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Abstract
Action plays a central role in our lives and environments, yet most Computer Vision methods
do not explicitly model action. In this chapter we outline an action-centric framework which
spans multiple time scales and levels of abstraction, producing both action and scene inter-
pretations constrained towards action consistency. At the lower level of the visual hierarchy
we detail affordances - object characteristics which afford themselves to different actions.
At mid-levels we model individual actions, and at higher levels we model activities through
leveraging knowledge and longer term temporal relations. We emphasize the use of grasp
characteristics, geometry, ontologies, and physics based constraints for generalizing to new
scenes. Such explicit representations avoid over-training on appearance characteristics. To
integrate signal based perception with symbolic knowledge we align vectorized knowledge
with visual features. We finish with a discussion on action and activity understanding, and
discuss implications for future work.

Keywords: affordances, actions, activities, action-based representations, vector space
embeddings

Chapter points
• An action-centric framework for scene and activity interpretation.
• Studies on object affordances and functionalities and their use in the context of

action recognition and robot learning.
• Studies on activity recognition as an interplay between cognition and perception.
• The merging of vision and language through embedding spaces.
• Discussion on the future of action and activity understanding through the lens of

the action-centric framework.

1. Introduction

The purpose of Computer Vision (CV) is to produce interpretations of images and
video which are of use to humans. Action is important to model because it is a pri-
mary means through which others and ourselves interact with our environment, and it
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is largely through interaction that the environment becomes meaningful. Because of
the centrality of action in what humans find meaningful in their environment, humans
structure their environments around action. So to fully understand human environ-
ments requires an understanding of their relation to actual and possible action. Most
contemporary CV methods are not action based in their approach - in this chapter we
present methods and frameworks which in modeling the observed scene employ an
action based or functional interpretation.

The centering of action in perception aligns with embodied cognition theories [67,
5], which argue that many aspects of cognition take their origin in motor behavior and
action. In a computational approach we can leverage action based representation at
multiple time scales for a hierarchical approach to scene understanding. At the early
hierarchical levels are static components, the objects, humans, and simple movements
of the limbs. These are then combined into increasingly more complex notions that
involve interactions between scene components. Temporally actions chain together in
structured ways to constitute activities.

The use of action based representations in computational perception approaches
is challenging. The classic approach to CV is to recognize scene constituents based
purely on their appearance. However, the aspects of the scene related to action are
often semantic and relational rather than appearance based in nature. To better model
interactions, more complicated architectures are required that not only model visual
appearance but which leverage a more cognitive understanding of the intermediate
semantic and relational structure of action in the input.

Classic end-to-end visual learning becomes intractable with larger input state spaces,
as are found with video and action of increasing duration. This is because the variabil-
ity in visual appearance increases, presenting challenges both in data and in modeling.
In order to scale, a more cognitive approach which models not the appearance but the
action structure of the activity is necessary.

A primary advantage of the action based approach to scene interpretation is gener-
alization, i.e., the ability to recognize scene quantities beyond those visually observed
in the training set. For example, if we can recognize what makes an object usable for
cutting, this will allow us to recognize new kinds of cutting tools, such as an Alaskan
ulu, although this object has not been in our training set. Similarly, if we can inter-
pret an observed human activity by understanding the interaction of constituents and
by understanding the underlying goal, we can be more robust. Individual constituents
may be difficult to recognize because of occlusions, size, unfavorable viewing angles
or variability in visual appearance and movements, but reasoning about the cognitive
plausibility of the activity can allow the recovering from classification errors. Further-
more, action modeling provides the potential to predict far into the future.

This chapter presents CV learning-based approaches and concepts centered on ac-
tion. We now outline in brief the contents of the rest of this chapter.
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Learning for action-based scene understanding 3

Section 2 covers affordances - a variety of action-based object description. Affor-
dances have been of great interest to Robot Vision. But also classic, non-embodied
CV can benefit from the use of affordances. They reflect how the different objects in
a scene can be used, and they are an essential component for action understanding.
They carry information on the possible co-occurrences of observed objects, humans,
and other scene constituents. Section 2 covers the best known CV works on the topic,
which include early studies that reason about affordances via geometric measurements,
studies that learn affordance maps using algorithms for object detection and semantic
segmentation on depth and geometric feature maps, and studies that combine affor-
dances with other constituents for action recognition.

Section 3 is devoted primarily to our own work on understanding manipulation ac-
tivities. We argue that activity interpretation should be implemented as a continuous
interplay between reasoning and perception processes. Activities are modeled hier-
archically. At the lower level are modules for objects, actions, spatial relations, etc,
which are merged at the higher level via a grammatical formulation. The grammar and
selected modules supporting an action-driven understanding are described.

Section 4 focuses on methods that can achieve a tighter integration of appearance
and semantic and relational constraints. We consider the integration within the context
of the task of Zero-Shot Learning. We cover first simple methods involving engineered
attributes, and proceed through more sophisticated approaches involving merging lan-
guage and vision through shared embedding spaces, capturing semantic and relational
information.

This is followed by a discussion on how these concepts could be applied to action
and activity understanding in Section 5, and Conclusions in Section 6.

2. Affordances of Objects

Psychologist James Gibson coined the term “affordance” [21], referring to the action
possibilities that an object presents based on humans’ (or animals’) physical capabil-
ities. For instance, a knife affords “cutting,” “stabbing,” “poking,” “slicing,” “throw-
ing,” etc. (to a human). The notion of affordance has recently received great interest in
the cognitive science and neuroscience literature, strengthened by brain imaging evi-
dence that showed that observing tools activates motor areas of the brain (for a review
see [39]). The concept has been studied in different areas, including developmen-
tal psychology, industrial design, sport science, and human computer interaction, and
there have been many interpretations and discussions on its meaning. Most distinguish
between “affordance” and “function,” with the former meaning properties of objects
and the latter referring to the role that an object plays in satisfying some purpose. For
example the handle of a cup affords “grasping,” and its interior “containing,” while an
electricity plug supports the function to “powering kitchen appliances,” or “charging
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devices,” and a water faucet supports the function of “getting drinking water.” How-
ever, a formal definition does not exist.

In this section, we first motivate the use of affordances in CV (Sec. 2.1). Then dif-
ferent works from the literature are discussed: Sec. 2.2 is about the earlier approaches,
which selected geometric features computed from 3D data to classify affordances of
chairs or everyday objects. Sec. 2.3 describes works on learning affordances of objects
and their parts using CV recognition algorithms applied to depth data or geometric
feature maps. Sec. 2.4 describes appproaches using affordances together with other
detectors for scene and action recognition, and approaches that learn affordances for
embodied agents. Sec. 2.5 concludes with suggestions for future work.

2.1. Why Would Computer Vision be Interested in Affordances?
Looking at objects and scene surfaces from the viewpoint of affordances provides in-
formation for visual scene interpretation that is complimentary to the classic cues and
aids in robustness and generalizability of learned representations. This information is
about the ”actionability” that the scene presents at multiple spatial and temporal scales
relating to objects, groups of objects, and the complete spatio-temporal scene. There-
fore affordances provide information and constraints for scene understanding both in
the present and in projecting into the future - thus aiding recognition in addition to
prediction, as detailed next.

Models of affordances learned over some objects are transferable to novel object
categories. I.e., if our recognition modules can recognize an affordance, they can de-
tect it in objects never seen before, even in a stone that has the right properties. This is
because how an object is used depends on physical properites such as its shape, size,
material, and weight [27], and we can design processes that pick up these physical
properties from images, depth maps, and other modalities, independent of previously
encountered object categories. In contrast, classifying objects in images in a con-
ventional end-to-end fashion does not give insight into how visual features such as
affordances relate to the object.

Affordances provide valuable information to visual object understanding, such as
in understanding the ”valid functionality” of objects [25] - e.g., an inverted cup cannot
be used to pour into, or similarly a broken chair cannot be used for sitting [22]. An-
other example is the sub-categorization of the classical visual object categories, such
as differentiating between chairs for different uses [61].

Since affordances represent the possible actions that can be performed with an ob-
ject, they carry valuable information for predicting future actions [33, 53] - because
actions relate to each other over time. For example, a bread knife as a whole presents
affordances (“graspable”, “cut with”) allowing the action of “slicing bread,” and slic-
ing bread is part of the activity “preparing the bread basket” - an activity consisting
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of multiple actions extended through time with temporal dependencies. Knowledge of
the possibility of “slicing bread” informs possible subsequent actions such as putting
the basket on the table. To summarize, affordances and functionalities at the object
level also contain information about possible object interactions, spatio-temporal rela-
tions, and activities at longer temporal scales. Modeling these relations to get explicit
or implicit relations at multiple time scales and semantic levels of abstraction has value
for the task of activity understanding.

The concept of affordances has been central to Robot Vision and to research along
the Active Vision Paradigm [4]. The latter advocates that the vision of systems should
not be considered a passive process. Biological systems “move their eyes to select
what they see” in an active process. Similarly, artificial embodied systems should be
able to change the viewpoint of their cameras in order to select what information to
gather from their environment, as different viewpoints present different information.
Going further, the paradigm also suggests that embodied systems should avoid em-
ploying heavy general-purpose vision processes for all purposes, and only process the
information necessary to solve the task at hand [15]. Therefore, when a robot or ar-
tificial system interacts with objects, often it is more effective to compute what an
object can be used for - i.e., compute its affordance and how it can be used - rather
than to classify the object according to our language representations. Thus, while the
advantages of affordances discussed in this section apply to the classic passive CV
formulation, where there is no agent interacting with the environment, a great portion
of the research on affordances focuses on Robot Vision.

2.2. Early Affordance Work
Affordances relate to actions. As a consequence they are also grounded in action
related physical quantities. For example, an object to sit on or an object to pour into
have certain physical quantities, e.g., a certain shape, size, or certain material, etc. All
of the earlier approaches utilized such explicit physically meaningful representations
in affordance recognition modules.

The first studies used shape and geometry. Stark and Bowyer [61] proposed the
first affordance-based approach to object recognition using 3D CAD models as input.
A knowledge-graph, similar to a decision tree, was created to classify chairs and sub-
categories of chairs (e.g., conventional chair, balans chair, high chair, lounge chair),
where the leaves of this graph were procedures for classification of geometric features.
These features included relative orientation between surfaces, object dimension, sta-
bility, and proximity of surfaces.

Grabner et al. [22] detected surfaces that afford “sitting,” by checking the geometry
of a 3D human skeleton model in a sitting pose against the object’s geometry. Their
features include distance and the intersection of the human’s mesh with the object’s
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mesh. The detector was evaluated on Google Warehouse models as well as real 3D
data collected with a time of flight camera. For best performance the method was com-
bined with an image based classifier. Similarly, Gupta et al. [24] modeled affordances
in 3D indoor scenes by detecting the regions of the space which allow a human to use
it for one of three functions: “laying down,” “sitting upright,” and “sitting reclined.”
Like [24], they also used constraints based on the occupied 3D space and the contact
with a human skeleton. However, their method can take as input images, from which
it first derives 3D geometry via learning-based regression methods such as [26, 35].

Hermans et al. [27] learned the affordances of everyday objects via intermediate
representations that encode visual and physical characteristics. Visual characteris-
tics included color, discrete shape, and texture, and physical characteristics included
weight and size. Standard classifiers were used in the pipeline, and the approach was
demonstrated on seven affordance classes in the robotics domain.

2.3. Affordance Detection, Classification, and Segmentation
The problem of recognizing affordances associated with objects and scene surfaces
is conceptually similar to the problem of object recognition. A number of recent ap-
proaches have used tools from object detection, classification, segmentation, and se-
mantic labeling for affordance localization and recognition. However, these techniques
usually were not applied to images, but instead either to RGBD data or to feature maps
computed from depth data. This section discusses a few such approaches.

2.3.1. Affordance Detection from Geometric Features
This section describes the work of Myers et al. [46], the first approach applying mod-
ern machine learning tools on geometric features. The section details the approach to
affordance detection and discusses computational implications.

The focus of the study were tools used in everyday workspaces, and specifically
the detection of tool parts associated with different affordances. A dataset (the RGB-D
Part Affordance Dataset) of 105 kitchen, workshop and garden tools was collected.
Objects were put on a revolving turntable and recorded with a Kinect camera from a
full 360◦ field of view, about 300 frames for each object, out of which 10,000 RGB-D
images were annotated at the pixel level. Fig. 0.1 shows example objects for five of
the seven affordances, along with the annotation for one of the objects. It should be
noted that affordance is associated with surfaces, for example the inner surface of a
cup is “contain” while the outer surface is “wrap-grasp.”

From the raw depth data, shape features were computed patchwise, specifically,
the surface normal, principal curvature, shape index, and the HoG-Depth descrip-
tor (histogram of depth gradients). Using these features as input, two classification
approaches were proposed: first, a Structured Random Forest (SRF), which creates
point-wise classification; and second the S-HMP (Superpixel Hierarchical Matching
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Figure 0.1 Sample objects from the RGB-D Part Affordance Dataset, and an example of a full
frame image with hand-labeled ground truth (at the lower right). The ground truth labels include
rankings for multiple affordances (from [46]).

Pursuit) algorithm [6]. The latter works by first oversegmenting the RGB-D image
into superpixels. Then, using a dictionary learning technique, the shape features are
sparsely encoded at multiple scales per superpixel. Finally, the features are max-
pooled over the super-pixels and classified via an SVM. Example results are shown
in Fig. 0.2 for both the S-HMP and the SRF method method, where the gray value
encodes the probability for the affordance assignment.

There are two computational aspects to the approach discussed above, that deserve
special attention. First, sometimes overlooked, the assignment of affordances to ob-
ject surfaces in general may not be unique. The same object part may be used for
multiple purposes. Assigning affordances is thus a multi-class labeling problem. In
[46] this issue was addressed by having multiple annotators rank how close other af-
fordances were with respect to the essential affordance, from which an ordinal scale
for affordance assignment at testing was derived.

Second, a main advantage of the approach is its good generalization to new objects
and surfaces. Referring to Figure 0.2 (Bottom), one can see that the bottom of a cup is
classified with the affordance “Pounding” and the edge of spatula with the affordance
“Cutting.” This is because the shape of these objects indicates these properties. How-
ever, shape by itself would not be sufficient for classification in a practical system.
One would have to add additional properties, the most obvious is material. This would
allow to decide that a paper cup cannot be used for pounding, or an object with a soft
edge cannot be used for cutting.

2.3.2. Semantic Segmentation, and Classification from Images
Many of the works that followed [46] employed neural network approaches using
geometric feature maps as input. Affordance detection at pixel level, thus became
a semantic labeling problem. However, different from [46], these approaches often
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Figure 0.2 (Top) Results of affordance detection across three input RGB-D frames using the S-
HMP and and the SRF method over a cluttered sequence for the target affordances “contain” and
“wrap-grasp”. Brighter means higher probability of the target affordance. (from [46]) (Bottom)
Demonstration of the generalization of the method for new objects for the SRF-method: the
bottom of the cup was detected with high probability for “Pounding” and the edge of the spatula
with high probability for “Cutting.”

used 2D images as input. In a preprocessing step, depth maps or feature maps were
regressed via neural networks. Furthermore, some considered natural images with
multiple objects, and employed object detection algorithms to localize the objects,
before assigning affordances.

For example, Nguyen et al. [47] created a dataset with ten object categories and
nine affordance categories from the household and workshop domain. It consists of
both RGB-D scans and natural images (a subset of ImageNet [55]) - for the latter
depth maps were created using using the CNN approach of [37]. The images were
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annotated with bounding boxes and affordances at the pixel level. The paper’s method
first applied an object detector, then within each region computed affordances using
a modified VGG-16 network trained for semantic labeling, and finally the affordance
values were post-processed with a CRF.

Srikantha and Gall [60] used the dataset of Koppula and Saxena [32], which fea-
tures rich contextual information in terms of human-object interactions, and curated it
with pixel-level affordance annotations. The work explored different levels of super-
vision for semantic segmentation, using a deep convolutional neural network within
an expectation maximization framework to take advantage of weakly labeled data like
image level annotations or keypoint annotations, as well as human pose as context.

Roy and Todorovic [54] worked with the indoor scenes from the NYU dataset [58].
Their approach first infers the depth map, surface normals, and coarse-level semantic
segmentation using a multi-scale CNN as mid-level cues, which are then jointly fed as
inputs to another multi-scale CNN for prediction of the affordance maps.

Ye et al. [77] designed a method for localizing and recognizing functional areas
in indoor scenes. An ontology, as shown in Fig. 0.3 (Left), was defined to categorize
image regions according to their affordance or functionality. Categories include: “open
with spherical grasp” (such as a door knob), “open with wrap grasp or drag to open”
(such as an oven door), “turn on electricty” (such as light switch), etc., as shown in
the second last column of the Figure. The dataset has 500 images featuring kitchens
from the SUN dataset [71], which were curated. The method first runs a CCN-based
detector trained to detect the region and then a classifier based on a VGG architecture.
Fig.0.3 (Right) shows example results.

Figure 0.3 (Left) Functionality Ontology (Right) Sample detection results (from [77])
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2.4. Affordance in the Context of Action Recognition and Robot
Learning

In this section we highlight a few approaches that used affordances in conjunction with
other quantities for scene and action understanding. We then discuss approaches that
addressed the learning of affordances by robots.

2.4.1. Action Recognition
Affordances encode features of the possible interactions a human can have with the
environment. Thus, naturally they provide a glue between different quantities in the
scene in space-time, such as between different objects, or between objects and actions.
A number of studies have built on this idea, and used affordance relationships as a
context for activity and action recognition and prediction. These methods employed
various models to encode relations between the different quantities involved, including
CRFs, MRFs, And-Or-Graphs, and probabilistic state automata.

Kjellström et al. [30] investigated the problem of learning action-object interac-
tions from demonstration, which they define as affordances. Hand actions were clas-
sified in the context of the manipulated objects using a CRF that gets as input object
and hand features. Objects were modeled using hand-crafted features, and actions
were modeled by the hand’s global velocity, orientation, and joint angles, which were
computed from the output of a 3D hand reconstruction and tracking method.

Koppula et al. [34] considered the problem of learning sequences of subactivties
performed by humans and their interactions with objects. They jointly modeled the
human activities and object affordances in a Markov Random Field where the nodes
represent objects and sub-activities, and the edges represent the relationships between
object affordances, their relations with sub-activities, and their evolution over time.
Affordance-subactivity relations were computed from relative geometric features be-
tween the object and the human’s skeletal joints, and affordance relations between
objects from spatial relations. The description was demonstrated for a PR2 robot in
performing assistive tasks. In [33], Koppula and Saxena added to the Markov Model
also possible future states in order to predict the next action.

Qi et al.[52] used a Spatial-Temporal And-Or Graph (ST-AOG) to represent the
structure of activities and predict future actions in RGBD video input. Their model
is hierarchical: sub-activities are modeled by the human action, the objects, and their
affordances in spatial graphs, and a stochastic grammar defined over the sub-activities
encodes the activity. Dutta and Zielinska [11] also considered the problem of predict-
ing the next action based on object affordances and human interaction. They employed
spatio-temporal based probabilistic state automata to model the interactions. In addi-
tion to the action class, they also computed the possible action trajectory. Depending
on where an object is relative to the human it has different affordances, and depending
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on the affordance, its orientation and distance to the possible action trajectories were
encoded as heatmaps.

2.4.2. Affordance Learning in Robot Vision
Affordance has been a central concept in the field of neurorobotics, which aims to un-
derstand the cognition of a system whose body is embedded in the environment. In
this research, robots acquire increasingly more complex skills using perception and
interaction with the environment. Through interaction robots learn affordances, and
build upon these hierarchically an understanding of actions, activities and the envi-
ronment. This research in developmental robotics was enabled by the development of
robotic platforms, best known among them, the humanoid robot, iCub [40].

In [17] the authors discussed three broad stages in the development of a robot:
first learning a body image, second learning the interactions with external objects, and
third learning to interpret object-object interactions. Affordances are central to the
latter two stages. The humanoid robot through pushing and pulling actions in different
directions learned to interact, and by observing affected objects’ movements learned
affordances, such as whether a spherical object is rollable and a cuboid is slide-able.
Finally, the robot also learned to mimick an observed action.

Similarly, the authors of [45] defined the three main stages in the architecture of
a developing humanoid robot as sensory–motor coordination, world interaction, and
imitation. Affordances play a central role for world interactions. In this approach, the
system started with basic vision and motor skills from which more complex vision
and motor skill were acquired using clustering algorithms. Then, during interaction,
effects were observed using perception, such as the changes in object position, veloc-
ity, and tactile sensing. A Bayesian networks was used to learn affordances, which in
this case were encoded as probabilistic relations between actions and percepts (object
features and effects). The system was demonstrated to imitate the actions of humans
by performing movements with similar effect.

Ugur et al. [65] also demonstrated a robot learning object affordances through in-
teraction and self-observation. In a first step the robot discovered commonalities in
its action-effect experiences by discovering effect categories. Building upon these, in
a second step, affordance predictors for different behaviors were obtained by learning
the mapping from the object features to the effect categories. Ugur and Piater [66]
went a step further and studied mechanisms that produce hierarchical structuring of
affordance learning tasks. Guided by intrinsic motivation, the robot started with easy
tasks, and building on its knowledge of interactions progressively learned more com-
plex tasks by selecting to explore the object and action most different from previously
explored ones. For the experiments the robot could compute the visual features of ob-
ject dimension, surface patch shape, and surface normals, and its actions were poking
from three different directions and stacking. In earlier stages it explored the poking
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actions to observe their effects on single objects. Building upon these, it then explored
in a second stage the stacking of two objects and resulting effects.

2.5. Discussion on Affordance Learning
This section discussed approaches to affordance learning, many of which fall into the
domain of Robot Vision and have been conducted with few examples and limited
amounts of data. So far, deep learning approaches have not been much used for affor-
dance understanding. The major reason is the lack of large annotated datasets in this
domain, necessary for deep learning.

However, we expect that as research shifts away from supervised to unsupervised
and self-supervised approaches, we will see learning approaches building on the con-
cept of affordances and observed interactions between humans and objects. This will
be facilitated by datasets, such as the EPIC Kitchens dataset, which features a variety
of manipulation actions in natural scenes [8].

Affordances and functionalities at the object level also encode information about
possible object interactions, spatio-temporal relations and possible activities at longer
temporal scales. We have discussed in Section 2.4 approaches using affordances for
action modeling. However, in future work, we could model these relations to get
explicit or implicit relations at longer time scales for the problem of activity under-
standing, the topic of Section 3.

Finally, when creating mappings from perception to action for robot learning, we
may ground them in affordances. Humans can learn manipulation actions using their
perception only. When we see somebody performing actions with a tool unfamiliar
to us we can understand the tool’s affordance and perform the same action. Similarly,
we could approach robot motor learning using perception and action in a tight loop,
grounding them in affordances, something that has not yet been done. The robot would
learn the task by observing the action and affordances and issuing commands (based on
its existing skill set constrained by affordances) to generate the action approximating
the observed one, and then adapt gradually to improve performance. The suggested
research tasks then amount to developing self-supervised learning and reinforcement-
learning approaches grounded in affordance-based representations.

3. Functional Parsing of Manipulation Actions

This section describes work – largely from our group – on the interpretation of ma-
nipulation activities. Inspired by the embodied cognition paradigm [67], this work
considers the understanding of human activities a process that involves perception,
cognition, and the motor system. The major components are a formalism to com-
bine the different modalities, and CV modules for obtaining semantically meaningful
descriptors of action.
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3.1. The Active Interplay between Cognition and Perception
Understanding human actions and activities is the most challenging task currently
studied in CV. It is not a task of vision only. Humans can understand what others are
doing, because they have models of actions and activities. They understand the goals
of actions, and this allows them to interpret their observations despite the large varia-
tions in which actions can be executed and variations in visual conditions. Knowledge
of some form comes into the interpretation process quite early.

We observe that human behavior is active and exploratory. We continuously shift
our gaze to different locations in the scene. We recognize objects and actions and
this in turn leads us to fixate at new locations. In this process, perception continu-
ously interacts with cognition at different levels of abstraction: to guide attention, to
make predictions, to constrain the search space for recognition, and to reason over
what is being perceived. We call this interaction between perception and higher level
processes the Cognitive Dialogue [2], as it amounts to an iteration of questions and
answers, with the cognitive or linguistic processes asking questions about the what
and where of quantities in the scene, and the visual processes performing localization,
detection, recognition, and reconstruction. A possible simple way to selecting the next
question would be by using information-theoretic criteria [78].

The reasoning can be implemented through knowledge-based engineering [1] or
the use of language. There has been much interest in CV to introduce additional
higher-level knowledge about image relationships into the interpretation process. While
many studies get this additional information from captions or accompanying text, oth-
ers (as discussed in Section 4) use advanced language processing to obtain additional
high level information. In current research, most commonly, the Word2vec space [41]
(see Sec. 4.3) is used as language representation, which encodes similarity about lin-
guistic concepts. Alternatively, one could use older, hand-crafted resources encod-
ing lexical semantics, for example the Word-Net database [42], which relates words
through synonymy (words having the same meaning, like “argue” and “contend”) and
hypernymy (“is–a” relationships, as between “car” and “vehicle”), among many oth-
ers. Verbnet [56], which organizes verb classes, is particularly interesting for action
understanding.

3.2. Grammars of Action
Various mechanisms have been used to encode relationships between the different se-
mantic concepts, that is between actors, objects, verbs, spatio-temporal relations, and
attributes. Section 2, discussed the use of and-or-graphs and Markov models. Others
include Markov Logic Networks [64], and planning tools [23]. In this section we de-
scribe work on grammars, which can capture the composition of observed activities as
sequences of scene constituents, and their recursive structure.
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The main motivation for the use of grammars originates from the idea that actions
observed in a video have syntactic structure. By considering the goal of actions, the
video can be broken into meaningful segments, and these segments together can be
organized in the form of a simple grammar. Thus, interpreting the action that is tak-
ing place in a video is like understanding a sentence that we read or hear. To parse
the video into the primitive actions that constitute complex tasks, the segments of the
video are mapped to particular symbols involving objects, tools, movement, and spa-
tial relations. Importantly, the action grammar temporally segments a video at contact,
that is, when the hand touches or releases an object, or objects merge or separate. At
these points in time a new sub-action starts. In applying the grammar for the analysis
of a video, a parse tree is produced, which we call the activity tree. Figure 0.4 illus-
trates the concept. From a video recording of a person performing the activity “cutting
a plank,” a graph is created, in which nodes of hands, objects, and tools merge into a
common node, whenever they touch, or nodes split when the objects and hands sep-
arate. Referring to the figure, to compute the quantities involved, different processes
(shown in the four sub-areas of the video frames) extract the human’s body, the hands,
objects, and geometric relations.

Figure 0.4 Illustration of activity description. The camera monitored a person cutting a plank.
Four parallel processes computed essential components: (left up) detection of the hand and
classification of the grasp type, (right up) gross motion via skeleton fitting, (left down) segmen-
tation of the object, (right down) 3D shape description of the scene.

We now discuss several grammar approaches in Section 3.2.1, and then discuss
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in Section 3.2.2 whether such grammar representations are sufficiently expressive to
capture action and activity structure, and sufficiently parsimonious to be preferred over
other representations.

3.2.1. Different Implementations of the Grammar
The descriptions are based on context-free grammars, originally introduced in [50].
Summers-Stay et al. [62] implemented the idea for parsing assembly actions from
RGBD video using only one symbol for all actions, and Yang et al. [75] enhanced the
description introducing grasp into the description and differentiating hand-to-object
contact and object-to-object contact. The grammar describes actions at a level of ab-
straction that is useful for both video interpretation and robot execution. In [76] this
was demonstrated with some examples. By automatically parsing videos that feature
cooking instructions from the Youcook dataset [9], actions were parsed, which then
were performed by a Baxter robot equipped with the necessary motion capabilities.

Abstract descriptions of actions/verbs are necessary to achieve generalization, and
perform what is called in the current terminology, few-shot learning or zero-shot learn-
ing (see Section 4). The basic action grammar reduces the description of actions to
only the sequence of ”touching relations,” that is when the hand touches an object, two
objects touch, the hand releases an object, or two objects or pieces of a single object
separate [10].

Wörgötter et al. explore this concept to formulate an ontology [68] considering
one-handed actions. At the first level, actions are categorized according to the se-
quence of relations that the hand and one or two objects can have, into six classes,
which are: rearrange, destroy, break, take-down, hide, construct. From there they it-
erate possible actions, and they come up with about 30 fundamental manipulations.
Yang et al. [73] proposed a related concept. They meta-classified actions according
to the consequence an action has on an object, that is, what happens geometrically or
topologically to an object. They proposed six categories – divide an object, merge two
parts, transfer an object, deform an object, object appears, object disappears from the
scene – and they also provided algorithms that combine tracking with segmentation to
detect topological changes to detect the essential events in video.

3.2.2. Are Grammars Expressive and Parsimonious Descriptions?
An important question is whether the grammatical representations actually are suf-
ficiently rich to allow for classification of many activities. The authors of [69] per-
formed psychophysical and computational experiments to answer this question. They
described, as above, actions by the sequence of contacts, using five quantities: the
hand, the ground, and three objects. In addition they considered ten spatial relations,
i.e., above, below, between, etc., to differentiate between altogether 35 different con-
figurations or actions. A subset of ten of these actions (put, shake, stir, take, uncover,
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chop, cut, hide, lay, and push) was performed in a virtual environment, but instead of
the actual objects, cubes were used. Experiments found that humans can recognize
these actions, and so can their algorithms. Even more, the description was found to
be very powerful for prediction; subjects on average only required 56% of the action
duration to recognize the action. Thus, it appears that a description relying only on
contact and spatial relations is very powerful for visual recognition.

3.3. Modules for Action Understanding
Individual vision processes are required to recognize discrete components, which then
can be combined in higher level reasoning processes - such as the grammars from
Section 3.2 - to achieve activity recognition and prediction. The descriptors which
we discuss in this section differ from those heavily covered in the literature (for an
evaluation of successful concepts in current approaches see [57]). Specifically, in
Section 3.3.1 we discuss representations of grasp, and in Section 3.3.2 we discuss
explicit representation of geometry.

3.3.1. Grasping: An Essential Feature for Action Understanding

Figure 0.5 (Left) Rest or Extension on the handlebar vs. (Right) Firm power cylindrical grasp
of the handlebar. (from [74])

The grasp type provides crucial information about actions. As a motivational ex-
ample, consider the two scenes in Fig. 0.5 from the VOC challenge [14]. Standard
CV systems have object and human detectors to recognize the bicycle and the cyclist
and pose detectors to confirm that these two cyclists are riding a bike. But humans
can tell that the cyclist on the left side is not racing (since his hands are in a “Rest or
Extension” grasp), whereas the one on the right is intent on racing (since the hands
firmly hold the handlebar in a “Power Cylindrical” grasp).



i
i

“output” — 2021/4/25 — 1:08 — page 17 — #17 i
i

i
i

i
i

Learning for action-based scene understanding 17

We cover here two papers, the first employs a basic ontology of grasps types in
action understanding tasks, the second studies subtle changes in grasp for differentiat-
ing between similar manipulation actions, and develops learning approaches for online
action prediction and regression of associated finger forces.

The recognition of grasp type provides essential information for a more detailed
analysis of action. Researchers in several areas, including robotics, developmental

Figure 0.6 Basic classification [7] of active grasps with examples. At the highest level, grasps
are categorized into power and precision grips. Power grips are used when an object is held
with force, and can be classified as cylindrical, spherical, and hook. Precision grips provide fine
movement and accuracy, and are subdivided into pinch, tripod, and lumbrical.

medicine, and biomechanics, have developed grasping taxonomies that represent a
hierarchy of the most common hand postures used for object grasping, with each tax-
onomy based on the needs of the tasks in the field. In [74] a basic classification of the
main functional grasps [7] in manipulation tasks was used and then demonstrated as a
useful feature in two tasks: for segmentation of activities involving fine motor actions,
and for characterizing action intention, i.e., whether the task is casual, or requires skills
or forces.

Cognitive studies showed that an actor’s intention shapes his/her movement kine-
matics during movement execution [3]. For example, when subjects grasped a bot-
tle for pouring, the middle and the ring fingers were more extended than when they
grasped the bottle with the intent of displacing, throwing, or passing it. Inspired by
these findings, in [16], the authors developed a recurrent neural network architecture
that monitors hands for predicting actions. Specifically, they considered sets of ac-
tions with the same object, such as “squeezing”, “flipping”, “washing”, “wiping” and
“scratching” with a sponge (see Fig. 0.7). They analyzed the system, which predicted
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in real-time the ongoing action to determine at what point in time the classification
became accurate, and they also performed a psychophysical experiment, evaluating
human performance on the same task. At 10 frames after the contact of the hand with
the object, the system and the humans started understanding the action (75% classifi-
cation accuracy for the sponge actions), and at 25 frames the judgement was very good
(95% accuracy for the sponge actions). The visual architecture was an RNN using as
input tracked image patches around the hand from which VGG-16 features [59] were
computed.

Figure 0.7 Examples demonstrating that early movements are strong indicators of the intended
manipulation actions. Early prediction of action significantly reduces the delay in real-time inter-
action, which is fundamentally important for a proactive system.

In addition the paper also demonstrated association of vision with forces. Data was
recorded from subjects that performed the same action with both hands. Sensors on
the fingers of one hand recorded the forces, and the other hand was recorded visu-
ally. A recurrent neural network was trained to regress from vision to forces. It was
then shown that using as input video only, when the visual classifier was combined
with regressed forces, improved performance could be achieved. The concept appears
promising. As shown, learning the mapping from vision to forces creates a bi-modal
space that can aid visual recognition. Furthermore, there are immediate implications
for robotics. Currently robots rely on haptic devices or force and torque sensors to
learn tasks. If we can predict the forces exerted by the human demonstrator visually,
it would allow us to teach robots much more efficiently.
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3.3.2. Geometry to Robustify
The use of geometry is important because it provides robust information for scene
description and additional information for recognition. Geometry is computed using
reconstruction processes, which are low-level (requiring only the image features and
knowledge of camera positions), but no machine learning or training data is required.
With the advent of cheap RGB-D sensors more than a decade ago, reconstructing
scene geometry has become much easier and more accurate, and thus these sensors
have become the standard vision sensors in robotics. Their use facilitates computing
accurately and fast the distances to control the robot’s movement, as well as computing
the geometry and shape of objects to aid scene interpretation. This section discusses
three geometric methods: accurate tracking of non-rigid object transformations and
detection of topological changes; computation of pairwise spatial relations of objects
over time; and computation of object symmetry and its use for better foreground-
background segmentation.

Building on an efficient point cloud library [79], Zampogiannis et al. [80] devel-
oped a technique for accurately tracking non-rigid object transformations and detect-
ing the topological changes that is, contacts and separations of body parts and objects
needed for the grammatical description (see Section 3.2). The gist of the method lies
in a warp field estimation that considers forward and backward warps between con-
secutive frames to detect regions of the deformed geometry that undergo topological
changes.

Activity descriptions can also profit from descriptors of spatial relations between
objects. In [81], the authors introduced a representation for manipulation actions based
on the evolution of the spatial relations between objects in the scene. The method
was implemented by tracking objects in RGBD video, and reasoning over the spatial
relations of observed object pairs. The resulting descriptor amounts to a sequence of
spatial relation predicates of the form in, left, right, front, behind, below, above, touch,
and it was shown to be sufficiently expressive for distinguishing between four different
actions.

Another concept is to exploit general knowledge of object shape properties. For
example, symmetry detection can help with segmentation both in 2D [63] and 3D [12].
Imagine looking at a cluttered scene. Since most objects we work with are symmetric,
either bilateral or rotational, we can “fill in the back of the object” that is not visible,
and this aids the segmentation and recognition.

3.4. Discussion on Activity Understanding
Activity Understanding is a very challenging problem. End-to-end solutions do not
scale well to activity understanding because of the large variations in appearance at
high levels of abstraction and temporal extension.
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We discussed hierarchical approaches, and we detailed one higher level description
– action grammars. Action grammars can segment activities at times of contact and
capture the recursive structure of action sequences, similar to that found in language.
We described experiments demonstrating the expressive power of action grammars.
We also described processes at the lower level, which have not received much atten-
tion in CV, but which are essential for supporting an action-based approach. These
include affordances, grasp-type and the use of geometry to aid temporal and spatial
segmentation and descriptions of spatial relations.

In this section we emphasized the necessity to utilize meaningful action-based rep-
resentations at different levels of the hierarchy. To elaborate further, it is very im-
portant that these representations need to be robust, because of the many challenges
involved in activity understanding. We can achieve robustness in part through the use
of geometry - geometry does not require memorization, and can be estimated from
low-level measurements. Thus, we should introduce geometry into the pipeline when-
ever possible before starting with recognition. Beyond geometry, any concept that
provides universally true information is meaningful for activity understanding. We
may model physical laws. We may include model ontologies to aid generalization,
for example by grouping verbs according to the effect they have on objects [73]. We
also may include processes that model causality; actions constrain each other causally,
some combinations are not possible physically. These representations capture more
knowledge and better constraints for activity interpretation.

The integration of vision and cognition or language is hard. This is because of the
semantic gap, i.e., the disparity between the symbolic or linguistic representations and
the visual representations based on signals. We want an integration of the two which is
not brittle. Thus, we need to avoid setting thresholds or converting to purely symbolic
representation too early within the pipeline. This is because if vision fails to return the
right quantities, then imprecisions compound through further abstraction, resulting
in failed reasoning. The next research challenge is to study learning approaches that
relate perception with higher-level reasoning for a deeper integration. Section 4 covers
deep learning approaches useful for such integration. Currently such approaches are
primarily constrained to object recognition, and to an extent to action recognition.
Activity understanding would benefit from these methods.

4. Functional Scene Understanding through Deep Learning with
Language and Vision

Here we consider the merging of vision and language and associated representations
- the merging of “signal” and “symbol”. The merging of multiple representations is
important due to the suitability of different representations for capturing different char-
acteristics of the world. Here we seek to allow information from lower level represen-
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tations of appearance and information from higher level representations of relations
and semantics to complement each other.

Systems involving symbolic and continuous representations often have hard bound-
aries, below which the system is continuous, and above which the system is symbolic.
Precisely where this boundary is set varies, but generally does not fall below the level
of abstraction reflected in human language as language is a primary source of symbol-
ically represented world knowledge.

Symbolic representation is more important for action and activity understanding
than for other CV tasks such as object detection as the nature of this task is more ab-
stract and less appearance based. Action has temporal structure at multiple scales, and
is structured around satisfaction of conditions - the defining characteristics of action
are semantic and relational.

Many computer vision tasks can benefit from the integration of vision and lan-
guage. However, one task which is ideal for the study of the integration of the two
is Zero Shot Learning (ZSL) - this is because unlike other tasks it cannot be solved
without the introduction of non-visual knowledge such as is reflected in language.

ZSL is a task with two sets: a training set, and a test set. The categories of these
sets break into “seen” and “unseen” categories. The training set consists of only “seen”
categories, while the test set contains “unseen” categories as well as, optionally, “seen”
categories. To illustrate, there could be a ZSL task which includes “run” and “stand” in
seen categories, and “walk” in unseen categories. The task would then be to learn to vi-
sually recognize and properly categorize walking, when walking has never previously
been visually encountered, but running and standing have been visually encountered.

There are multiple approaches to ZSL. Early work on ZSL focuses on attributes
- visually recognizable characteristics with differential class (e.g., object classes or
action classes) associations. Attributes are generalizable in that attribute detectors
trained only on the seen set are able to detect attributes in samples from both the seen
and unseen set.

More recent work on ZSL tends to focus on semantic embedding spaces. These are
Euclidean vector spaces where semantic categories, such as is reflected in language,
are associated with vectors - or points in space. These vector representations of words
are of significantly lower dimension than naive 1-hot encodings (vectors where each
dimension corresponds to a class, and all but 1 dimension have 0 values), and have the
quality that words which are similar in semantics are associated with similar vectors
nearby in the embedding space.

With semantic embedding spaces, symbolic representations are vectorized in such
a way that the semantic relations of the symbol categories are preserved. This allows
for integration of symbolic semantics into deep architectures, whose internal repre-
sentations consist of vectors. This integration amounts to properly aligning the visual
vector representations with the vectorized symbolic representations.
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Different ZSL methods use different shared embeddings - some embed visual fea-
tures into the semantic space, some embed the semantic space into the visual feature
space, and some embed both into a third shared space. Once both visual and semantic
representations lie in the same space, categorizing visual input is a matter of finding
the nearest semantic label in this space.

State-of-the-art contemporary ZSL methods often rely on CNNs for visual features
and produce shared embedding spaces with pre-trained semantic embedding spaces
such as word2vec [38, 70]. Some shared embedding based ZSL methods structure and
train their models in an end-to-end fashion, which is more challenging, but provides
dividends in performance [82].

The remainder of this section is structured as follows: In Section 4.1 we detail
a simple use of attributes for ZSL; in Section 4.1 we detail a more nuanced relative
attribute formulation; in Section 4.2 we cover the use of shared semantic spaces in
ZSL; in Section 4.3 we cover basic approaches to semantic vector space construction;
in Section 4.4 we cover the incorporation of knowledge in the form of graphs for ZSL
action classification.

4.1. Attributes in Zero-Shot Learning
The use of attributes - including action centric attributes such as affordances covered
in Section 2 - in recognition allows the construction of classifiers which are humanly
interpretable and specifiable. Attributes mitigate the issue of opacity through use of
an explicit pre-defined mid-level representation below the level of class categories.

Use of attributes allows an easy mechanism through which to learn visual repre-
sentations from the available training data and to transfer those representations onto
the classes for which no training data is available. Attributes are general in that they
have presence across multiple class categories, and through taking multiple attributes
with different distributions across classes allow representation of select classes.

The use of attributes in ZSL is as follows: Attribute detectors are trained over the
seen set and associated attribute labels. These detectors are generalizable across both
the seen and unseen set. Due to the different class coverage (e.g., object or action class)
of different attribute categories, different combinations of attributes can represent dif-
ferent classes - class detectors can then be instantiated on top of attribute detectors.
This instantiation follows a specification of which attributes are associated with which
classes. When given a specification for unseen categories, detectors can be built even
though no visual samples of the unseen categories have been encountered.

Conventional use of attributes in computer vision is binary: an attribute is repre-
sented as either present, or absent. This limits the representational power of attribute
representations. However, binary representations can be generalized to scalar repre-
sentations where each attribute is associated with a scalar degree rather than a binary



i
i

“output” — 2021/4/25 — 1:08 — page 23 — #23 i
i

i
i

i
i

Learning for action-based scene understanding 23

category. This is both more flexible representationally, and allows the inclusion of
attributes which do not so cleanly fall into a binary categorization. For example, while
an attribute of “indoors / outdoors” often is clearly binary, an attribute of “moving fast
/ moving slow” has a more even distribution over gradations in visual input.

[49] presents one approach to generalizing binary attributes to scalar attributes.
A challenge in generalizing from binary to scalar attributes is inconsistency in an-
notations, as different annotators may have different understandings of what different
attributes’ degrees correspond to in the scalar representation. They resolve this chal-
lenge by requesting that annotators not assign scalar values to attributes, but rank
images in terms of attribute degree. After images are ranked, scalar attribute values
can be derived from their annotated relative attribute degrees.

For binary attributes, attribute detectors can be trained using conventional clas-
sifiers, but producing scalar attributes requires other methods. [49] train a ranking
function over images for attributes over the seen set, and use that ranking function in
the production of a scalar value.

Relative attribute representations allow for greater flexibility in class specifications.
With consideration to the attribute of “moving fast / moving slow” one can specify that
an unseen category “running” is faster than the seen category of “walking”, or that the
unseen category of “standing” is slower than the seen category of “walking”. This is
done without a need to define either a binary specification or intuit a scalar value with
which to describe the unseen categories.

4.2. Shared Embedding Spaces
The generalization of binary attributes to scalar attributes increases their represen-
tational power. However, the increased representational power came at the cost of
increased difficulty in annotating attributes and specifying classes. Relative Attributes
[49] introduced one solution to these challenges.

Attributes can also be abstracted away. It need not be the case that visual represen-
tations move through humanly understandable attributes. Abstracting attributes away
has a couple advantages:
• Avoid the imprecision introduced by passing through engineered, rather than learned,

representations.
• Avoid the overhead and imprecision of annotating attributes.

The question is then how to construct a system such that training for classification
of seen classes results in a classifier which works not only for seen classes, but for un-
seen classes as well, without leveraging an engineered mid-level representation which
allows the specification of unseen classes in terms of that mid-level representation.

One approach that can be used is to define unseen classes in terms of their similarity
relations to seen classes, where these relations are learned from text corpora. Exten-
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sive work exists in Natural Language Processing (NLP) producing semantic vector
spaces which represent similarity relations among words - word2vec [41] is one pop-
ular example. The intuition is that terms in these spaces are located in proximity to
other terms with which they share semantic similarity. Trained semantic spaces are
publicly available - these can be taken and used without a need to produce them from
scratch. See Section 4.3 for details on construction of such spaces.

Terms with semantic similarity often share similarity in the visual space as well
- e.g., “jogging” is both semantically and visually part way between “running” and
“walking”. And so, it is often the case that if the visual similarity to known categories
can be determined, then the semantic similarity relations can be established as well.
Then, from these semantic relations we can infer semantic categories of visual inputs.

To illustrate: Consider a set of seen classes including “running” and “walking”,
and a set of unseen classes including “jogging”, a semantic vector space capturing
semantic proximity between these categories, and a computer vision architecture, such
as a CNN, which produces visual feature representations of input. Then, consider an
input sample of unknown class. Say that the visual representation of this input as
produced by the CNN is part way between the visual representation for “running” and
for “walking”. We then go to the semantic language space and see that the label that
is located part way between “running” and “walking” is jogging and assign this label
to the input.

Most often, comparing similarities between samples of unknown class and known
classes is not done in the visual space. It is more common to map the input into
the semantic space and perform comparisons to known classes there. This requires
embedding one space into another.

The mechanism of embedding one space into another can be as simple as a linear
transformation applied over one space, which is then trained over a similarity loss
between two spaces. DeViSe [18] is a good example of an architecture using this
method. This involves two pretrained representations - visual features taken from, for
instance, a CNN trained over classification, and word vectors in an embedding space,
which may be produced through means discussed in Section 4.3.

One method of embedding visual features into the semantic space of the word
vectors is then illustrated in Figure 0.8. A layer of nodes is appended to the top of the
pre-trained CNN features, and then trained. The loss that this layer is trained over is
the similarity (e.g., cosine similarity) between the output of this layer, and the vectors
in the semantic embedding space corresponding to the labels of the visual input. This
learns a simple linear mapping from visual feature vectors onto text derived semantic
features.

More sophisticated mappings than linear translations are often used. Using multi-
ple layers of neurons, in conjunction with non-linear activations, produce non-linear
mappings (e.g., [29] use such a method). [31] use an autoencoder with semantic con-
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straints to produce the embedding, and find that the constraint of visual reconstruction
leads to better generalization to unseen classes in ZSL.

Figure 0.8 A simple approach to embedding visual representations into a semantic space, as
is used by methods such as DeViSe [18]. Two pre-trained models are used: 1) pretrained
visual features, such as produced by a CNN trained over a visual task, and 2) a semantic vector
space as produced through methods discussed in section 4.3. A simple linear transformation is
produced through appending a layer of nodes on top of the visual features, and training them
w.r.t. their similarity to the semantic word vector of the labels corresponding to visual input. Once
this linear transformation is learned, it constitutes a mapping from the space of visual features
into the semantic vector space.

Once both visual input and semantic representations are placed in the same space,
then determining the class of novel visual input is as simple as representing visual
input in that space and then finding the nearest semantic label in that same space.

4.3. Construction of Semantic Vector Spaces
4.3.1. word2vec
Here we wish to construct a vector space into which words are embedded in such a
way that their semantics are captured spatially. The end results is a space where, for
example, vectors for “jog”, “run”, and “walk” are located in proximity, with “jog”
being placed in the middle of the three.

How can a word’s semantics be defined? One answer is through the interactions
that that word has with other words in text corpora - semantics of words can be defined
in relation to other words. How do we model words’ relations to other words? One
simple approach is co-occurrence - if two words occur in proximity, they are taken to
be related. The more frequently that they co-occur together, the more strongly they are
related. This is the principle on which methods embedding words into vector spaces
such as word2vec are based.

We start from the simplest vector representation for words - a 1-hot encoding,
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where each vector position corresponds to one word in a vocabulary V . This is a high-
dimensional, inefficient representation, where there are no meaningful spatial relations
among words. We can embed words into a lower dimensional space with said desirable
properties through the solving of one of two related tasks:
1. Predicting a target word based on context
2. Predicting context based on a target word

Here “context” C is defined as the set of terms “nearby” the target term. These are
defined as the other terms present in an n-gram associated with the target term, without
consideration for word order.

Each of these tasks can be solved using simple architectures, and the solving of
these tasks produce in the process lower dimensional representations which can then
be taken and used for other tasks.

A method - Continuous Bag Of Words (CBOW) - for solving Task 1 [41] is shown
in Figure 0.9(a). Input consists of multiple words of context, each represented as a
1-hot vector of dimension |V |. These vectors are summed to produce a vector of size
|V |. This is fed through a single layer of N neurons, where N is the dimension of the
embedding space. On top of this we have one more layer, of size |V |, whose job it is
to predict, in 1-hot representation, the word associated with the context consisting of
the terms fed as input to the first layer.

A method - Skip Gram - for solving Task 2 [41] is shown in Figure 0.9(b). Input
consists of a single term, represented as a 1-hot vector of dimension |V |. This is fed
into a single layer of dimension N, where N is the dimension of the embedding space.
On top of this layer we have an output layer, consisting of |C| sets of |V | nodes, each
associated with one term of context C in the n-gram associated with the input term.

Both architectures are trained through serially feeding in n-grams extracted from
large text corpora, and applying a soft-max loss to the final layer to enforce alignment
with expected terms.

After these architectures are trained, the hidden layer then constitutes a mapping
of V from a 1-hot representation of size |V | to an embedded representation of size N
where terms are spatially located in proximity to terms with similar semantics.

4.4. Shared Embedding Spaces and Graphical Models
ZSL of action can benefit from additional structure beyond what simple mapping into
a shared embedding space can provide. Additional structure can be represented in the
form of graphs. Multiple works [19, 29, 72, 20] employ graphs for the purpose of
recognition of actions, processing these through use of a Graph Convolutional Net-
work (GCN) to produce vector representations of action categories suitable for ZSL.

[19] evaluate 3 different graphical representations, the last of which is applicable to
Few-Shot Learning rather than ZSL due to its use of visual features from a small num-
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(a) (b)
Figure 0.9 (a) The Continuous Bag Of Words method to solving the task of predicting a target
word based on that words context [41]. |C| input vectors of context are fed through two layers,
the first a hidden layer of size N, the second an output layer of size V. Loss is computed w.r.t.
the word W. After training the output layer can be discarded, and the hidden layer used as a
translation from 1-hot word encodings into an embedded space of size N. (b) Skip Gram method
to solving the task of predicting the context of a term [41]. Word W is fed through two network
layers, the first a hidden layer of size N, the second an output layer of size V. Loss is computed
w.r.t. |C| words of context. After training, the output layer can be discarded, and the hidden layer
used as a translation from 1-hot word encodings into an embedded space of size N.

ber of samples. [29] construct a graph based on Subject Verb Object triplets derived
from knowledge corpora. All of these are processed through a GCN.

Throughout [19] sentence2vec [48] is used rather than word2vec, as authors find
that action categories are better represented through phrases than through single words
which can be confounded by multiple meanings. The first graph is composed of nodes
taking values of sentence2vec embeddings of action category phrases. These nodes
are linked together based on cosine similarity between vector representations - the
top N closest neighbors per node are given edges. The second graph associates verbs
and nouns - derived from Part-Of-Speech tagging of phrases describing actions - with
each action class, incorporating nouns as a strong connection between seen and unseen
categories. The third graph incorporates visual representations derived from a small
number of samples of the unseen categories - this graph is thus applicable to Few-Shot
Learning, rather than ZSL. The reason for the incorporation of visual representations is
that categories which are similar in the semantic space may nevertheless have distinct
visual appearances - authors give the example of “pommel horse” and “horse walking”,
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which have similar word embedding representations but dissimilar visual appearances.
[29] construct a graph consisting of three types of nodes: noun nodes, object nodes,

and action nodes. Action nodes are linked to the verbs and nouns which the associated
action involves.

Values of graph nodes are generally initialized with values derived from semantic
vector spaces - this is important as it establishes the initial relations which the GCN
iterates over. This iteration incorporates relations defined by the edges in the graph,
and allows information to transfer from node-to-node along edges. E.g., in [29] action
nodes, which are initially set to zero vectors, acquire a representation determined by
the vectors of neighboring noun and verb nodes, which have been initialized with
semantic vectors.

Like previously detailed methods, these methods learn a mapping from visual fea-
tures (taken from a CNN pre-trained on a separate task) into a shared embedding space
- though here that space is shared with representations produced by the GCN. In [29]
that mapping is produced through two layers of neurons with sigmoid activations, re-
sulting in a non-linear mapping from the visual features into the shared semantic space.
Similar to previous work, these layers are trained through applying a loss measuring
the similarity between the visual features after embedding, and the vectors associated
with the labels of the input as produced by the GCN.

The mapping from pre-trained visual features onto the GCN produced action vec-
tors can then be trained over the seen training set. To obtain action predictions when
applying the network to novel actions during testing, nearest neighbor can be per-
formed between the visual features and the action vectors.

5. Future Directions

Here we discuss implications and future work implied by the action based framework
outlined in the rest of this chapter. Action has implications for tasks and datasets -
it enables conceptual modeling conductive to generalization and longer term temporal
prediction. Action benefits from modeling of concepts beyond those from conven-
tional CV. As CV progresses the scalability of fully supervised methods becomes an
increasing issue, and action based methods help mitigate this issue while benefiting
from semi- and un-supervised paradigms. Finally action helps enable an integration
of cognition and symbolic modeling into perception, including across multiple per-
ceptual modalities.

Tasks and datasets: Activities span long time spans. Thus when seeking solutions
to visual activity understanding, we face problems much more challenging than those
we encounter in current action recognition tasks. Objects, actions, affordances, and
other scene constituents relate to each other semantically over multiple time scales,
and we need to find ways to model these relations. We think that this capability is
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not well demonstrated with the task of recognizing actions. Instead, we should pick
tasks that demonstrate generalization and a conceptual understanding of action (as op-
posed to a purely appearance based understanding), such as zero-shot learning and the
prediction of future actions, and translation from one viewpoint to another (e.g., from
first person to third person). Today’s CV research is largely driven by the collection
of new datasets and definition of new challenges - existing datasets do not sufficiently
cover long term and conceptual modeling of activities. The datasets ideally should
have recordings from multiple views, because this opens possibilities for interesting
research, for example, to solve the challenge of transferring knowledge between the
first person and the third person view. Lastly, most datasets feature indoor scenes. It
will be interesting to collect outdoor scenes and analyze them, as discussed above,
by looking at the relations between affordances, interactions and long-term relations.
We could also attempt an action-based analysis on data from the autonomous driving
domain.

Concepts for long-term activity understanding: Activity understanding requires
action-based concepts at multiple time scales. We discussed in this chapter such
quantities at the single image and short-term time scales, including affordances, hand
grasps, geometric relations, and we emphasized the use of geometric reconstruction
processes because of their robustness (see discussion in Section 3.4). The next step
will be to add further constraints and include robust constraints for modeling temporal-
relations at longer scales. We could make use of ontologies in categorizing objects
and actions. On verbs we can impose classifications based on action effects [73], er-
gonomic principles, or force and location related constraints. Longer-term relations
include causal relations, and constraints on possible and impossible action sequences.
We can also model physics constraints, and use physics engines - but in order to in-
tegrate these into deep architectures we need to include these constraints into vector
spaces that relate perception to cognition (Section 4).

Reducing supervision: Early approaches on integrating language with vision (see
Sections 4.1 and 4.4) have relied heavily on supervision. For example, visual at-
tribute recognition or object recognition has been implemented via supervised learn-
ing. Graph-based models using shared embeddings for ZSL need to incorporate in
advance the categories of the “unseen” set which they may encounter during test time.
Naturally, evolving approaches will find their way into the action-based framework,
including unsupervised and self-supervised learning, transfer learning, meta-learning,
and eventually never-ending learning [43]. For example, in constructing visual ontolo-
gies, we don’t want to rely fully on supervised visual learning of meta-verb classes.
One solution to such modeling is dictionary learning [83], but so far these approaches
have been limited to simple actions. We will need methods that scale to more complex
human manipulation actions. Generative Adversarial Networks (GANs) and Varia-
tional Autoencoders (VAEs) have been shown successful in modeling fine-grained ac-
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tion images and videos. We could, for example, use VAEs to learn the underlying
distribution of data into a discretized latent space that encodes the meta-categories.

Involving the whole brain: Humans’ understanding of the world is grounded in
our motoric cognition and all our senses. Similarly, our models should include other
sensory modalities like auditory, tactile, or proprioception signals in addition to model-
ing of vision and cognition representations. Different modalities provide complemen-
tary information, and because of this allow for different ways of organizing concepts.
In addition to questions of learning with different modalities, we also need methods for
accessing stored concepts when given perception from any modality. Studying the in-
tegration of diverse modalities will also benefit from studying memory. A framework
known as Vector Symbolic Architectures (VSA) [51, 13], which includes Hyperdi-
mensional (HD) Computing (methods making use of very high dimensional vector
spaces) [28], has been proposed as a theoretical model for artificial intelligence. HD
Computing combines advantages of neural-based AI approaches with systematic com-
positionality and rule-like behavior from classical symbolic AI [36]. In this framework
concepts are encoded into vector spaces, and algebraic operations are defined on these
vector spaces. These operations include the addition of related concepts and the bind-
ing of vectors of different origin - for example this could be sound and vision, or
vision and motor [44]. These operations maintain the separability of one modality
from the other. We may build on this framework and integrate it with neural network
approaches. The goal will be to retain an explicit memory encoding different percep-
tion modalities, while maintaining the capability of recalling information from any
modality.

6. Conclusions
The purpose of Computer Vision is to produce interpretations which are of use to
humans. Action is central to our understanding of the world, yet is underutilized in
contemporary CV. This chapter covered scene and activity understanding that has the
concept of action and interaction at its center. We covered action based approaches
to scene understanding involving modeling at multiple temporal scales, starting from
object interpretation in terms of affordances at the instantaneous level, up to basic ac-
tions, then up to full activities at the longer temporal scale. We described the well
developed area of affordance learning, and described works on activity understanding
combining cognitive and linguistic approaches with humanly interpretable modules
essential in characterizing activities and segmenting video temporally. We discussed
methods for the integration of visual representations with knowledge, both engineered
and derived from text corpora. We covered the integration of vision, centered on ac-
tion, with graphical constraints, and discussed future directions including creating new
challenges and datasets, adding concepts for encoding long-term relations, adapting
semi- and un-supervised learning approaches, and incorporating memory as a central
component to the action-based framework.
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