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Figure 1: Pat Design Lab. Applying Perceptual Pat to Charles Minard’s famous Napoleon’s March to Russia diagram. The Pat

Design Lab is the web-based interface to the Perceptual Pat suite of perceptually-inspired image filters that can be used by a

designer to receive rapid and inexpensive feedback on a visualization being designed.

ABSTRACT

Designing a visualization is often a process of iterative refinement

where the designer improves a chart over time by adding features,

improving encodings, and fixing mistakes. However, effective de-

sign requires external critique and evaluation. Unfortunately, such

critique is not always available on short notice and evaluation can

be costly. To address this need, we present Perceptual Pat, an ex-

tensible suite of AI and computer vision techniques that forms a

virtual human visual system for supporting iterative visualization

design. The system analyzes snapshots of a visualization using an

extensible set of filters—including gaze maps, text recognition, color

analysis, etc—and generates a report summarizing the findings. The

web-based Pat Design Lab provides a version tracking system that

enables the designer to track improvements over time. We validate

Perceptual Pat using a longitudinal qualitative study involving 4

professional visualization designers that used the tool over a few

days to design a new visualization.
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1 INTRODUCTION

Visualization design, just like any other design discipline, is in-

herently iterative [56]. During the course of designing a novel

visualization, a designer may go through dozens or even hundreds

of ideas, sketches, and prototypes before settling on a final compo-

sition. However, while experienced designers have developed the

ability to view their own work through the eyes of their intended

audience, it is clear that all designers would benefit from having

access to an objective and unbiased audience to use as a sounding

board for each design iteration. Is this label readable? Are the peaks

and troughs in this line-series chart salient? Would a non-expert

https://doi.org/10.1145/3544548.3580974
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recognize this chart type? Being able to answer such questions

at the drop of a hat would be invaluable, but fellow designers are

not always available to provide feedback and empirical evaluation

is unfortunately so costly in terms of time and money that it is

impractical.

That is, until Pat came along. Pat is always game to take a look

at a new version of your visualization, regardless of the time of

day. Pat will tell you honestly what he thinks of your visualization

design. In fact, Pat will be precise and give you a detailed breakdown

of the colors, saliency, and legibility of your design. And, what’s

more, Pat doesn’t sleep or take breaks. In fact, Pat can be invoked

with a mere click of your mouse button.

In this paper, we present Perceptual Pat: an extensible suite of

image processing, computer vision, and machine learning models

that taken together forms a virtual human visual system suitable

for supporting visualization design and evaluation. While we obvi-

ously do not intend for Perceptual Pat to be a drop-in replacement

for a real human by a long shot, the Pat suite provides a collection

of perceptually-inspired image filters that combine to yield a com-

prehensive picture of what a person would see when viewing a

visualization. Examples of such filters include the virtual gaze maps,

such as the Scanner Deeply virtual eyetracker [70], color vision

deficiency filters, text legibility and optical character recognition

(OCR) scanning, color analysis, etc. Inspired by the virtual human

known as “Virtual Jack” [4] (or just “Jack”), which has long been a

staple in ergonomics design, Perceptual Pat is a complement and

not a replacement for human testing. Instead, the purpose of Pat is

to provide easy access to multiple rounds of quick and cheap feed-

back before a design is evaluated in a focus group, expert review,

or usability study.

At its core, the Perceptual Pat suite is held together by the Pat

Design Lab, a web-based software system for managing iterative

visualization design. Using the Design Lab, a designer can upload

evolving versions of a design over time, each time running the

Perceptual Pat tests and receiving an interactive report in response.

The Design Lab allows for analyzing and studying the output of the

tests as overlays display on top of the visualization itself. The tool

also has functionality for designers to add their own annotation and

notes to the report. Finally, different reports can be interactively

compared using the tool, enabling the designer to see how their

design has evolved over time. Furthermore, the Pat suite is based on

a flexible plugin architecture, enabling the Design Lab to be easily

extended with third-party image filters.

We validated the Perceptual Pat suite and the Pat Design Lab in

a longitudinal user study involving 4 expert visualization designers

using the tool for their own design project. We first met with our

participants in individual meetings to introduce the tool and its

functionality, and then again a week later at the conclusion of their

design project. During this time, the participants were asked to

design and refine a new visualization from scratch using the tool.

Our analysis of the resulting reports and user annotations indicate

that a majority of causes for change in the design were attributed

to our system. During the exit interviews, participants acknowl-

edged the effectiveness of the Perceptual Pat in detecting problems

within visualizations, as well as its convenience in providing design

feedback.

The contribution of this paper are as follows:

• The concept of a virtual human visual system (VHVS) as a

suite of models providing feedback on a visualization image

indicative of human perception;

• The Perceptual Pat implementation of a virtual human visual

system for iterative visualization design;

• The Pat Design Lab for supporting iterative evaluation of

visualization design using the Perceptual Pat suite;

• Qualitative findings from a longitudinal study involving four

expert designers using our prototype implementation in their

own design projects; and

• Findings from external evaluators who assessed the design

process and outcomes from the longitudinal study.

2 BACKGROUND

Here we provide an overview of the background for our work on

the Perceptual Pat suite by first explaining how visualization is a

design discipline and reviewing systems that scaffold the design

process. We then review work in vision science and visualization

that shows how understanding perception can also support visual-

ization design.

2.1 The Role of Feedback in Visualizations

Data visualization is still a largely empirical research field, and

iterative design is thus a key component in authoring a new visual-

ization [56]. It has also entailed a focus within the field on design

heuristics and rules of thumb, such as Edward Tufte’s reviews of

effective visualizations [78], visualization textbooks with a design

emphasis [56], and many blog posts and practical handbooks drawn

from practice.

All design benefits from external feedback. There are two main

mechanisms for feedback: user and usage feedback vs. peer and

supervisor feedback. The former is more common in academia and

focuses on validation, often through empirical evaluation. Munzner

present a nested model for visual design and validation [55] that

incorporates primarily the former through various forms of vali-

dation. She presents four design layers for creating visualizations:

(1) domain problem characterization, (2) data/operation abstraction

design, (3) encoding/interaction technique design, and finally (4)

algorithm design. Sedlmair et al. [66] develop a nine-stage design

study framework (consisting of three higher level category), and

provide practical guidance for conducting design studies. The three

high-level categories are: (1) personal (precondition), (2) inward-

facing (core), and (3) outward-facing (analysis). Peer feedback, on

the other hand, is more common in industry and design practice,

where critique is critical when authoring visualizations intended for

mass consumption. It has also reached academia within the general

interaction design community. Bardzell et al. [5, 6] talk about the

importance of criticisms in designing interfaces, and assert that

they raise people’s perceptual ability, which over time constitutes

a heightened sensibility or competence.

Comparison. Obtaining external feedback requires time andmoney

and is not always accessible. In contrast, Perceptual Pat provides

external feedback using automated methods, and is thus quick,

always available, and virtually cost-free.
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2.2 Facilitating the Chart Design Process

External feedback helps to improve chart design, but there exist

many different ways to provide such feedback. One method is based

on practical visualization recommendation. Building on seminal au-

tomatic visualization work by Jock Mackinlay [48], Tableau’s Show

Me [49] feature recommends charts based on data types as well as

best practices. Since then, various types of recommendation tools

have been developed, such as those based on data properties [41, 83],

perceptual principles [83], expert feedback [47], large-scale dataset-

visualization pairs [34], and design knowledge [54].

Another method is to directly aid iterative design for visualiza-

tion. The data visualization saliency (DVS) [50] model is a general-

purpose saliency heatmap generator for visualizations. This saliency

map enables designers to understand a viewer’s attention on a chart.

Recently, there is also a rising interest in techniques that provide au-

tomated design feedback on visualizations using a linting or sanity

checkmetaphor. Examples are tools for detecting chart construction

errors [33], visualization mirages [51], and deceptively-designed

line charts [26]. Finally, VizLinter [15] even provides solutions to

help chart designers.

Comparison. Our Perceptual Pat suite is similar to many of these

techniques, but it does not recommend visualizations to be authored,

leaving authoring entirely in the hands of the designer. Instead, our

approach is to provide a toolbox of different filters that together

can give the user multiple lenses through which to view the visual-

ization artifact they are designing. This is akin to a supertool [71]

augmenting the capabilities of the designer a hundredfold.

2.3 Understanding Human Perception for

Visualization

Understanding how humans perceive charts is vital to supporting

design, and has been an active area of interest within vision science.

These efforts began as early as the end of the 19th Century in work

done by the so-called “Berlin School” of experimental psychology.

This eventually led to the development of Gestalt psychology [43], a

theory of mind based on a holistic view of human visual perception

where the sum of the perceived “gestalt” is qualitatively different

than its component parts, and in effect has an identity of its own.

Experimental work within vision science has also spent signifi-

cant effort collecting empirical data on how humans perceive charts.

In 1926, Eells et al. [23] study how people viewed statistical graphics.

Croxton et al. [21] compare bar charts with pie charts in 1927 and

study the effectiveness other shapes for comparison in 1932 [20]. In

1954, Peterson et al. [57] perform experiments for eight different sta-

tistical graphics. These findings, and many more, were summarized

in Cleveland and McGill’s seminal 1984 paper [19] on graphical

perception of statistical graphics.

Empirical work on sophisticated visualization mechanics has

continued at a rapid pace; an exhaustive survey is beyond the scope

of this paper. Bateman [7] study the impact of visual embellishment

compared to minimalistic chart design, finding memorability im-

provements. Chalbi et al. [13] extend the original Gestalt laws for

dynamic graphical properties. Michal and Franconeri [52] present

findings on the order readers follow when viewing visualizations

(e.g., looking at the tallest bar when reading bar charts). Many of

these detailed empirical findings have been condensed into spe-

cific design rules in a recent paper by Franconeri et al. [27], listing

both visualizations that succeed in effectively communicating data

through visualizations and those that fail to do so because of illusion

and misperception.

With the introduction of high-performance eye tracking devices,

researchers use eye movement data to understand human percep-

tion. This provides us with new knowledge about what causes con-

fusion in charts [44], visual patterns that benefit recall [8], visual

saliency as a measure of attention [63], and assessment methods

for visualization proficiency [75]. It is even possible to infer one’s

personality with eye movement patterns during chart reading [74].

Comparison. All this work are candidates for inclusion into our

pragmatic take on a virtual human visual system.

2.4 Modeling Human Perception

Our work is inspired by the concept of Jack, a human simulation

system devised by Badler et al. [4] in 1999. Jack is an abstracted

version of a human body, with special focus on the body’s physical

properties and its movements. In general, simulating humans as

virtual agents provides a virtual experience that can be used to

detect and prevent many of problems in a preemptive manner

during early design.

We propose an approach for modeling not the physical body

of a human, but its visual system for the purposes of supporting

visualization design. In 1993, Lohse propose the first simulation

of a human perceptual system based on a cognitive modeling ap-

proach drawn from both experimental and theoretical findings up

to that date [46]. More recently, Haehn et al. [29] study the use

of convolutional neural networks (CNNs) as a possible candidate

model for a human perceptual system. While they were able to

replicate several of Cleveland and McGill’s seminal graphical per-

ception results, they ultimately decide that CNNs are currently not

a good model for human perception. Finally, Shin et al. [70] use

crowdsourced eyetracking data to build a bespoke deep learning

model that simulates human eye movement to generate gazemaps

on any uploaded data visualization presented to it.

Comparison. Perceptual Pat is different from all of this prior

work because it integrates and synthesizes many models based on

image processing and computer vision. In fact, many of the afore-

mentioned tools have already been integrated into the Perceptual

Pat suite. However, we are aware of no design-oriented virtual

human visual system similar to ours.

3 DESIGN: VIRTUAL HUMAN VISUAL SYSTEM

We informally define the concept of a virtual human visual system
(VHVS) as a simulated human perceptual system based on computer

software filters that use imagery as their main input channel and

outputs information about the expected human visual response to

this input. In our implementation, we think of these image filters

as perceptually-inspired to indicate the pragmatic and practical

approach we adopt in this paper; instead of attempting a high

fidelity simulation of the human visual system, our goal is to provide

actionable information to a designer iterating on a visualization

artifact.
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Figure 2: The Pat Design Lab in action. Example of a designer

using the Pat Design Lab during their chart design process.

3.1 Motivation

There are many potential reasons for designing a virtual human

visual system (VHVS), ranging from vision science—e.g., the ability

to completely simulate the human visual system at high fidelity—

to more practical applications for specific design and evaluation

situations. Our goal in this paper is the latter: while the overall

VHVS goal may seem lofty, we are primarily interested in providing

pragmatic and actionable feedback to designers through a suite

of image filters “inspired by” human perception (see Fig. 2 for

a demonstration of its intended use). In other words, we do not

purport to faithfully model the human visual system, but rather to

pragmatically support iterative visualization design.

3.2 Scope

The scope of our VHVS implementation is to serve as a super-
tool [71] that uses AI and computer vision to augment, amplify,

and extend the capabilities of a human designer during iterative

visualization refinement. While our intended user is a visualization

designer of any skill level, we note that our approach is not cur-

rently to suggest fixes to identified concerns. This means that while

the feedback is useful to anyone, an expert designer will often be in

a better situation to address it because of their greater experience.

We organize the external design feedback into two main types:

• Design feedback and critique: This form of external feed-

back involves receiving criticism—preferably constructive,

i.e., focused on improvement, rather than merely pointing

out flaws—from peer designers or supervisors. Designers

often work in teams or at least as part of organizations with

multiple designers, so critique is intrinsic to design [5]. How-

ever, receiving feedback from peers can be time-consuming

because (a) the process is laborious in itself, and (b) peers

are often not immediately available because of their own

commitments. Furthermore, feedback from an uninitiated

peer can often be general and not sufficiently detailed. Nev-

ertheless, design feedback remains important, not only for

designers working alone on a project, but also for teams who

can benefit from an outside and unbiased critical eye on their

work.

• Empirical evaluation: Given that visualization is a primar-

ily empirical discipline, evaluation involving human partic-

ipants is essential [58]. This is true for both academia as

well as industry and practice [36, 65]. However, even small-

scale empirical evaluation studies are costly in terms of time,

money, and preparation—they certainly cannot provide an-

swers to specific questions designers have about their visual

design at short notice. For this reason, empirical evaluation

is conducted at a time granularity of days or, more likely,

weeks.

3.3 Design Requirements

Because of the automated nature of the VHVS that we are proposing,

it is important to note that we are not replacing but augmenting
human feedback. This means that the fidelity requirements are

lower because our automated feedback is meant for guidance rather

than enforcing specific perceptual or design rules. We summarize

our design requirements from the motivation and scope above as

follows:

DR1 Rapid: To facilitate a conversation between the designer

and the VHVS, feedback must be rapid, preferably yielding

output in less than a minute or two (the faster, the better).

DR2 Inexpensive: Similarly, to promote frequent iteration, the

feedback cannot require costly investment, or ideally any in-

vestment at all. This likely precludes crowdsourced critique,

which still incurs some cost.

DR3 Automated: The feedback should be mostly automated and

not require intricate configuration or setup; ideally, the user

should be able to submit the current state of their visualiza-

tion artifact.

DR4 Progressive: In recognition of the iterative refinement com-

monplace in visualization design, the feedback should track

the evolution of an artifact over time.

DR5 Constructive: The feedback provided should be organized

to help the designer improve their artifact.

3.4 Practical Perceptual Feedback

Focusing on pragmatic, actionable, and practical perceptual feed-

back on a visualization artifact frees us from having to design a fully

comprehensive and accurate model of the human visual system.

Instead we choose types of feedback that will aid the designer in

making improvements to a visualization that will directly benefit

viewers. We summarize the main types of such feedback below.

Note that this is a suggestion and not an exhaustive list.

☼ Visual saliency: Saliency is a measure of the patterns and

parts of a visual scene that attracts a viewer’s eyes [63], and

has long been a core part of vision science [9, 30, 37]. How-

ever, visual saliency is also a highly practical and pragmatic

aspect of visualization design in helping the designer deter-

mine which parts of a visualization will attract the viewer

and in what order, and, analogously, which parts will not.

Receiving unbiased and objective feedback on the visual

saliency can certainly help a designer iterate on their visu-

alization to ensure that the saliency is consistent with their

intent.
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– Eyetracking: Eye trackers empirically measure saliency by

collecting eye movement data from the real world [42].

Eyetracking technology is now becoming cheaper and in-

creasingly available, enabling designers to use themselves

as test subjects. However, such hardware solutions are

beyond the scope of our work.

– Virtual eye trackers: A virtual eye tracker is trained on eye

movement data to generate artificial gaze maps, enabling

the designer to conduct a virtual eye tracking experiment.

Large-scale eye movement data can be used to build eye

movement prediction models, such as the work by Itti et

al. [37], the CAT2000 benchmark [10], and SALICON [38].

While gaze prediction models can be used for this purpose,

the Scanner Deeply [70] tracker is specifically trained on

visualization images.

– Information theory: Information-theoretic approaches to

visualization [14] measure the ratio of raw data that is

communicated using a visual representation. Calculating

the local entropy across a visualization image can thus

be seen as a theoretical measure of its visual saliency; its

information content.

h Color perception: Color is a basic building block of any

image, data visualization in particular [56, 62]. Effective use

of color is therefore a key factor in any design projects in-

volving data visualization.

– Color statistics: Understanding dominant color schemes,

color distribution, and color scale choices is a useful mech-

anism for any visualization designer.

– Color choice: Visualization practice stipulates using a lim-

ited number of distinguishable and easily named colors [31],

potentially as a function of the mark used [72].

– Opponent processing: Opponent process theory casts color

perception as balances between three pairs of colors [32,

35]; while the exact constituent colors are disputed, these

are often held to be red vs. green, blue vs. yellow, and black

vs. white. Pragmatic visualization would promote avoiding

color combinations that involve both parts drawn from

one of these pairs.

k Text: Most visualizations incorporate text in some form,

much of it central to understanding the scale, extents, names,

and details of the visualized data. Textual characters are obvi-

ously visual objects that are modeled by other vision models,

but because of their special meaning in visualization, text is

worth studying on its own. We propose several specialized

forms of text identification and classification feedback.

– Legends: Some visualizations require legends to enable

deciphering color allocations or color scales. Identifying

the legend, or notifying the designer that none is present,

would therefore be useful feedback.

– Labels: Axis labels, titles, and tick marks are central to

comprehending a visualization.

– Textual content: Disregarding the visual representation

of the text, what about its actual content? Feedback on

spelling, grammar, and meaning can help the designer

here.

¡ Visual representation: Some perceptual feedback may be

specific to the visualization technique being used. While

some of this type of feedback may stray into visualization

linting [15, 33] for finding chart design and construction

errors, we here focus our feedback on perceptual aspects.

– Chart type:Merely using an automatic classifier to identify

the chart type can be useful feedback to a designer. If the

designer is working on a non-standard visualization and

the classifier does not recognize it, this may be indicative

to change representation, or to better signpost the repre-

sentation. Alternatively, if the designer is using a standard

chart type and it is not recognized (or incorrectly so), this

may be a signal that they need to improve and standardize

their visual design.

– Data extraction: Taking chart recognition a step further

would be to use automatic methods to recover the data

from a visualization, essentially reverse-engineering the

visualization [16, 59, 64]. This would enable the designer

to determine if the visual encoding is lossy by recovering

symbolic data that has been encoded.

– Visual embellishment (“chart junk”): Visual embellishments

to charts—sometimes referred to as “chart junk” [78]—

while potentially beneficial to thememorability of a chart [7],

may detract from the chart or even distract the viewer com-

pared to a more minimalistic visual representation [18].

Automated object recognition can inform the designer

about any visual embellishments and their potential for

distraction.

4 Vision science: Beyond the visual saliency discussed above,

there are many useful metrics from vision science that we

may pragmatically adopt for visualization design feedback.

As stated above, since our goal is not to accurately model

the visual system, we can instead choose concepts that lend

themselves to iterative design.

– Preattentiveness: Preattentive features [76, 77, 82] are those
that guide the viewer’s attention so that they “pop out” in

a visual scene, and that cannot be decomposed into simpler

features. Automatically detecting and highlighting preat-

tentive features in a visualization would be highly useful,

because they can help the designer confirm conscious de-

sign choices and discover—and likely address—inadvertent

ones.

– Ensemble processing: How do people estimate character-

istics from a group of visual objects, such as marks in a

scatterplot? Ensemble processing [2] models how the visual

system computes averages of visual features in a group

with even complex shapes and configurations. Implement-

ing an ensemble processing filter could help designers

understand how groups of visual marks would likely be

interpreted by the viewer.

– Shape identification: Recognizing and identifying shapes

in a visualization artifact may be another confirmatory

piece of feedback for a designer. If shapes are not correctly

identified, perhaps due to scale or overplotting, the de-

signer may use this feedback to make revisions to their

artifact.

– Image segmentation: More of a computer vision than a

vision science tool, image segmentation [53, 68] is the pro-

cess of partitioning an image into segments or regions
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based on image content. These segments may help a de-

signer to understand about the fundamental structure of

the visualization artifact being designed.

– Moving object tracking: While our approach in this paper

is based on static screenshots of a visualization, a dynamic

animation may yield further perceptual information about

a visualization. In particular, providing feedback on mov-

ing objects may be useful given human perceptual lim-

its on tracking multiple objects [12, 60]. It could also be

used to understand temporal aspects of an animation [22],

which can aid perception.

� Accessibility: The accessibility of visualizations has re-

cently become an area of burgeoning research within the

community [16, 17], and many visualization designers are

in dire need of assistance in making their charts accessible.

Here we review some specific forms of feedback that can

help.

– Color vision deficiency: An estimated 300 million people in

the world suffer from some form of color vision deficiency

where their ability to distinguish colors is diminished.

There are already websites and native tools to show what

a visualization tool looks like depending on the form of

color vision deficiency; integrating such feedback into a

framework would help further. In addition, Angerbauer et

al. [3] present several findings drawn from a large-scale

crowdsourced assessment of color vision deficiency in

visualization that could be operationalized for a virtual

human visual system.

– General accessibility: TheChartability framework by Elavsky

et al. [24] provides heuristics for evaluating and auditing

visualizations based on their accessibility to people with

different disabilities, including visual, motor, vestibular,

neurological, and cognitive ones. However, the framework

must currently be applied manually during an accessibility

audit. Operationalizing these heuristics into an automated

model would enable integrating it into a framework such

as ours.

4 THE PERCEPTUAL PAT SUITE

Perceptual Pat is an implementation for a virtual human visual

system designed for iterative design of data visualization artifacts.

In this section, we describe its system architecture, components,

and implementation.

4.1 System Overview

The Perceptual Pat suite is designed to meet the requirements in

Sec 3.3 (see Figure 3 for an overview; the black 0 and white 0

circles refer to the steps in the figure). The suite consists of two

components: a web-based user interface (the Pat Design Lab) and a

feedback system. The user interface (PDL) contains analysis and

archive modules—see the following subsection for more details. 1

The analysis module receives a chart image from a user in a graphics

format (e.g., .png, .jpeg, or .jpg). 2 This action automatically

triggers the feedback system to generate a report containing the

results of the diverse visual analysis we develop in Sec 4.3 (DR1,

DR2 and DR3). 3 The report will be shown to the user, and is also

stored in the database for future reference.

The archive module is designed to support the iterative chart

design process of a user (DR4 and DR5). 1 It allows a user to

retrieve the report that they generated before or to compare two

or more reports at the same time. The user will have a list of re-

port names shown in chronological order. By clicking those report

names, the user interface requests all reports from the feedback

system. 2 The feedback system will pull those reports from the

database. 3 Reports are shown in a single view side-by-side and

are scrolled up/down together.

4.2 The Pat Design Lab

The Pat Design Lab (PDL) is a web-based single-page application.

At its core, PDL consists of three functions: upload, analyze, and

save. Users can upload a screenshot of their chart image. Then, they

can analyze the image using the perceptual components provided

by the PDL. Finally, users can save their versions for comparison

with past designs.

To initialize the Pat Design Lab, the user needs to login to the sys-

tem (Fig. 4(A)). Once they have signed in, Pat Design Lab activates

and the update view (Fig. 1(A)) appears. In the update view, they

can choose a file to upload into the main interface. They can start

the analysis process by pressing the ‘analyze’ button in Fig. 4(C).

When PDL completes the analysis, the analysis report is dis-

played in the report view (Fig. 1(E)). Users can toggle filters that are

overlaid on top of the visualization image, as shown in Fig. 4. The

filter opacity can be controlled using a slider (Fig. 4(D)). Multiple

filters can be overlaid at once to enable studying compound effects.

The report view in Fig. 1(E) provides access to the full analy-

sis report; Fig. 5 shows an example. The component names in the

navigation view provides easy access to corresponding report sec-

tions 1(D). Users can also add notes about each component for each

section by clicking the document button in Fig. 4(E), which displays

a text input interface (Fig. 4(J)). They can save the version with the

notes by clicking the blue-colored button with a document icon in

Fig. 4(F).

The archives tab provides access to saved reports (Fig. 4(G)). This

page provides a full list of past reports and notes (Fig. 4(H)). It also

shows two windows that lets users compare two reports of their

choice (Fig. 4(I)).

4.3 Current Perceptual Pat Components

Table 1 shows the components in Pat’s feedback system, drawn

from Sec. 3.4. The focus of this work is not primarily in evaluating

the performance of these components, but in exploring how access

to a virtual human visual system can help users during iterative

design. For this reason, our goal was not to exhaustively cover

the entire design space in Section 3.4, but to find a representative

sample of components.

Towards this end, we chose several perceptual components that

cover a wide range of the feedback types in Section 3.4 and are read-

ily adaptable from existing computer vision and machine learning

libraries. Note that Pat uses a plugin system, so adding new compo-

nents is straightforward. Below we explain how we implemented

the seven components.
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Figure 3: System overview. The Perceptual Pat suite is comprised of a user interface (The Pat Design Lab) and a feedback system.

The user interface receives a data visualization (chart) from a user and automatically performs an analysis of the chart. The

feedback system consists of diverse visual analysis components and uses them to generate a report containing design feedback.

(We used Perceptual Pat to iteratively refine this figure by providing a freelance graphic designer with the original version and

a PDL report.)

Component Name Feedback Type Implementation

Scanner Deeply ☼ Visual Saliency Scanner Deeply [70]

Low-level Salience ☼ Visual Saliency Trained SimpleNet [61] using Salicon dataset [38]

Visual Entropy ☼ Visual Saliency SciPy library [79]

Color Suggestions h Color perception CSS filters, Python Image, OpenCV libraries

OCR k Text Google PyTesseract-OCR [39]

Chartjunk/Visual Embellishment ¡ Visual Representation YoloR [80]

Color Vision Deficiency � Accessibility Python Color-blindness library [25]

Table 1: Components composing Pat’s feedback system. Names, feedback type and implementation of seven components

included in the suite. These were selected to be representative and cover the design space in Section 3.4. We provide additional

technical and performance details on these components in Appendix A (supplemental material).

Optical Character Recognition (OCR). Optical character recogni-
tion is a computer vision technique [69] that detects text characters

from natural images. This technique gives the designer an “smoke

test” of the legibility of the text; if the OCR technique fails to detect

the text, there may be a legibility problem and redesign may be

needed.

A Scanner Deeply. Scanner Deeply [70] is a virtual eyetracker ; a
gaze heatmap generator using a neural network model trained on

more than 10K instances of eye movement data with chart images

as the visual stimuli. The model will generate a simulated heatmap

predicting where a person’s attention will be directed when viewing

a visualization.

Low-level Salience. This salience heatmap generator uses a neural

network model trained on the Salicon dataset [38], which contains

fixationmaps for a natural image dataset (i.e., Microsoft COCO [45]).

The component is particularly useful in showing viewer attention

for visualizations that contain natural image data, or in visualiza-

tions that are situated within the world, such as for a visualization

embedded in Augmented Reality.

Visual Entropy. This components generates a heatmap showing

visual entropy; pixels whose RGB values differ from neighboring

ones. This can potentially give designers awareness of the data

distribution in the image.

Color Vision Deficiency. This filter component provides color

overlays to enable the designer to see how people suffering from
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Figure 4: Designing visualizations with the Pat Design Lab. The user can log in to the system by signing in on (A). Then, they

can upload images on (B), and start the analysis process by clicking the ‘analyze’ button in (C). They can choose filters in the

control view, and at the same time control the opacity of the filter in (D). To take notes in the report, they need to click the blue

button in (E). Then, they can add texts in (J) and click the button ‘add.’ Users have to manually press the save button in (F) to

keep record of them report with notes. They can check her past versions of the design by clicking the hyperlink ‘archive’ at the

navigation bar (G). In the archive view, they can select a version of her interest in (H), and the most-recently chosen version

will appear at the left window, pushing the old one into the right window (I).

Figure 5: Report generated by the Pat Design Lab. The report contains information about filters used for the analysis of the

updated chart images. It consists of 8 sections. These include (1) the chart’s specifications, (2) OCR, (3) visual entropy, (4) a

Scanner Deeply, (5) low-level salience, (6) potentially distracting objects (Chartjunk [7]), and (7) color-vision deficiency.

different types of color vision deficiency (CVD) would see the visu-

alization. The component supports three types of CVD: (1) deutera-

nopia, (2) protanopia, and (3) tritanopia.

Chartjunk/Visual Embellishment. Our component for detecting

chart junk is implemented using the YoloR object detection algo-

rithm [80], which detects real-world objects visible in the visualiza-

tion image. The model is limited by its training, which may cause

it to fail to detect all objects, but this functionality can still serve as

early warning.

Color Suggestions. Our color suggestions component is imple-

mented using CSS filters and include blur, gamma, grayscale, con-

trast, and saturation. It enables envisioning how a visualization

would look under different color themes.
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4.4 Implementation Notes

The Perceptual Pat suite is implemented as a client/server web appli-

cation. The Pat Design Lab was built using HTML, CSS, JavaScript,

and JQuery. We implemented the feedback system using the Python

Flask web framework
1
; the analysis components were implemented

server-side in Python 3. We store data in MongoDB.
2
During the

user study, the platform was hosted on a Ubuntu Linux server

equipped with an Intel i7-12800K processor, 32GB RAM, 2 Pascal

Titan RTX GPUs, and 2TB of flash memory.

5 USER STUDY

We conducted a user study to assess the utility of the Perceptual

Pat suite and the web-based Pat Design Lab implementation. The

study asked participants to use the Pat Design Lab in support of

a visualization design task spanning between three and five days.

Rather than compare our approach to an existing tool, our study

is mostly qualitative in nature and focuses on understanding how

professional visualization designers might use the tool to iteratively

refine a visualization artifact. We motivate this choice by the fact

that there exists no directly comparable tool that would serve as a

useful baseline.

Here we describe the participants, methods, and metrics of this

study. In the next section, we report on the results.

5.1 Participants

We recruited 5 professional visualization designers using the Data

Visualization Society Slack channel. Table 2 presents an overview

of the participant demographics. All participants were paid a total

of $40 as an Amazon gift card upon completing the study (or its

equivalent in the participant’s requested currency). Unfortunately,

one participant abandoned the study after a week without produc-

ing any design artifacts; their demographic data is shown in Table 2,

but in no other part of the paper.

5.2 Apparatus

The study was conducted online in its entirety using the partici-

pant’s own computers. We imposed no specific hardware on the

study, only that the participant would use a personal computer, and

not a mobile device such as a smartphone or tablet for the design

task. We recommended them to use the website in Google Chrome.

Since the Pat Design Lab is designed to use only screenshots of

data visualization tools, participants were free to use their own

preferred visualization tool and workflows.

5.3 Design Task

Participants were asked to do only one thing during the 3-5 days

of the study: to design a new visualization from scratch using the

Pat Design Lab as supporting software. The visualization could

be anything: use any dataset, any representation, and for any use

(including merely for the purpose of this study). They were asked to

record at least 5 versions of their visualization into the Design Lab.

Ideally the five stored versions would be taken from representative

stages in the design process. Participants were instructed to read

1
https://palletsprojects.com/p/flask/

2
https://www.mongodb.com/

the reports, write at least one annotation, and to endeavor to use

the reports to improve their designs.

As stated above, we placed no restriction on the design work-

flow or visualization tools used in the process—participants could

use whatever tool they preferred, or even switch tools during the

process. For example, a participant could start with a pen-based

sketch and then proceed to using Tableau, Excel, or Spotfire. We

only stipulated that the participant spent a total of at least two

hours on the design process.

In summary, we made the following requirements on the visual-

ization design process:

• Resolution minimum 400×300, maximum 1000×1000 pixels
in resolution (higher resolutions were downscaled).

• At least 5 versions stored into the Pat Design Lab.

• Artifact must include at least one chart (any form of chart),

and could could include multiple charts.

• Artifacts may include text.

• Artifacts may not include photographs.

• No confidential or identifying information or data is to be

included.

• Participants give permission for publishing images of their

created artifacts in academic papers about the work.

5.4 Procedure

Our study was approved by our university’s IRB. The study con-

sisted of three phases that spanned over three to five days, followed

by an independent fourth phase involving external evaluators. We

scheduled the dates for each phase during initial recruitment. The

fourth phase was independent of the preceding three and did not

involve the designer participants. Below we describe each of the

four phases in detail.

Phase I: Initial Interview. During our initial interview (Phase I),

we gave a brief introduction of the study and then asked participants

to provide informed consent (signature waived due to the online

format) using an online form according to stipulations from our

IRB. We then collected participants demographics using another

form. The remainder of the initial interview consisted of training

during which time the experiment administrator (the first author

of this paper) demonstrated how to create an account in the Pat

Design Lab, authenticate and log in, and then upload a screenshot

of a visualization into the tool. The administrator then showed how

to run a Perceptual Pat analysis and interpret the resulting report,

as well as how to compare two different reports.

After finishing demonstrations, the experimenter asked the par-

ticipant to repeat each step, and answered any questions that the

participant had. Then the experimenter gave the participant their

design charge, including the requirements listed above. The par-

ticipant was given the design task in electronic form. Finally, the

session ended by confirming the date and time for the exit interview

(Phase III). Each session lasted approximately 30 minutes.

Phase II: Individual Design Process. During the intervening time

between the initial interview (Phase I) and the exit interview (Phase

III), the design process (Phase II) consisted of the participant work-

ing on the visualization artifact they were designing. Participants

were free to spend this time in any way they wished—we only asked
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ID Gender Age Education Job Title Years in Vis

P1 Male 28 Master’s Degree Software Engineer More than 3 years

P2 Female 27 Master’s Degree Ph.D. Student in Visualization More than 3 years

P3 Female 43 Master’s Degree UX/UI/Visualization Designer More than 5 years

P4 Female 24 Bachelor’s Degree Freelance Visualization Designer More than 1 year

P5 Male
∗

– (no information) (no information) (no information)

Table 2: User study demographics. Our participants were recruited from the Data Visualization Society Slack channel (https:

//www.datavisualizationsociety.org/slack-community) and community of IT Engineers in Facebook South Korea. ∗ = participant

P5 did not finish the study.

that they spent at least a total of two hours on the design work

and that they used the Pat Design Lab to support the process. They

were instructed to reach out to the experimenter with any questions

or problems that arose during the study; none of them did, and the

system was stable during the time period of the experiment.

Phase III: Exit Interview. The exit interview (Phase III) involved

asking the participant about their experiences using the Pat De-

sign Lab, their feedback about its strengths and weaknesses, and

their design process using the tool. The experiment administrator

then stepped through the participant’s version history in the Pat

Design Lab, one version at a time and asking about details for each

version. In case the participant had stored more than five versions,

the experimenter asked the participant to identify the five most

significant versions. Each session lasted approximately 30 minutes.

Phase IV: External Assessment. Finally, we recruited three exter-

nal evaluators to objectively assess the visualization design process.

All evaluators were senior visualization faculty or researchers with

experience in teaching data visualization and/or designing their

own visualizations. They gave informed consent and were then

given access to the sequence of visualization versions for each of

the participants. They were then asked to provide their assessment

of the quality of changes for each pair of versions (i.e., from version

1 to 2, 2 to 3, etc) as well as from the initial (version 1) to the final

(version 5) design using a 1-5 Likert scale (1 = significant decline in

quality, 3 = neutral, 5 = significant improvement in quality). They

were also asked to motivate their assessment using free text.

5.5 Data Collection

Interviews were video and audio recorded, and the audio was tran-

scribed for later analysis. Furthermore, demographics, subjective

preferences, and tool rankings were collected using online forms.

The Pat Design Lab itself was the main source of data collection.

This data encompasses each of the visualization versions uploaded

into the Pat Design Lab by the participants, including the screen-

shot of the visualization, the resulting Pat design report, and the

annotations added by the participant. These annotations were aug-

mented with the spoken comments that participants made about

each version during the version walkthrough in Phase III.

While we included all versions uploaded by participants in our

analysis, we also asked participants to identify the five most signif-

icant versions in case they had uploaded more than five.

6 RESULTS

Here we report on the results from our user study. First, we in-

troduce participants’ responses on interviews prior to starting the

experiment. Then, we analyze the evolution of the visualization

artifacts and the impact of Perceptual Pat on the iterative design.

Finally, we present participants’ comments after conducting the

experiment.

6.1 Results from the Initial Interview

Besides overall instructions and a demographics survey during

the initial interview in Phase I, we also asked the participants

three questions to understand how they usually get feedback for

visualizations; see Table 3 for the questions and responses. As is

clear from the table, the majority of participants receive feedback

from people who are easily reachable, such as peers, colleagues, or

supervisors (P2, P3). If the visualization is upon a client’s request,

then these designers tend to get feedback directly from clients to

confirm that their work is acceptable, as it is the most direct way

to understand the client’s intentions (P1, P4).

When asked whether they were familiar with tools that provide

design feedback, no participant was familiar with any such tool.

All participants felt, however, that such a tool would be useful. As

a main reason for this, all participants pointed out that receiving

timely feedback is sometimes a challenge and there are only a

few people who can provide feedback in visualizations. Asking

the same people over and over can be problematic. P2 provided us

another reason—that it is difficult to verbally communicate about

visualizations with peers and by using a machine, she might not

have such a problem.

P3 did raise an issue about the credibility and transparency of

the system. She felt that such a tool would be useful, but said, “I
am not sure if I can 100% trust the feedback provided by a machine.
If the machine makes a comment, I would like to know why, in detail,
it provided that comment, so that I can decide whether or not to trust
it.”

6.2 Evolution of Visualization Snapshots

Fig. 6 shows how visualizations of the four participants evolved

over 5 iterations of designs. Here we describe how each participant

changed their design based entirely on the uploaded images. In the

following subsection we explore the rationale behind each change.

Participant 1. Originally, P1 created his chart using Matplotlib,

a Python library for drawing charts. The first version of the chart

https://www.datavisualizationsociety.org/slack-community
https://www.datavisualizationsociety.org/slack-community
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P#

Q1: How do you currently get feed-

back to improve a visualization?

Q2:Are you familiar with any tools

that provide design feedback?

Q3: If such a tool existed, would

you find it useful?

P1 clients not familiar somewhat useful

P2 peers, friends not familiar very useful

P3 supervisors, managers, peers not familiar somewhat useful

P4 client, peers not familiar somewhat useful

Table 3: Initial interview with participants. Reponses for Q1 are given in the participant’s own order.

Version 1 Version 2 Version 3 Version 4 Version 5

P1

P2

P3

P4

Figure 6: Overview of collected designs. These images represent the five most significant versions (as identified by the par-

ticipants) during the design process of creating a new visualization artifact from scratch using the Pat Design Lab and the

Perceptual Pat Suite. All four participants from the study are represented (five were recruited, but one person abandoned the

study after a week).

was the initial version that Matplotlib creates, without any manual

constraints involved. In the second and third versions, he enlarged

the fonts of the letters within in the heatmap, the title, and axis

labels. In the fourth version, he changed the heatmap from a bipolar

to a unipolar color scheme. At last, he removed the potentially

disturbing icons next to the labels, to keep from disrupting the

readability of the chart.

Participant 2. P2 selected a research dataset classifying the inter-

actions commonly used for specific chart types. Initially, she started

off with a 2-axis grid scatterplot (version 1), where the horizontal

axis represents the types of interactions (e.g., hover, brush, click,

etc.), and the vertical axis represents the types of charts (e.g., bar,

line, etc.). The size of the blue-outlined circle in each point refers to

the frequency of charts. In the next version, she changed her chart

into a heatmap (version 2), and then into a grayscale (version 3).

Then, in the fourth version, she created both a heatmap and a grid

scatterplot. This time, she filled the circle with blue. Finally, in the

fifth version, she created a stacked bar chart, where each column

represents the proportion of different interactions and interactions

are represented as different colors of the bar.

Participant 3. P3 used a dataset on characters in a video game.

She used D3 to create a visualization. She started by creating a
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bar chart with 2 columns using grayscale (version 1). Afterwards,

she tried, in an iterative manner, different designs by changing

the number of columns, sizes of bars, and color (versions 2, 3, 4).

She finalized her visualization using green-colored bars on a gray

background (version 5).

Participant 4. P4 wanted to visualize air passenger traffic data

of 15 different cities. She decided immediately to use line charts

displayed in a 3 by 5 grid format. The initial version had gray

charts with a white background and a legend at the right side of

the visualization. In the second version, she moved the legend to

the top and removed grids that are drawn in each chart. In the

next version, she added a title in black, subtitle in dark gray, and

source information about the chart a the right end of the chart. In

the fourth version, she added a small airplane embellishment to

the image. In her final version, she performed finishing touches by

changing the color of the chart to a more saturated blue.

6.3 Evolution Rationale

Recall that in the report we asked the participants to record what in-

fluenced them to refine their design. These descriptions, intentions,

and reasons for the change are based on both these annotations as

well as the interviews conducted with each participant.

Participant 1. P1was conducting feature analysis of a deep neural
network, and wanted to create a chart to share with his peers in the

company. He initially looked at the OCR to see if the component

could detect letters in the chart. He consistently checked the size

of the font in the chart, and left notes below the report on OCR.

For example, he left a note below the report on OCR in the third

version, as “Increased the font size, after knowing that the label size
of the chart is too small.” Then he noted that the pink-colored areas

in the heatmap were not visible for people with deuteranopia, and

that the icons next to the label were detected by the potentially

distracting object. This led him in the last version to change from

pink and green color palettes to green palettes, and to removed

small icons next to the labels.

Participant 2. P2 wanted to construct a visualization that is capa-

ble of effectively contrasting the different types of interfaces used

for each chart. She was interested in searching for the chart that can

best show the types of interactions per each type of chart. In the

first version, she noted that she was not satisfied with using size as

the only encoding type. Then, in her second version, she changed

her scatterplot into a heatmap. She noted two points: (1) increasing

the brightness past a certain threshold can lead to information loss,

and (2) the visual entropy was overly focused towards the labels. In

her third version, she converted the chart into a grayscale version

and found that the grayscale version did not have colorblind issues.

In her fourth version, she added two different types of charts to the

design. She was also concerned about the results of the Scanner

Deeply, noting that gazemaps focused on textual information such

as labels and titles when she wanted people to focus more on the

data representation. However, she noted that while this concerned

her, she was unsure whether this was a good sign or not. Finally,

in the last version, she replaced the two charts with one stacked

bar chart with each bar representing the proportion of different

interaction per each chart. Then she noted that (1) it did not make

sense to have the data encoded as either points or a square in a

heatmap, and that (2) the Scanner Deeply finally focused on the

data representation more than the labels and legends.

Participant 3. P3’s goal in creating the visualization was to find

the proper size of columns for the bar chart and the proper color.

In the initial version, she left notes on all filters except the color

vision deficiency component. In the second version, she changed the

color using red palette, and created 4 columns to present bars from

2 columns. Here, she discussed the visual entropy and low-level

salience results, noting that there is more visual entropy because

of the icons in the navigation bar. She was also concerned that

the low-level salience concentrated on specific parts of the bars,

but was unsure how to change the design. In the third and fourth

versions, she tried to change the colors and the number of columns

in the main view. In the third version, she noted that the new low

saturated colors helped reduce user attention and instead focus

on the view with bars. In the fourth version, she noted that this

version looked like the worst design, considering the results form

visual entropy, Scanner Deeply, and low-level salience. In the final

version, she used these findings to change to a highly saturated

green to represent bars and to darken the navigation bar.

Participant 4. After receiving a report on his initial version, P4

left remarks about all components in the report. In particular, she

noted that the Scanner Deeply focuses only on the center of the

chart, and that the grids installed in each chart raised the complex-

ity of the charts. Consequently, she removed grids in each chart,

and placed the legend at the top of the charts in the next version.

Again, she left a note that the attention from the Scanner Deeply is

still focused too much on the center of the visualization. So in the

third version, she added a title, subtitle, and caption to the chart to

see if they help divert the attention to other parts of the chart. On

the report from the third version, she made comments on OCR and

Scanner Deeply. Using OCR, she identified that title, subtitle and

captions are noticed by the OCR component, and also that the atten-

tion of the chart diverged after putting in title and subtitle. In the

fourth version, she slightly modified the heights of each chart and

added a small airplane icon in the chart. Here, she mentioned that

image with higher saturation improved the visibility of line charts.

At last, in the final version, she changed the colors of the lines with

more saturated blue. From this, she observed that the increased

saturation also helped diverge the attention of gaze heatmaps from

the center to charts in various locations.

6.4 External Assessment

Table 4 summarizes the quality change ratings of the external evalu-

ators in the final phase (Phase IV) of our experiment. As can be seen

from the results, the evaluators mostly felt that all four participants

had successfully improved on their visualization designs over the

course of the design process. Only P2’s design received an average

rating below the neutral; evaluators were split in their assessment

of this design process.

The evaluators also provided qualitative feedback on the changes

they saw. Even if the evaluators only saw the visualization designs

(and not the Perceptual Pat reports), their written feedback often

called out specific design improvements, such as more salient color
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scales, more legible fonts, and better visual layouts that seemed

inspired by Perceptual Pat feedback. For example, they noted sev-

eral instances of increased legibility, larger font sizes for labels,

improved color scales, better visual layout, and better visual en-

codings. We were able to match the majority of these qualitative

observations to the feedback that the individual participants re-

ceived in the longitudinal user study.

6.5 Post-experimental Interview

After the experiment, we asked the participants six questions with

regards to their experience in Perceptual Pat. Q1, Q4, Q5, and Q6

are shown in Table 5, and Q2 and Q3 are described in Table 6.

When asked again about whether the tool was useful, all of them

answered positively about the system, answering either ‘somewhat

useful’ or ‘very useful.’ Then we asked for the advantages as well as

the disadvantages of Perceptual Pat. As for advantages, all partici-

pants agreed that the tool is capable of detecting problems within

the chart. We could identify from their notes in the report that

many changes in the design were based on these reports. Another

advantage shared among all participants was that it is convenient

to obtain feedback compared to when asking to get feedback from

clients, peers, and supervisors. P2 and P4 liked that it provides feed-

back quickly without having to ask peers for feedback. P3 thought

it could thus save time in getting feedback. Three participants liked

the fact that tools such as Scanner Deeply provide feedback on how

general audience would react to their visualizations. Also, both P2

and P3 thought that the tool help overcome their biases in visu-

alizations. For example, P3 originally thought that high levels of

saturation would make the chart look bad aesthetically, but when

changing the saturation value higher using Pat Design Lab, she

felt that adding saturation to the visualization was a choice worth

considering. Finally, another advantage P1 and P4 pointed out was

that the tools work as a checklist in evaluating the design, including

factors that are otherwise easily overlooked (e.g., inclusive designs

for the color blind).

In total, participants listed three disadvantages about the Per-

ceptual Pat. All participants were looking for not just detecting

problems, but actual guidance on how to improve a chart. While

the filters provided can help detect problems in the design, it is

up to the designers to find the right solution to the problem. The

participants thought that a guidance could facilitate the process of

their design processes. Also, P2 and P3 expressed concerns about

the difficulty in interpreting the results. P2 said that while some

feedback is easy to address, some of the filters are not easy to inter-

pret. She said, “some of the feedback, such as changing contrast or
brightness is easy, but some aren’t. Consider the Scanner Deeply, for
example. It is sometimes difficult to judge whether the heatmap is a
good or bad. ” P3 also talked about the importance of interpreting

the tool. To use Perceptual Pat in industry, she said, “one must be
fully comfortable with the mechanisms behind how the tool works,
so that when something is wrong, we know how to fix it.” Last but
not least, P3 asserted that visualizations are designed differently by

different target audience, and the tool will become more useful if it

suggested a specific group of components according to the target

audience.

In Q4 and Q5, when asked about the most/least useful compo-

nent, three participants thought that the Scanner Deeply was the

most useful component, being followed by OCR and color vision

deficiency. All participants thought that the color analysis and sug-

gestions were the least useful. As for which new component people

would most like to add (Q6), all participants asked for a functional-

ity that could provide design suggestions. In addition, P2 and P4

thought that a component that can provide interpretation about

the result could also help in improving a visualization design.

7 DISCUSSION

We here discuss the findings and implications from our user study,

followed by the limitations of our work, as well as our plans for

future work.

7.1 Benefits of the Perceptual Pat Suite

Shorten the feedback loop. All the participants commented on

the convenience of getting immediate feedback from Perceptual

Pat. In their regular workflows, participants reported their common

practice for receiving design feedback was to ask their peers or

supervisors, which is time-consuming and resource-intensive. In

contrast, Pat gives them to receive feedback within a minute or two,

thus saving time and resources for actual design activities. This

confirms our rationale for embarking on this project in the first

place.

Provide design guidance. Results from our user study confirmed

that the Pat Suite indeed helped our user study participants to

improve their visualization design. The quality assessments by the

external evaluators show a positive improvement trajectory for

each of the four participants even if there were inevitable setbacks

during the process.

The Perceptual Pat feedback was seen as direct and actionable.

P3, for example, mentioned that the gaze map predicted by Scanner

Deeply caused them to avoid users mostly focusing on the center of

their visualization. To tackle this issue, they raised the saturation of

the chart. After changing the colors to those with high saturation,

they re-ran the analysis and found that the Scanner Deeply pre-

dicted that the user’s attention would be more equally distributed

across the whole chart. Based on notes left in their reports, we

also found that that the majority of improvements—such as increas-

ing font size, changing the color scale, or reorganizing the spatial

layout—were made based on the feedback received from Pat.

7.2 Limitations and Future Work

Interpretability. Perceptual Pat’s feedback system contains com-

ponents that utilize deep neural networks for generating feedback,

such as Scanner Deeply or chart junk detection. The decision-

making process of those models, while accurate, is opaque, and

therefore developing interpretable models and tools is an active

area of research [1, 28, 40, 67]. P3 pointed out that for designers

to be able to trust tools such as Perceptual Pat requires significant

knowledge of how those models work. Despite our best effort in

providing the technical details of Scanner Deeply, P3 wanted to

know more about the factors that led to the model’s feedback re-

sponses. Said P3, “In the end, it is the designer who decides whether
to take advantage of this tool or judge whether what I am looking at
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Participant v1 → v2 v2→ v3 v3 → v4 v4→ v5 Overall

P1 4.50 (0.71) 3.50 (0.71) 3.50 (2.12) 4.50 (0.71) 4.50 (0.71)

P2 4.50 (0.71) 2.00 (1.41) 2.00 (0.00) 3.00 (2.83) 2.50 (2.12)

P3 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 4.00 (1.41) 3.50 (0.71)

P4 4.00 (0.00) 4.33 (0.58) 3.33 (0.58) 2.33 (0.58) 3.67 (0.58)

All 4.00 (0.71) 3.21 (0.98) 2.96 (0.67) 3.46 (0.98) 3.54 (0.82)

Table 4: External assessments. Average 1-5 Likert scale ratings (1 = significant decline, 3 = neutral, 5 = significant improvement)

by external evaluators assessing the quality of changes from one version to another (v𝑥 → v𝑦) as well as overall from the initial

to the final version. Standard deviations are given within parentheses.

P#

Q1:How useful was

the Pat Design Lab?

Q4:What tool(s) was the most

useful?

Q5:What tool(s) was the

least useful?

Q6:What tool would you

most like to add?

P1 very useful OCR, color vision deficiency

chart junk, color sugges-

tions

suggestion tool

P2 somewhat useful

Scanner Deeply, color vision

deficiency, visual entropy

color suggestions (except

contrast)

suggestion tool, result in-

terpreter

P3 somewhat useful

Scanner Deeply, low-level

salience

color suggestions suggestion tool

P4 somewhat useful Scanner Deeply, OCR

color suggestions (except

saturation)

suggestion tool, result in-

terpreter

Table 5: Post-experimental interview with participants. After each participant finished updating their versions of visualization,

in the post-experimental interview we asked 6 following questions to understand how they get feedback and whether they are

familiar with a tool that provides design feedback. In Q1, the answers are written in the order each participant mentioned.

Q2: Advantages of Perceptual Pat Q3: Disadvantages of Perceptual Pat

Detects problems within a chart (P1, P2, P3, P4) No guidance for improvement (P1, P2, P3, P4)

Convenience in asking for feedback (P1, P2, P3, P4) Difficulty in interpreting results (P2, P3)

Feedback on general audience reaction (P2, P3, P4) Unclear target audience (P3)

Helps overcome biases in visualizations (P2, P3)

Acts as a checklist for improving visualizations (P1, P4)

Table 6: Advantages and disadvantages of Perceptual Pat. After the experiment, we asked participants about the advan-

tages/disadvantages of a virtual human visual system providing visual feedback for visualization designers. The table shows a

summary of the answers from 4 visualization designers that participated in our experiment.

is a real problem. I must be able to know the extent I can trust when I
see a tool so that I can properly judge.” Thus, we hope to improve the

Perceptual Pat suite in the future by explaining the design feedback

it generates.

Recommendations. Perceptual Pat can be seen as an early-warning
sanity checker for visualization designs (i.e., a perception-based

visualization linter [15]) similar to the unit-tests that software engi-

neers use to ensure the functionality of the software they develop.

However, just like unit-tests, while Pat provides a list of potential

issues for a specific visualization, it does not offer recommendations

for how to fix them. P1 said “I know my design has several issues, but
Pat does not show suggestions for fixes." P2 pointed out by saying

that “I love this approach, but it would have been better if Pat could
tell me ’these are the issues and here is how you can fix them.’” Partic-
ipants also mentioned that, for less experienced designers, giving

concrete guidance would reduce the duration of the design process.

However, experienced visualization designers may not need such

guidance, as they generally know how to refine their designs from

Pat’s feedback. Thus, a future research direction is to add design

recommendations to the Perceptual Pat suite.

Accuracy. As with any automated method, there is always a risk

for erroneous results. False positives can be particularly problematic,

since it may give the designer the impression that everything is

fine, and thus not investigate further. A false negative, on the other

hand, means that the designer will inspect the problem manually.

This should only be a problem if the number of false negatives

flagged is excessive.

As a case in point, applying an OCR filter to extract all of the

textual labels in a chart may yield some recognition failures that

a human would not make. That is acceptable: the OCR filter is
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acting as a canary in a coal mine by indicating possible concerns

that may not be a problem in practice, or which may only be a

problem for people with diminished visual acuity. For this reason,

Perceptual Pat has been designed with the philosophy of favoring

false negatives over false positives; it is better to highlight many

potential problems than to run the risk of missing a real one.

Bias. Similarly, automation may also give rise to bias. Paradoxi-

cally, the fact that Perceptual Pat currently does not provide design

recommendations may actually reduce this effect. On the other

hand, even the mere reporting of perceptual aspects cannot be said

to be entirely unbiased; for example,highlighting one type of issue

(visual attention, text legibility, or color saturation) and not other

types (such as animation, use of visual channels, or Gestalt Law

groupings; all examples of components not currently supported

by Perceptual Pat) means that the former issues will tend to get

highlighted and thus fixed, whereas the latter ones won’t. In other

words, Perceptual Pat clearly has blind spots (no pun) that will have

an impact on visualization designs iterated using the tool. The only

remedy—besides progressively adding new components to the suite

to eliminate each of these gaps—is to at least make users aware of

their existence. Thus, in our future deployments of the tool, we will

inform users not only which perceptual errors the suite checks for,

but also which ones it does not.

Generality vs. Specificity. While all the participants in our study

felt that Perceptual Pat’s feedback helped improve their designs,

some pointed out that this “one-size-fits-all” strategy may not be

effective for all audiences. Said P3, “it would be helpful if Pat would
suggest not only which chart to use, but also which tool to use de-
pending on the audience and domain.” In fact, we see the potential

for taking this idea to its limit by providing customized “flavors”

of Pat—or Steve, Susan, and Xian—that embody specific audiences,

domains, and visual design philosophies. We leave such integration

and customization as future work, however.

8 CONCLUSION

We have presented Perceptual Pat, a virtual human visual system

designed for iterative visualization design. Pat comprises a suite

of image filters that are built using computer vision and related

technologies to provide design feedback akin to what a designer

may receive from both peer designers and supervisors as well as

perceptual evaluation results collected from an empirical usability

evaluation. The Pat Design Lab provides a web-based interface to

Perceptual Pat, enabling a user to track the evolution of their de-

sign work by repeatedly uploading new screenshots of their work,

analyzing it with Pat, and viewing the results in a design report.

To assess the utility of Pat and his Design Lab, we conducted a

longitudinal evaluation involving four professional visualization

designers who used the tool to support the design of a new visual-

ization artifact. Our findings showcase the utility of receiving quick

turnaround feedback from the Pat suite in the design process.
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A APPENDIX: PERFORMANCE OF

PERCEPTUAL PAT COMPONENTS

Perceptual Pat contains several components based on machine

learning models. Here, we describe the details of each model and

report the performance we measure. We use the pretrained models

offered by the original studies.

A.1 Visual Saliency

Scanner Deeply. Scanner Deeply [70] is a virtual eyetracker for
visualization; it can predict human gaze on a visualization. Given a

data visualization, this framework generates a gaze heatmap using a

deep neural network (SimpleNet) trained on over 10k crowdsourced

gaze maps for chart images.

Low-Level Salience. Low-level Salience is a gaze prediction tech-

nique also based on SimpleNet but trained on the Salicon [38] gaze

dataset for natural images drawn from the MS COCO [45] dataset.

Performance. In Table 7, we show the performance of the Scanner

Deeply and Low-level Saliency tested on pairs of gaze heatmaps

and visualization images. We compute six metrics: true-positive

(TP), true-negative (TN), false-positive (FP), false-negative (FN),

precision, and recall. To discretize the values of the predicted map,

we round the values of each pixel to 0 or 1. Then, we conduct a

pixelwise comparison between the ground-truth model and the

predicted heatmap. There is not a standard method to evaluate

gaze heatmaps, and various existing metrics are devised for specific

assumptions and applications. For example, Bylinskii et al. [11]

recommend, on probabilistic prediction maps such as the Scanner

Deeply and Low-level Salience, to use Kullback-Leibler divergence

for evaluation. Note that because both the Scanner Deeply and the

Low-level salience are probabilistic prediction maps, our method

will lower the true positive rates of predicted maps. We first show

that the performance of the model we use for Low-level Salience is

less accurate than the Scanner Deeply for visualization stimulus.

We also observe that Low-level Salience on chart images manifests

a large discrepancy between recall and precision. That said, it can

be a useful source of reference for salience when the visualization is

drawn with a natural image as its background or situated within the

world, such as for a visualization embedded in Augmented Reality.

A.2 Text

We use PyTesseract OCR, a Python version of the Tesseract OCR

engine, for the OCR component. Performance results are given in

Table 8. It shows high performance both in terms of precision and

recall on a Google Books dataset.

A.3 Visual Representation

We employ a object detection model called YoloR [80]; see Table 8

for our performance results.
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Models TP TN FP FN Precision Recall

A Scanner Deeply 6.31% (1.48) 81.21% (8.34) 10.28% (1.55) 2.20% (0.47) 0.38 (0.06) 0.74 (0.14)

Low-level Salience 5.86% (1.21) 78.49% (7.34) 13.00% (2.24) 2.65% (0.51) 0.31 (0.04) 0.69 (0.11)

Table 7: Performance of Scanner Deeply and Low-level Salience. We report the performance of those two gaze prediction models

tested on the dataset generated by Shin et al. [70]. This test-set contains 2,712 pairs of gaze heatmaps and charts.

Models Dataset Precision Recall

Tesseract-OCR (OCR) Google Books Dataset 0.94 0.90

YoloR (Chartjunk) Microsoft Coco Dataset 0.66 0.84

Table 8: Performance of OCR and Chartjunk components. YoloR uses the Microsoft COCO dataset. PyTesseract-OCR uses

Tesseract-OCR v4. These results are drawn from the Tesseract documentation [81] and Wang et al. [73].
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