2007] toolkit on

top of a cost-sensitive classifier [Beygelzimer et al., 2005] that reduces to regression trained
with an online rule incorporating AdaGrad [Duchi et al., 2011], per-feature normalized up-
dates [Ross et al., 2013], and importance invariant updates [Karampatziakis and Langford,
2011].

VW Classification An unstructured baseline that predicts each label independently, using one-
against-all multiclass classification [Beygelzimer et al., 2005].

These approaches vary both objective function (CRF, MIRA, structured SVM, learning to search)
and optimization approach (L-BFGS, cutting plane, stochastic gradient descent, AdaGrad). All
implementations are in C/C++, except for the structured perceptron and DEMI-DCD (Java).

5.1 Methodology

Comparing different systems is challenging because one wishes to hold constant as many variables
as possible. In particular, we want to control for both features and hyperparameters. In general, if
a methodological decision cannot be made “fairly,” we made it in favor of competing approaches.

To control for features, we use the built-in feature template approach of CRF++ (duplicated in CRF
SGD) to generate features. The other approaches (Structured SVM, VW Search and VW Classifica-
tion) all use the features generated (offline) by CRF++. For each task, we tested six feature templates
and picked the one with best development performance using CRF++. The templates included neigh-
boring words and, in the case of NER, neighboring POS tags. However, because VW Search is also
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Training Heldout Test
Sents Toks Labels Features Unique Fts Sents Toks Sents Toks

POS 38k 912k 45 13,685k 629k 5.5k 132k 5.5k 130k
NER 15k 205k 7 8,592k 347k 3.5k 52k 3.6k 47k

Table 1: Basic statistics about the data sets used for part of speech (POS) tagging and named entity
recognition (NER).

able to generate features from its own templates, we also provide results for VW Search (own fts)
in which it uses its own, internal, feature template generation, which were tuned to maximize it’s
heldout performance on the most time-consuming run (4 passes) and include neighboring words
(and POS tags, for NER) and word prefixes/suffixes.4 In all cases we use first order Markov depen-
dencies, which lessens the speed advantage of search based structured prediction.

To control for hyperparameters, we first separated each system’s hyperparameters into two sets: (1)
those that affect termination condition and (2) those that otherwise affect model performance. When
available, we tune hyperparameters for (a) learning rate and (b) regularization strength5. Addition-
ally, we vary the termination conditions to sweep across different amounts of time spent training.
For each termination condition, we can compute results using either the default hyperparameters
or the tuned hyperparameters that achieved best performance on heldout data. We report both
conditions to give a sense of how sensitive each approach is to the setting of hyperparameters (the
amount of hyperparameter tuning directly affects effective training time).

One final confounding issue is that of parallelization. Of the baseline approaches, only CRF++
supports parallelization via multiple threads at training time. In our reported results, CRF++’s time
is the total CPU time (i.e., effectively using only one thread). Experimentally, we found that wall
clock time could be decreased by a factor of 1.8 by using 2 threads, a factor of 3 using 4 threads,
and a (plateaued) factor of 4 using 8 threads. This should be kept in mind when interpreting results.
DEMI-DCD (for structured SVMs) also must use multiple threads. To be as fair as possible, we
used 2 threads. Likewise, it can be sped up more using more threads [Chang et al., 2013]. VW
(Search and Classification) can also easily be parallelized using AllReduce [Agarwal et al., 2011].
We do not conduct experiments with this option here because none of our training times warranted
parallelization (a few minutes to train, max).

5.2 Task Specifics

Part of speech tagging for English is based on the Penn Treebank tagset that includes 45 discrete
labels for different parts of speech. The overall accuracy reported is Hamming accuracy (number
of tokens tagged correctly). This is a pure sequence labeling task. We use 912k tokens (words) of
training data and approximately 50k tokens of heldout data and test data. The CRF++ templates
generate 630k unique features for the training data; additional statistics are in Table 1.

Named entity recognition for English is based on the CoNLL 2003 dataset that includes four entity
types: Person, Organization, Location and Miscellaneous. We report accuracy as macro-averaged
F-measure over the correct identification and labeling of these entity spans (the standard evaluation
metric). In order to cast this chunking task as a sequence labeling task, we use the standard Begin-
In-Out (BIO) encoding, though some results suggest other encodings may be preferable [Ratinov
and Roth, 2009]. The example sentence from Figure 1 in this encoding is:

LOC︷ ︸︸ ︷
Germany ’s rep to the

ORG︷ ︸︸ ︷
European Union ’s committee

PER︷ ︸︸ ︷
Werner Zwingmann said . . .

B-LOC O O O O B-ORG I-ORG O O B-PER I-PER O

In our system, the only change made to the sequence labeling algorithm (Algorithm 1) is that I-x
may only follow B-x or I-x. We still optimize Hamming loss because macro-averaged F measure
does not decompose over individual sentences.
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Figure 2: Training time versus evaluation accuracy for part of speech tagging (left) and named
entity recognition (right). X-axis is in log scale. Different points correspond to different termination
criteria for training. Both figures use hyperparameters that were tuned (for accuracy) on the heldout
data. (Note: lines are curved due to log scale x-axis.)

5.3 Efficiency versus Accuracy

In Figure 2, we show trade-offs between training time (x-axis, log scaled) and prediction accuracy
(y-axis) for the six systems described previously. The left figure is for part of speech tagging (912k
training tokens) and the right figure is for named entity recognition (205k training tokens).

For POS tagging, the independent classifier is by far the fastest (trains in less than one minute) but its
performance peaks at 95% accuracy. Three other approaches are in roughly the same time/accuracy
tradeoff: VW Search, VW Search (own fts) and Structured Perceptron. All three can achieve very
good prediction accuracies in just a few minutes of training. CRF SGD takes about twice as long.
DEMI-DCD eventually achieves the same accuracy, but it takes a half hour. CRF++ is not competitive
(taking over five hours to even do as well as VW Classification). Structured SVM (cutting plane im-
plementation) looks promising, but runs out of memory before achieving competitive performance
(likely due to too many constraints).

For NER the story is a bit different. The independent classifiers are quite fast (a few seconds to train)
but are far from being competitive6. Here, the two variants of VW Search totally dominate.7. In this
case, Structured Perceptron, which did quite well on POS tagging, is no longer competitive and is
essentially dominated by CRF SGD (in the sense that it is faster for the same accuracy). The only
system coming close to VW Search’s performance is DEMI-DCD, although it’s performance flattens
out after a few minutes.8

To achieve the results in Figure 2 required fairly extensive hyperparameter tuning (on the order of 50
to 100 different runs for each system). To see the effects of hyperparameter tuning, we also ran each
system with the built-in hyperparameter options.9 The trends in the runs with default hyperparame-

4The exact templates used are provided in the supplementary materials.
5Precise details of hyperparameters tuned and their ranges is in the supplementary materials.
6When evaluating F measure for a system that may produce incoherent tag sequences, like “O I-LOC” we

replace any malpositioned I-x with B-x; of all heuristics we tried, this worked best.
7We verified the prediction performance with great care here—it is the first time we have observed learning

to search approaches significantly exceeding the prediction performance of other structured prediction tech-
niques when the feature information available is precisely the same.

8We also tried giving CRF SGD the features computed by VW Search (own fts) on both POS and NER.
On POS, its accuracy improved to 96.5—on par with VW Search (own fts)—with essentially the same speed.
On NER it’s performance decreased. For both tasks, clearly features matter. But which features matter is a
function of the approach being taken.

9The only exceptions is Structured SVMs, which do not have a default C value (we used C = 128 because
that setting won most often across all experiments).
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Figure 3: Training time versus evaluation accuracy for POS tagging (left) and NER (right). X-axis
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use default hyperparameters.
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Figure 4: Comparison of test-time efficiency of the different approaches in thousands of tokens per
second. For NER, this ranges from 5k tokens/sec (DEMI-DCD) to over a quarter million tokens/sec.
These numbers include feature computation time only for the two CRF approaches.

ters (Figure 3) show similar behavior to those with tuned, though some of the competing approaches
suffer significantly in prediction performance. Structured Perceptron has no hyperparameters.

6 Test-time Prediction Performance

In addition to training time, one might care about test time behavior. On NER, prediction times
varied from 5.3k tokens/second (DEMI-DCD and Structured Perceptron to around 20k (CRF SGD
and Structured SVM) to 100k (CRF++) to 220k (VW (own fts)) and 285k (VW). Although CRF SGD
and Structured Perceptron fared well in terms of training time, their test-time behavior is suboptimal.
When looking at POS tagging, the effect of theO(k2) dependence on the size of the label set further
increased the (relative) advantage of VW Search over the alternatives.

Figure 4 shows the speed at which the different systems can make predictions on raw text. Structured
SVMs and friends (DEMI-DCD and Structured Perceptron) are by far the slowest (NER: 14k tokens
per second), followed closely by CRF SGD (NER: 24k t/s). This is disappointing because CRF SGD
performed very well in terms of training efficiency. CRF++ achieves respectable test-time efficiency
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(NER: almost 100k t/s).10 VW Search using CRF++’s features is the fastest (NER: 285k t/s) but,
like Structured SVM, this is a bit misleading because it requires feature computation from CRF++ to
be run as a preprocessor. A fairer comparison is VW Search (own fts), which runs on (nearly) raw
text and achieves a speed of 218k t/s for NER.

One thing that is particularly obvious comparing the prediction speed for VW Search against the
other three approaches is the effect of the size of the label space. When the number of labels
increases from 9 (NER) to 45 (POS), the speed of VW Search is about halved. For the others, it is
cut down by as much as a factor of 8. This is a direct complexity argument. Prediction time for VW
Search is O(tkf) versus O(tk2f) for all other approaches.

Overall, we found our approach to achieve comparable or higher accuracy in as little or less time,
both with tuned hyperparameters and default hyperparameters. The closest competitor for POS
tagging was the Structured Perceptron (but that did poorly on NER); the closest competitor for NER
was CRF SGD (but that was several times slower on POS tagging).

6.1 Empirical evaluation of path-collapse

In Section 4, we discussed two approaches for computational improvements. First, memoization:
avoid re-predicting on the same input multiple times (which is fully general). Second, snapshot
restoration: to jump to an arbitrary desired position in the search space (which requires a history-
independent loss function). Both are effectively only when paths collapse frequently.

The effect of different optimizations (none, memoization alone, or memoization combined with
snapshot restoration) is shown below. Columns are internal loss, F measure on heldout data, number
of predictions made, time to train and one standard deviation of training time over 5 runs.

heldout heldout # training training
Optimization loss F-score predictions time
All 0.426 85.6% 1,722,173 1.24m ±0.16
Memoization 0.432 85.6% 1,724,957 1.76m ±0.09
None 0.431 85.4% 18,620,344 2.23m ±0.04

The above results show the effect of these optimizations on the best NER system we trained, which
achieved a test F score of 79.9% in 1.24m. In this table, we can see that memoization alone reduces
the number of predictions made by over 90%, with only a very small increase of 0.001 in loss on
the heldout data (the loss reported here is the internal average per-sequence Hamming loss, rather
than F measure). Recall that this optimization is only provably correct in Searn mode, not DAgger
mode as run here. The memoization reduces overall runtime by about 21% because not all time
is being spent making predictions. When the second optimization (snapshot jumps) is enabled, the
total number of predictions drops imperceptibly, but the runtime improves by another 30%, yielding
a total improvement of about 45% over the baseline. Note that the loss here actually goes down
slightly, perhaps due to a slightly less noisy cost function.

7 Relation to Probabilistic Programming

Probabilistic programming [Gordon et al., 2014] has been an active area of research for the past
decade or more. While our approach bears a family resemblace to the idea of probabilistic program-
ming, it differs in two key ways. First, we have not designed a new programming language. Instead
we have a three-function library. This is advantageous because it makes adoption easier. Moreover,
our library is in C/C++, which makes integration into existing code bases (relatively) easy. Second,
the abstract we focus on is that of prediction. In contrast, the typical abstraction for probabilistic
programming is distributions. We believe that prediction is a more natural abstraction for a lay
programmer to think about than probability distributions.

The closest work to ours is Factorie [McCallum et al., 2009]. Factorie is a domain specific language
embedded in Scala, and is essentially an embedded language for writing factor graphs. It compiles

10This suggests gains are possible by combining CRF++’s “decoder” and I/O system with CRF SGD’s opti-
mizer.

10



them into Scala, which in turn produces JVM code that can be run reasonably efficiently. Nonethe-
less, as far as we are aware, Factorie-based implementations of simple tasks like sequence labeling
are still less efficient than systems like CRF SGD. Factorie, more than other probabilistic program-
ming languages we are aware of, acts more like a library than a language; though it’s abstraction
is still distributions (more precisely: factor graphs). Another approach which takes the approach of
formulating a library is Infer.NET, from Minka et al. [2010]. Infer.NET is a library for construct-
ing probabilistic graphical models in a .NET programming framework. It supports approximate
inference methods for things like variational inference and message passing.

In the same spirit as Factorie of having a concise programmic method of specifying factors in a
Markov network are: Markov Logic Networks (MNLs) due to Richardson and Domingos [2006]
and Probabilistic Soft Logic (PSL) due to Kimmig et al. [2012]. Although neither of these was
derived specifically from the perspective of formulating factors in a conditional random field (or
hinge-loss Markov network), that is the net result. Neither of these is an embedded language: one
must write declarative code and provide data in an appropriate format, which makes it somewhat
difficult to use in complex systems. BLOG [Milch et al., 2007] falls in the same category, though
with a very different focus. Similarly, Dyna [Eisner et al., 2005] is a related declarative language
for specifying probabilistic dynamic programs which can be compiled into C++ (and then used as
library code inside another C++ program). All of these example have picked particular aspects of
the probabilistic modeling framework to focus on.

Beyond these examples, there are several approaches that essentially “reinvent” an existing pro-
gramming language to support probabilistic reasoning at the first order level. IBAL [Pfeffer, 2001]
derives from O’Caml; Church [Goodman et al., 2008] derives from LISP. IBAL uses a (highly opti-
mized) form of variable elimination for inference that takes strong advantage of the structure of the
program; Church uses MCMC techniques, coupled with a different type of structural reasoning to
improve efficiency.

It is worth noting that most of these approaches have a different goal than we have. Our goal is to
build a framework that allows a developer to solve a quite general, but still specific type of problem:
learning to solve sequencial decision-making problems (“learning to search”). The goal of (most)
probabilistic programming languages is to provide a flexible framework for specifying graphical
models and performing inference in those models. While these two goals are similar, they are
different enough that the minimalistic library approach we have provided is likely to be insufficient
for general graphical model inference.

8 Discussion

We have shown a new abstraction for a structured prediction library which achieves better accura-
cies than many widely used specialized software toolkits that are specialized to sequence labeling.11

Moreover, it achieves this with runtimes up to two orders of magnitude faster than competing ap-
proaches. Moreover, we achieve this with minimal programming effort on the part of the developer
who must implement RUN. Our sequence labeling implementation is 6 lines of code; compared
to: CRF SGD at 1068 LOC, CRF++ at 777 LOC and Structured SVM at 876 LOC.12 Somewhat sur-
prisingly, this is all possible through a very simple (three function) library interface which does not
require the development of an entirely new programming language. This is highly advantageous
as it allows very easy adoption. Moreover, since our library functions in a reduction stack, as base
classifiers and reductions for cost-sensitive classification improve, so does structured prediction per-
formance.

11It is worth noting that better accuracies have been reported in the literature for these two tasks, even without
using external data sources (e.g., unlabeled data or gazetteers). For instance, guided learning [Shen et al., 2007]
achieves an accuracy of 97.33% on POS tagging and Ratinov and Roth [2009] achieves an F-score of 85.57%
on NER.

12All LOC computations exclude lines of code for “base learning” algorithms and “optimizer” implemen-
tations: this is a measure of how much code has gone in to implementing the specific structured prediction
task (in this case: sequence labeling). The code complexity for alternatives come from implementing dynamic
programming; or for SVMs from the requirement for finding maximally violated constraints.
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Algorithm 4 SEQUENTIAL_SNAPSHOT_RUN(examples)
1: for i = 1 to LEN(examples) do
2: SNAPSHOT(i, &i) // snapshot or restore the example counter. First argument: snapshot id,

second argument: state to snapshot.
3: prediction← PREDICT(examples[i], examples[i].label) // make a prediction on the ith example
4: if output.good then
5: output « ’ ’ « prediction // if we should generate output, append our prediction
6: end if
7: end for

Algorithm 5 SEQUENTIAL_DETECTION_RUN(examples, false_negative_loss)
1: Let max_value = 1
2: for i = 1 to LEN(examples) do
3: max_value← MAX(max_value, examples[i].label)
4: end for
5: Let max_prediction = 1
6: for i = 1 to LEN(examples) do
7: SNAPSHOT(i, &i) // snapshot example counter
8: SNAPSHOT(i, &max_prediction) // snapshot max accumulator
9: max_prediction← MAX(max_prediction, PREDICT(examples[i], examples[i].label)) // maintain max

10: end for
11: if max_label > max_prediction then
12: LOSS(false_negative_loss) // The loss is asymmetric
13: else
14: if max_label < max_prediction then
15: LOSS(1)
16: else
17: LOSS(0)
18: end if
19: end if
20: if output.good then
21: output « max_prediction // if we should generate output, append our prediction
22: end if

A Example TDOLR programs

In this section, we show a few TDOLR programs which illustrate the ease and flexibility of pro-
gramming. The first is algorithm A which is a variant of algorithm 1 that enables the snapshotting
optimization.

Algorithm A is for a sequential detection task where the goal is to detect whether or not a sequence
contains some rare element. This illustrates outputs of lengths other than the number of examples,
explicit loss functions, and a slightly less trivial use of snapshot.

B Hardware Used

All timing results were obtained on the same machine with the following configuration. Nothing
else was run on this machine concurrently:

2 * Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz
6144 KB cache
8 GB RAM, 4 GB Swap
Red Hat Enterprise Linux Workstation release 6.5 (Santiago)
Linux 2.6.32-431.17.1.el6.x86_64 #1 SMP

from Fri Apr 11 17:27:00 EDT 2014 x86_64 x86_64 x86_64 GNU/Linux

C Software Used

The precise software versions used for comparison are:
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• Vowpal Wabbit version 7.6.1, commit 57deef6d2503ee90836ce5a73f03b971e04e1680

• CRF++ version 0.58

• crfsgd version 2.0

• svm_hmm_learn version 3.10, 14.08.08
includes SVM-struct V3.10 for learning complex outputs, 14.08.08
includes SVM-light V6.20 quadratic optimizer, 14.08.08

D Hyperparameters Tuned

The hyperparameters tuned and the values we considered for each system are:

CRF++

termination parameters:
number of passes (--max_iter) { 2, 4, 8, 16, 32, 64, 128 }
termination criteria (--eta) 0.000000000001 (to prevent termination)

tuned hyperparameters (default is *):
learning algorithm (--algorithm) { CRF*, MIRA }
cost parameter (--cost) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }

CRF SGD

termination parameters:
number of passes (-r) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
regularization parameter (-c) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }
learning rate (-s) { auto*, 0.1, 0.2, 0.5, 1, 2, 5 }

Structured SVM

termination parameters:
epsilon tolerance (-e) { 4, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 }

tuned hyperparameters (default is *):
regularization parameter (-c) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }

Structured Perceptron

termination parameters:
number of passes (MAX_NUM_ITER) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
NONE

Structured SVM (DEMI-DCD)

termination parameters:
number of passes (MAX_NUM_ITER) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
regularization (C_FOR_STRUCTURE) { 0.01, 0.05, 0.1*, 0.5, 1.0 }

VW Search

termination parameters:
number of passes (--passes) { 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 4 }
(note: a number of passes < 1 means that we perform one full pass, but
_subsample_ the training positions for each sequence at the given rate)

tuned hyperparameters (default is *):
base classifier { csoaa*, wap }
interpolation rate 10^{-10, -9, -8, -7, -6 }

VW Classifier

termination parameters:
number of passes (--passes) { 1, 2, 4 }

tuned hyperparameters (default is *):
learning rate (-l) { 0.25, 0.5*, 1.0 }
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E Templates Used

For part of speech tagging (CRF++):

U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]

For named entity recognition (CRF++):

U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]

U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]
U13:%x[1,1]
U14:%x[2,1]

U15:%x[-2,1]/%x[-1,1]
U16:%x[-1,1]/%x[0,1]
U17:%x[0,1]/%x[1,1]
U18:%x[1,1]/%x[2,1]

(where words are in position 0 and POS is in 1)

For VW Search (own fts) on POS Tagging:

--search_neighbor_features -1:w,1:w
--affix -2w,+2w

(where words are in namespace "w")

For VW Search (own fts) on NER:

--search_neighbor_features -2:w,-1:w,1:w,2:w,-1:p,1:p
--affix -1w

(where words are in namespace "w" and POS is in "p")
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