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ABSTRACT

Olfaction—the sense of smell—is one of the least explored
of the human senses for conveying abstract information. In
this paper, we conduct a comprehensive perceptual experiment
on information olfactation: the use of olfactory and cross-
modal sensory marks and channels to convey data. More
specifically, following the example from graphical perception
studies, we design an experiment that studies the perceptual
accuracy of four cross-modal sensory channels—scent type,
scent intensity, airflow, and temperature—for conveying three
different types of data—nominal, ordinal, and quantitative.
We also present details of a 24-scent multi-sensory display
and its software framework that we designed in order to run
this experiment. Our results yield a ranking of olfactory and
cross-modal sensory channels that follows similar principles
as classic rankings for visual channels.
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INTRODUCTION

It is a truth universally acknowledged, that a new research
topic, such as information olfactation [58], in possession of a
good theoretical framework, must be in want of empirical vali-
dation. Following practice in graphical perception [11, 15, 54],
in this paper we report on a controlled perceptual experiment
designed to elicit internal rankings of four sensory channels
(analogous to visual channels [57] or visual variables [11])
for three different forms of data: nominal, ordinal, and quanti-
tative [66]. The channels included scent type, amount of scent,
speed of the airflow, and air temperature.
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Strictly speaking, only the former two are actually olfac-
tory channels; wind speed and temperature are tactile stimuli
sensed by the skin, and not the nose’s olfactory receptors.
However, we include them here because they are easily gen-
erated and manipulated by an olfactory display. Furthermore,
we opted not to include a stereoscopic channel due to the
complexity of the implementation as well as its perceptual
imprecision, where people tend to turn their head rather than
relying on differential sensing from two nostrils [60].

Conducting this evaluation required fabricating an information
olfactation display capable of supporting all of these sensory
channels within the necessary data ranges. Thus, a secondary
contribution of this paper is our olfactory display consisting
of 24 essential oil bottles controlled using ultrasonic diffusers
(Figure 1). The display is controlled using a software API
interfacing with an Arduino based device. Beyond the essen-
tial oil containers, which typically is configured to emit six
different smells at four different intensities each, the display
can also control the temperature using thermoelectric heating
and cooling (a separate chamber fitted with heating coils and
Peltier modules) as well as wind speed using controllable fans.

Not surprisingly, our results mostly follow analogous results
from graphical perception. In particular, based on accuracy
perception for different stimuli, we found that quantitative
data is best represented by temperature and wind speed, and
nominal data is best represented by temperature and scent
type. However, we were surprised that ordinal data was best
conveyed using scent type, which typically has no encoded
ordering. That scent intensity was outperformed by all other
channels was also unexpected, although we explain this with
the fact that an intensity of the same scent is difficult. This
framework of olfactory channel effectiveness provides a ref-
erence for designers and opens the design space of encoding
information through smells for interactive immersive displays,
ubiquitous analytics, and general analytical environments.

Our contributions are threefold: First, we propose a method-
ological standard for evaluating olfactory display techniques
based on existing graphical perception methods and general
olfactory studies. Second, we present a olfactory display sys-
tem capable of harnessing four sensory channels—scent type,
scent intensity, wind speed, and air temperature—to repre-



sent data. Finally, we use the results from our experiment to
establish a ranking of sensory channel effectiveness.

RELATED WORK

Our work spans perception, novel devices for visualization,
aspects of multimodality and accessibility, and olfactory dis-
plays. Here we review relevant literature in these areas.

Perceptual Psychology

Perceptual psychology [34], a part of cognitive psychology, is
concerned with the human sensory system, which in turn can
be seen as the preconscious aspects of human cognition [33,
65]. In general, the interpretation of any external stimulus by
our sensory system—e.g., sight, sound, touch, smell, or taste—
falls under the umbrella of perception [34]. Thus, perceptual
psychology is of interest to the data visualization community
not because of the stimulus itself—typically visual—or even
the characteristics of the sensory systems, but rather in terms
of the information-carrying capacity of the stimulus as well as
our bodies’ ability to interpret this information [72].

For data visualization, therefore, the primary instrument for
understanding perception is the graphical perception experi-
ment, where human participants are asked to interpret visual
stimulus in a controlled laboratory setting. Some of the early
work in this vein dates back to paper-based statistical graphics,
such as results by Eells et al. [28] from 1927, by Croxton et
al. [20] in 1927 on pie charts, bar charts, and circle diagrams,
and by Croxton et al. [19] in 1932 on shapes for comparison.
The work of Peterson and Schramm [59] from 1954 is seminal
in that it systemically studied eight different statistical graphs
and derived resulting guidelines.

Modern graphical perception for visualization can be said to
start from such holistic surveys that not merely measure accu-
racy for individual chart types or shapes, but attempt to study
and rank multiple ones. Already in 1967, Jacques Bertin, a
cartographer by training, assembled a ranking of so-called
visual variables (also known as visual channels [57]) from
his personal expertise and current practice in cartography [11].
Cleveland and McGill [15] assembled results from many per-
ception studies to provide a similar ranking of visual variables
backed by empirical data; remarkably, the rankings are more
or less identical. Mackinlay [54] later extended Cleveland
and McGill’s ranking into a more fine-grained model suitable
for automatic visualization design. While Mackinlay never
empirically verified his model, his ranking is foundational in
that it introduced variations depending on whether the data to
visualize is nominal, ordinal, or quantitative [66].

Novel Devices for Visualization

The mouse, keyboard, and monitor have long been the reigning
input and output hardware for visualization [52], but this is
slowly changing as device technology progresses beyond the
traditional personal computer. Recent years have thus seen
advances for visualization on large displays [2, 7], digital
tabletops [44, 71], multi-user environments [3, 25], mobile
devices [10, 63], and even smartwatches [14, 41].

Ubiquitous analytics [29] harnesses this menagerie of available
computing devices in a user’s immediate surroundings for

anytime and anywhere data analysis. Common among all
these efforts are middleware infrastructures for managing such
ecosystems [4, 5, 6]. Another focus is on the efficient use of
available display space; in particular, Horak et al. [42] propose
heuristics and algorithms for managing semantic layouts of
visualization views across multiple surfaces.

Another trend is on the use of immersive technologies, such as
virtual, mixed, and augmented reality, for data visualization.
Typically captured by the shared moniker “immersive analyt-
ics” [55], this family of tools and techniques rely on providing
fluid experiences for visualization [30] using the full 3D en-
vironment of the user—virtual or real—as a canvas for data
analysis. Examples include the Glyphmaker system for visual-
izing highly correlated multidimensional data in VR [62], the
multidimensional analysis system ImAxes [17], and a collab-
orative graph visualization tool for HMDs and CAVEs [18].
Such immersive tools are particularly well-suited for multi-
modal embellishments that go beyond mere vision, including
the sense of smell. We discuss these topics in detail below.

Multimodality and Accessibility

While visualization is traditionally based on transforming sym-
bolic data into geometric representations [12], there is a rich
plethora of other media that could be used for this purpose.
The motivation for such “multimodal visualization”—i.e., that
goes beyond the visual medium—is typically to either (a) aug-
ment stimulus, (b) provide complementary stimulus for when
the user’s eyes are busy, or (c) replace the stimulus altogether
for visually impaired users. In assistive technologies, the latter
is known as sensory substitution [16]: replacing input from
one sensory modality with another modality, such as convert-
ing written text into spoken language.

Regardless of motivation, the most common multimodal vi-
sualization is sonification, where data is represented using
audio. Zhao et al. [80] combine sound and speech to allow
visually impaired users explore linked maps and tables. Goncu
et al. [35] automatically translate floor plans into accessible
ones. Finally, Ferres et al. [31] propose a natural language
interface that uses speech to describe line graphs.

Touch is another powerful method for representing data be-
yond the visual medium. For example, embossed touch
maps [22] convey data in a 2D area using shape, electrovibra-
tion can be used to generate tactile feedback of 2D data [78],
and multimodal VR with force feedback is superior to tra-
ditional printed tactile media [79]. The natural extension to
tactile visualization is data physicalization [46], where phys-
ical artifacts are used to convey data. Examples include 3D-
printed tangible maps [48, 40], physical bar charts [69, 70],
and wheeled micro-robots for representing data [51].

Olfactory Displays

A specialized form of data physicalization uses smell to repre-
sent data. If olfaction is the sense of smell, then an olfactory
display is a programmable device that is capable of creating an
olfactory stimulus by (a) emitting odorous molecules (chemo-
stimulation) [64], or (b) directly activating odor receptors in
the nose (electro-stimulation) [38]. The former category—
creating olfactory stimulus by emitting odor—can be further



organized based on its mode of distribution: ultrasonic atom-
ization, atomization through Venturi effect, and evaporative
diffusion. Patnaik et al. [58] surveys these mechanisms.

The most straightforward usage of olfactory displays is for
increasing presence in immersive applications, such as Virtual
Reality training and recreation. In fact, Sensorama [39], the
very first VR implementation and patented in 1962, included
both “at least one” scent channel, as well as a fan to generate
a breeze on the user’s face.

However, our interest in this paper is more narrow in that
we focus on olfactory displays used for information olfacta-
tion [58]: using scent to convey abstract data—such as stock
market price over time, node types in a social network, or
the distribution of data in a histogram—rather than a realistic
phenomenon—such as the smell of a damp cave in a dungeon
crawler, the tang of gunpowder in a combat simulation, or
the heavy aroma of motor oil in an airplane mechanic train-
ing application. Washburn and Jones [73] were among the
first to suggest this practice, listing several existing olfactory
devices that could be used for data visualization. However,
most existing displays are typically used for a small number
of notifications, such as Dobbelstein et al.’s “scentifications”
using the inScent pendant [24], Dmitrenko et al.’s use of odor
for driving-related messages [23], and Grace and Steward’s
peppermint scent to alert drowsy drivers to prevent them from
falling asleep at the wheel [36]. Similarly, in his master’s dis-
sertation, Kaye [49] talks about smell icons—smicons—and
proposes a “symbolic” olfactory display that, for example,
uses the scent of mint for a rising stock market, and lemon
for a falling one. Most recently, Patnaik et al. [58] proposed
two six-scent displays—a tabletop and a mobile device worn
around the user’s neck—as well as a theoretical framework for
information olfactation, along with several examples.

In the face of all these prior efforts, we have yet to come
across any work that studies the efficiency of different aspects
of scent—or, olfactory channels—for different forms of data.
To the best of our knowledge, therefore, we believe this is the
first study that does for olfactory displays what Bertin [11],
Cleveland and McGill [15], and Mackinlay [54] did for visual
displays: it ranks olfactory channels for quantitative, ordinal,
and nominal data based on empirical findings.

Thermal Feedback

There has been extensive research exploring the utility of
thermal stimulation as a feedback channel both for HCI and
Virtual Reality (VR) [47, 76]. This ranges from the role users’
perception of thermal cues plays in the identification of objects
or in the creation of a more realistic image of an object, to the
suitability of thermal cues for encoding information in non-
visual situations. Thermal stimuli consists of parameters such
as direction of change (warming/cooling), amount of change
(intensity), and rate of change, which all contribute to how it
is perceived by users [76]. Beyond the ‘yes-no’ detection of
thermal stimuli, different combinations of thermal parameters
have been shown to be perceptually different and suitable for
communicating with users both when presented in isolation,
and when combined with other modalities (e.g., visual or au-
ditory stimuli) [1, 76]. They have been demonstrated to be

suitable for communicating both discrete and continuous infor-
mation. For example, Wettach et al’s. [74] thermal navigation
app guides users to their destinations using different levels of
thermal stimuli (the hotter the stimulus, the closer the user is
to their destination). Similarly, Wilson et al. [75] used thermal
icons as non-visual notifications for text messages. Direction
of change (warm and cool) was mapped to message source
(’personal’ and ’work’), and intensity of change (moderate
and strong) was mapped to message importance (’standard’
and ’important’) of a text message. Thermal icons were identi-
fied with an accuracy of 83%, thus showing the suitability of
thermal feedback for communicating discrete data.

In terms of how users perceive and interpret thermal stimu-
lation, in normal atmospheric conditions (approximately 20–
40◦C), warm, large or fast thermal stimuli changing from
the skin’s resting temperature are generally perceived to be
stronger and less comfortable than cool, smaller or slower
changes [47, 76]. Also the higher the thermal stimuli inten-
sity, the more arousing (level of activation/excitement) and
dominant (level of control) users perceive them to be.

Similar to the natural associations between temperature sen-
sations and subjective experiences in language and cognition
(e.g., cold and distant or warmth and physical closeness) [43],
temperature also has an inherent association with smell, such
as the warmth in the smell of cinnamon and the coolness in
the smell of mint. This makes thermal stimuli a natural choice
for augmenting olfactory feedback by adding an extra thermal
parameter to olfactory displays.

OLFACTORY DISPLAY: IMPLEMENTATION

ViScent 2.0 (Figure 1) is an olfactory display for information
olfactation [58]. The system is organized into components that
control unique sensory channels for encoding information.

Ultrasonic 
diffuser 
pods

Power supply
Liquid coolant 

supply
Microcontroller pin 

connections

Airflow fan 
array

Figure 1: The viScent 2.0 system.

System Overview

ViScent 2.0 is a tabletop olfactory display capable of producing
a range of olfactory stimuli for information olfactation. More
specifically, the viScent olfactory channels include

• Scent type: fragrance (e.g., leather, peppermint, coffee);

• Scent intensity: perceived air concentration of an odorant
(essential oil in solution with water as inert solvent);



• Airflow rate: speed of the air carrying the scent; and

• Air temperature: temperature of the conveying air.

Each of these channels is managed by a subsystem, four in
total, as well as a control system; we describe them below.
All components are enclosed in two custom-designed physical
modules: the olfactory display unit and the control tower. The
build is a MakerBeam (anodised aluminium beams) framework
covered with acrylic plexiglass panels, laser cut into shape.
The olfactory display unit houses all component subsystems.

The control tower houses the control system and power sup-
plies. It is responsible for controlling the functioning of all
four subsystems. The tower has digital readouts (Figure 2)
that display relevant information such as temperature (room,
coolant, heating, and cooling core) and power (power and
voltage drawn by the heating, cooling, and control systems).

System 
readouts

Liquid 
cooling 
system

Cooling 
fans

[piped to peltier] Connections 
to tabletop 
display 

Figure 2: The viScent 2.0 control tower.

Control System

The control system is housed in the uppermost section of the
control tower, and modulates the entire system. It is run by
an ATMega2560-based microcontroller. The microcontroller
interfaces through a USB cable with a computer running Unity-
based software controlling the entire system.

Channel: Scent Types

We define scent classes as discrete fragrances as a means of
encoding information. We use essential oils diluted with water
as the source of the scent. The oil-water mixture is atomized
with an ultrasonic transducer controlled by the ATMega2560
microcontroller. The transducer sits on a cork fitted to a glass
bottle containing the oil-water mixture. A cotton bud fitted
underneath the transducer acts as a channel carrying the scent
from the bottle up to the transducer. All bottles are fitted on
the display with a custom designed 3D printed housing. We
use 6 distinct fragrances for scent type (5 in the experiment).

Channel: Scent Intensity

We define scent intensity as the intensity of a certain fragrance.
To define scent intensity quantitatively, we shall use the con-
cept of volume fraction to represent the concentration of odor-
ant presented to the user; for a more nuanced discussion of the
conversion from odorant concentration to scent intensity than
is in scope for the purposes of this paper, a rigorous compari-
son is presented by Wu et al. [77]. Volume fraction is defined

as volume of a constituent divided by the volume of all the
constituents of the mixture prior to mixing. Volume fraction
is a dimensionless quantity. For our experiment, we dilute
essential oils by mixing them with water. Our system uses
5 levels of dilution producing 5 intensity levels of a certain
fragrance (see supplemental material for details). The volume
fractions of our essential oil mixtures (for scent intensity) are
available in the supplemental material to this paper. These
mixtures are then placed in the ultrasonic atomizer pods for
atomization.

Channel: Airflow Rate

We define the airflow rate as an olfactory channel which relates
to the speed of the air carrying the smell. In our implementa-
tion, we measure this as a function of fan speed as determined
by voltage delivered to the device’s fans; however, we must
note that the preferred measure of airflow rate in olfactory
literature is volumetric flow rate, which is the product of flow
velocity and cross-sectional area [21]. Here, the idea is to
evaluate if an increasing air flow rate carrying a certain scent
relates to an increasing quantity in a dataset or vice versa.
We use 12V brushless DC fans to diffuse the scent vapours
towards the user. AirFlow rate is controlled by controlling
the fan speed. We use L298N driver to control the fan speed
with Pulse-Width Modulation (PWM). The L298N driver is
controlled by the ATMega2560 microcontroller. The specific
voltages for the fan speeds used in our study are available in
the supplemental material.

Channel: Air Temperature

We define the temperature of the air carrying the scent as a
channel where the temperature of the air carrying the scent is
associated with a quantity from the data. Designing a thermal
system to control air temperature is critical as achieving rapid
temperature changes can be complicated. Here we present a
detailed description of the thermal system design and chal-
lenges associated with it.

To achieve a programmable air temperature control, we seg-
ment and design the thermal interface in two parts, a heating
and a cooling system. This helps us instantly switch between
heating and cooling without delays.

Air Heating

We use resistive heating to maintain a heated core over which
air flows. A blower produces an air stream through the heated
core: drawing-in air from the surrounding, pushing it through
the heated core and out through a vent that opens up to the
user. A MOSFET (AOD4184A, N Channel) controls the cur-
rent flowing through the resistive heating core, thereby con-
trolling the heating core temperature. The microcontroller
(ATMega2560) interfaces with this MOSFET with PWM. We
also attach a temperature sensor adjacent to the heating core to
monitor the temperature. A L298N driver controls the blower
fan, thereby controlling airflow rate. We optimize the airflow
rate and the resistive heating to obtain optimal warm air.

Air Cooling

The air cooling system is one of the most complex systems
employed in this prototype. We use thermoelectric cooling to
maintain a cooling core at subzero temperature. Mirroring the



heating system, a blower produces an air stream through the
cooled core: drawing-in air from the surrounding, pushing it
through the cooled core and out through a vent that opens up to
the user. We use four thermoelectric modules (TEC1-12706)
attached underneath an aluminum heat exchanger that acts as
the cooling core. These modules sit on top of an aluminum
liquid cooling block. The modules are sandwiched between
the aluminum heat exchanger (cooling core) and an aluminum
liquid cooling block with thermal adhesive. On supplying
power, the thermoelectic modules act as heat pumps pulling
heat from the heat exchangers/cooling core to the other side
interfacing with the aluminum liquid cooling block. This
rapidly cools down the cooling core thereby heating up the
aluminum liquid cooling block. We circulate a coolant (XSPC
EC6: a high performance, high thermal conductivity coolant)
through the aluminium liquid cooling block and an aluminium
heat exchanger that sits outside the olfactory display on the
control tower. This coolant transfers the heat produced by the
thermoelectric modules to a heat exchangers. Three 12V DC
cooling fans create a steady stream of air flow through the heat
exchangers to bring about efficient heat transfer. The coolant
is stored in a coolant reservoir connected to a pump that does
the circulation. Two temperature sensors are connected to this
cooling system, one placed on the cooling core to monitor
the cooling core temperature and the other dipped inside the
coolant in the coolant reservoir tube to monitor the temperature
of the coolant. The blower fan is controlled by a L298N
driver interfaced with the ATMega2560 microcontroller to
control cool air flow. The thermoelectric modules, the cooling
core and the aluminum liquid cooling block are covered with
thermal insulation to have maximum efficiency.

METHOD

We conducted a perceptual experiment evaluating the utility
of scent for conveying abstract information. In doing so, we
followed the analogy of past empirical work on graphical per-
ception such as that catalogued by Cleveland and McGill [15],
Mackinlay [54], and Bertin [11]. Similar to these studies, the
ultimate purpose of our study was to determine an internal
ranking between sensory channels and different types of data:
quantitative, ordinal, and nominal [66].

We conducted pilot tests to find noticeable differences for all
conditions (see below). Our study, including methods, design,
and predictions, was preregistered1 prior to collecting data.

Apparatus

We conducted our study using the viScent 2.0 device as the
olfactory display (Section 3). The device was connected to a
laptop computer running Microsoft Windows 10. The laptop
ran the Unity-based viScent control system, as well as an
automated testing framework implemented using the viScent
API. Instead of the laptop display, we used a 55-inch display
with a resolution of 1920×1080 pixels.

The study was conducted in an isolated laboratory space. The
viScent tabletop display was arranged between the participant
and the display in a position so that it would not obstruct
the screen, yet was still at a comfortably distance from the

1https://osf.io/grdk7/

user’s face. Participants wore noise-canceling ear protection
during the experiment to minimize confounds from ambient
noise or sound from the olfactory display. Box and stand
fans were used during experiments to maintain air circulation.
Furthermore, the space was thoroughly aired out between
sessions to eliminate vestigial scents.

The scent configuration was designed specifically for the ex-
periment. For scent intensity, we used five bottles of different
intensities of mango (see Section 3.4). For scent type, we used
five scents based on cognitive psychology empirical work by
Castro et al. [13] as it relates to the framework introduced by
Patnaik et al [58]: leather, orange, peppermint, coffee, and
pear. Each scent was represented in three different intensities:
the low, mid, and high volume fractions from above. The
remaining 4 bottles were not used during the experiment.

Participants

We recruited 20 paid participants (12 identified as male, 8
as female) for our experiment. Participant ages ranged from
22 to 30 years. All participants were university students and
had a basic knowledge of data and statistics. No participant
reported olfactory dysfunction, and we screened participants
against allergies to any essential oil used in the experiment
both during recruitment as well as during informed consent
prior to the experiment. No participant reported discomfort.

Experimental Factors

We involved the following two factors in our experiment:

• Sensory Channel (SC): The sensory aspects used to convey
data. We studied the following four channels:

– SCENT TYPE (S): Using one of five scents to convey
data (leather, orange, peppermint, coffee, and pear).

– SCENT INTENSITY (I): The concentration of mango
(five fractions, see Section 3.4) used to convey data.

– AIRFLOW RATE (A): The speed of the air (i.e., wind)
delivering the scent (conveyed using fan voltages).

– TEMPERATURE (T ): Temperature of air delivering the
scent (one cooling, one neutral, and three heating).

• Data Type (DT ): The specific type of data being conveyed
using scent [66]. Informed by Mackinlay’s three-part rank-
ing [54], we study three data types:

– QUANTITATIVE (Q): Numbered items that support all
arithmetic operations (a combination of interval-scale
and ratio-scale levels [66]).

– ORDINAL (O): Labeled items that support rank order,
but not relative degree of difference between items.

– NOMINAL (N): Categorical items that differentiate
only on their names or identifiers.

Tasks and Stimuli

The experiment involved a single task—identifying a data item
conveyed using scent—with different instantiations depending
on the data type DT . For all tasks, the screen showed a visual
representation of the data type (Figure 3):

• Quantitative sensing task (TQ): Recover a number en-
coded using the sensory channel. Display: A slider with a
continuous color scale.



(a) Task TQ (quantitative). (b) Task TO (ordinal). (c) Task TN (nominal).

Figure 3: Examples of each task (one per data type DT ). Participants select the value conveyed using scent and then click the
“Submit” button. This is followed by a dialog asking for the participant’s confidence on a 5-level Likert scale.

• Ordinal sensing task (TO): Recover an ordered data item
encoded using the sensory channel. Display: A slider with
a five-segment color scale.

• Nominal sensing task (TN): Recover a nominal data item
encoded using the sensory channel. Display: An unordered
list of checkboxes.

Similarly, the mapping from data values to scent differed
depending on which sensory channel SC was used (nominal
data was assigned in random order):

• Scent Type: Items were assigned to scents depending on
their position in the range of possible values.

• Scent Intensity: ascending items (if ordered) assigned to
ascending scent intensities (essential oil saturations).

• Airflow Rate: ascending items (if ordered) assigned to
ascending fan voltages (yielding increasing airflow).

• Temperature: ascending items (if ordered) assigned to
increasing temperature (cooling and heating).

For ordinal and nominal data types, the data range for tasks
was five distinct values for each sensory channel, which trans-
lated to five different scents for S, five different scent inten-
sities for I (Section 3.4; we did not use a 0% intensity as the
absence of smell is not a reliable signal), five different airflow
rates for A (five distinct voltage values to the fans), and five
different temperatures for T (one cooling, one neutral, and
three heating settings with increasing voltage).

For quantitative data, we used continuous voltage for the air-
flow rate R. However, since scent type S and scent intensity I
rely on discrete bottles where the diffuser can only be turned
on or off, we had to blend bottles to generate additional smells
to carry more than five values. Blending scents is a non-linear
process [58], so more research is needed here.

With this caveat in mind, we generated additional scent types
S by blending the three different intensities of the five scents
used so that any value between a scent type SA and scent
type SB was subdivided into three regions using a blend
of scent intensities (H,M,L for high, medium, low) as fol-
lows: [0,0.17)→ (H ×SA,0), [0.17,0.5)→ (M×SA,L×SB),
[0.5,0.83) → (L× SA,M × SB), and [0.83,1) → (0,H × SB).
This yielded a total of 13 unique scent blends.

Five bottles yielded 25 = 32 distinct intensities. To represent a
value, the value was normalized to the range [0,32), converted
to binary, and used to activate the corresponding bottles 0–4.

Each experimental condition (SC×DT ) was repeated three
times. Prior to each block of three repetitions, participants
were given a tutorial where they were given the “sensory leg-
end” that corresponded to the visual display. For example,
for scent type S, the participant would get to smell each scent
as its associated value on screen was highlighted, e.g., that a
lemon scent corresponded to “Volvo.” A visual label persisted
on the screen showing this scent-to-data mapping through-
out the block of repetitions, but the sensory legend was not
repeated again. In the example above, the olfactory label
“lemon” would be placed under the data label ”Volvo.”

Experimental Design

We used a within-participants factorial design where each par-
ticipant was exposed to trials for all sensory channels and data
types. This yielded the below design, the order of each ex-
perimental condition SC×DT randomized to counterbalance
systemic effects of practice:

4 Sensory Channels SC (S, I, A, T )
× 3 Data Types DT (Q, O, N)
× 3 repetitions

36 trials per participant

For each trial, we collected the accuracy (both whether the
answer was correct, and for ordinal and quantitative data, the
normalized distance from the correct answer), the completion
time, and the Likert-scale confidence rating. The completion
time was measured from the beginning of a trial until the end
of the 9-second habituation period (see below) or when an
answer was submitted, whichever was shorter.

Procedure

Upon arriving at a session, participants were first given in-
formed consent in an antechamber outside the laboratory space.
The purpose here was to screen for allergies to essential oils
prior to entering an area that could be potentially hazardous to
a person with allergies.

After giving consent, the participant was allowed to enter the
laboratory space and was given a brief explanation of the
purpose of the study. The experimenter demonstrated the



olfactory display and the testing framework. The participant
was allowed to train on several example trials using different
sensory channels. Timed trials began once the participant
indicated they felt comfortable to proceed.

Each block of experimental conditions SC×DT began with
the above tutorial, during which the sensory legend was dis-
played. This was followed by the three repetitions, each with
a new random data value to sense. The same visual legend
persisted during the entire block of three trials. During a trial,
sensory stimulus was active for a total of 9 seconds. This corre-
sponds to the typical sensory habituation period of the human
olfactory system [58]. After this period, a visual feedback
indicated that the stimulus was no longer active. Participants
were not able to repeat the stimulus.

After submitting a data value corresponding to the sensory
stimulus, the software would pop up a dialog box polling the
participant about their level of confidence in their answer on
a 5-point Likert scale. This was followed by a blank screen
during which a participant could rest between trials.

Once all trials had been completed, the participant was given
an exit survey. They were then compensated $10 for their par-
ticipation. A typical session lasted between 50 to 60 minutes;
no single session lasted more than one hour.

Predictions

We formulate the following basic predictions and our cor-
responding motivation about our experiment. We want to
emphasize, however, that the goal of this paper is not to accept
or reject hypotheses, but rather to derive rankings of sensory
channels for different data types.

P1 Participants will be significantly more accurate when
sensing nominal (N) data using scent type (S) than all
other sensory channels. Distinct scents lend themselves to
distinguishing between discrete sets of data items.

P2 Participants will be significantly more accurate when
sensing ordinal (O) and quantitative (Q) data using scent
intensity (I) than all other sensory channels. Our sensory
systems are sensitive to intensity, and its increasing nature
fits ordered data types.

P3 Participants will be significantly less accurate when sens-
ing ordinal (O) and quantitative (Q) data using scent type
(S) than all other sensory channels. Distinct smells are
ill-suited to representing ordered data (cf. P1).

RESULTS

Here we review the results from our study, starting with an
overview and then organizing findings into the three data types:
nominal, ordinal, and quantitative. For each data type, we will
discuss accuracy/error and completion time. The reason we
slice our results by data type first is that we are not primar-
ily trying to compare different types, but rather to derive an
internal ranking within each type (similar to Mackinlay’s rank-
ing [54]). We also report on participants’ subjective feedback.

Following our preregistration, we use bootstrapping (N =
1,000 iterations) on repetitions aggregated by simple mean

for each participant by olfactory channel and data type to cal-
culate 95% confidence intervals, and then analyze the results
graphically [26].

Overview

Figure 4 shows a summary of the three dependent measures
arranged by data type DT . As stated above, ranking between
different data types is of no real consequence to our study, so
we will not discuss this data further other than to say that there
appears to be little support for claiming that any of the data
types N, O, and Q exhibits divergent performance compared to
any other data type. The only exception may be that the small
overlap between CIs (Figure 4c) suggests that participants
were faster for trials with nominal than with ordinal data.

We also study the perceived confidence rating given by partici-
pants after each trial in Figure 5. The fact that all confidence
intervals are well above the neutral is another indication that
our experiment is a success, at least as perceived by the partici-
pants themselves. Results per data type in Figure 5a seem very
similar, and there is little evidence to suggest that participants
expressed different confidence ratings for different data types.
The confidence ratings in Figure 5b are more divergent based
on the sensory channel. In general, there is some evidence to
suggest that temperature T was the channel that participants
felt most confident about. Certainly, participants appear to rate
their confidence for temperature T as stronger than for inten-
sity I and airflow rate A. Furthermore, the confidence intervals
for scent type S and scent intensity I (both olfactory) are larger
than the other two (tactile) channels, which may indicate that
tactile sensing is more accurate than olfactory sensing. Other
pairwise comparisons are more difficult to assess.

Figure 6 summarizes error (distance from the correct value),
correctness (ratio of participant’s answers that were exactly
correct), and completion time. We refer to this figure below.

Nominal Data

The top row of plots in Figure 6 represent participant perfor-
mance for nominal data N. Note that the error metric is not
applicable to nominal data, as there is no distance property for
nominal data (it only supports equality). Correctness, how-
ever, is defined as whether the participant’s response exactly
matched the stimulus, and taken in aggregate it represents
the ratio of trials that were exactly correct. The plot in Fig-
ure 6b depicts 95% confidence intervals that are rather large,
indicating that this was a challenging experimental condition.
Since there is significant overlap between CIs, there is only a
moderately strong ordering between sensory channels SC.

For completion times (Figure 6c), which may be less important
for our ranking except to provide context, the spread is smaller.
Temperature T , intensity I, and scent type S appear to yield
similar completion times, with a slight advantage for scent
type, but they are all outperformed by airflow A.

Ordinal Data

Data collected for trials involving the ordinal data type O
are shown in the middle row of Figure 6. The error rate
(Figure 6d) here exhibited relatively high spread, with trials
that used intensity I seemingly resulting in higher error than
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Figure 5: Perceived confidence on a Likert scale ranging from
-2 (uncertain), through 0 (somewhat), to 2 (certain).

the other three channels. Scent type S and airflow A are close in
performance, but the correctness plot (Figure 6e), where scent
has a clear advantage, shows that scent wins out. Intensity,
however, appears to be outperformed by the other channels
even in this plot. Airflow A performs slightly better than
temperature T for both error and correctness.

As for completion time (Figure 6f), the data suggests that
airflow rate A required less time for trial completion than for
scent S, temperature T , and scent intensity I.

Quantitative Data

The bottom row in Figure 6 shows data for the quantitative
data type Q. In this case, we do not plot correctness, as the
quantitative data trials asked participants to answer using a
continuous data scale. It is rather unlikely that participants
would be able to answer the exact correct value being conveyed
using the sensory stimulus, so instead we rely on the distance
from the correct value (e.g., the error) as the accuracy metric.
Studying this error metric (Figure 6g), there is ample evidence
that temperature T was the most accurate sensory channel for
perceiving quantitative data. The data also suggests that the
airflow rate A is moderately more accurate than the scent type
S, and that they both are more accurate than scent intensity I.

Completion times in Figure 6i seem to indicate that airflow rate
A is faster than scent type S and temperature T , and possibly
even scent intensity I. Scent intensity also appears to exhibit
shorter completion times than both scent and temperature.

Subjective Feedback

None of the participants reported ever having used an olfactory
display in the past; in fact, many were intrigued by the concept
and volunteered for the study mainly to experience it. Several

expressed curiosity about applications of our work; “I look
forward to see how you will implement this in real life.”

In practice, participants spent approximately 45 minutes on
each session. While all participants who begun the experiment
also completed it, several noted that they felt saturated at the
end, their ability to smell diminished. However, we saw no
indication of this in our analysis. Nevertheless, participants
expressed some surprise in the level of difficulty in the trials;
said one participant, “this was a lot harder than I thought.”
This may have arisen from the high granularity expected of
participants, where some noted that they were easily able to
discern the “big picture,” but not minute details.

We also conducted a Likert questionnaire of participants after
the experiment to evaluate their experience of the display
system (Figure 7). Participants were asked if they agreed with
statements of positive sentiment regarding ease of adoption,
enjoyment, ease of use, learning curve, and efficiency.

DISCUSSION

Our results on the error, correctness, and completion time for
sensing information-carrying stimulus begin to show the utility
of information olfactation. Below we summarize these results
after discussing the benefits of encoding data with smell.

The Perks of Smelling a Wallflower

While prior work by Patnaik et al. [58] provides a more de-
tailed examination of contexts in which scent may be prefer-
able to vision for evaluating information, it is worth briefly
enumerating why this is a good idea in the first place. Put
succinctly, olfactory encoding is useful in situations when a
person cannot look (i.e., their eyes are busy elsewhere, such as
when driving, or for ambient displays in an office), or cannot
see (i.e., data analysis by people with low vision or blindness).
It also offers benefits in representing information relevant to
the gradual buildup of findings as part of the sensemaking pro-
cess by encoding “slow-moving” data as an ambient feature
of the environment [32, 49].

The virtues of ambient information displays have been amply
discussed elsewhere [27, 56, 61]; for example, we see data
olfactation as a useful addition to an ambient information
environment such as the ambientROOM [45]. We note that the
latter situation—accessible data visualization—is receiving
increasing interest in the visualization community [53] We also
find it worth highlighting that, in our own results, we find that
the self-reported user experience of information olfactation
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Figure 6: Error (top row), correctness (middle), and completion times (bottom) organized by data type DT and sensory channel
SC. Error bars show 95% confidence intervals, and dots show means. Plots marked N/A are those where the metric is undefined.
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display systems are generally quite positive (Figure 7). This
work is an important entry into that conversation. Blind or not,
all of us navigate a spatial world and need to access data.

Quantitative Data

Synthesizing the above findings, we now derive a ranking of
sensory channels for quantitative data. Just like Mackinlay’s
ranking [54], the below ranking is not entirely based on em-
pirical findings; rather, it is supported by empirical data. For
each channel, we give a brief motivation for the ranking:

Q1. TEMPERATURE (T ), on account of being most accurate;

Q2. AIRFLOW RATE (A), on account of being slightly more
accurate and faster than scent type;

Q3. SCENT TYPE (S), on account of being more accurate than
intensity; and

Q4. SCENT INTENSITY (I), on account of being the least
accurate sensory channel for quantitative data.

Ordinal Data

Scent type outperformed all other channels in error and cor-
rectness for ordinal data, indicating that the sharp distinction
between scents aided in solidifying the users’ perception of
the boundaries between values along a discrete scale.

O1. SCENT TYPE (S), on account of being the most accurate
(comparable in error, better in correctness);

O2. AIRFLOW RATE (A), on account of being slightly more
accurate and faster than temperature;

O3. TEMPERATURE (T ), on account of being more accurate
(both in error and correctness) than intensity; and

O4. SCENT INTENSITY (I), on account of being the least
accurate sensory channel for ordinal data.

Nominal Data

The results for nominal data are inconclusive for P1: there is
no clear evidence that scent type is better than temperature for



nominal data (in fact, it may be worse). However, scent type
exhibited a shorter completion time, thus yielding our ranking:

N1. SCENT TYPE (S), on account of tied best accuracy while
being the faster;

N2. TEMPERATURE (T ), on account of tied best accuracy;

N3. AIRFLOW RATE (A), on account of being the fastest;

N4. SCENT INTENSITY (I), on account of being the least
accurate sensory channel for nominal data.

Smelling Least → Smelling Best

One of the more surprising findings from our study was that
scent intensity was outperformed by basically all other sensory
channels for all data types (the plots in Figure 6 give the
detailed results). This clearly disproved our prediction P2,
which was the exact opposite. However, this phenomenon has
an explanation in the literature.

In psychophysics, the quantitative study of physical stimuli
and the sensations and perceptions they produce, the concept
of sensory scaling in assigning perceived numbers to sensory
experiences is well-known [50]. Sensory experiences are sub-
jective, and building a personalized scale for specific senses
is a time-consuming process based on past experience and
exposure. What one person ranks as strong stimulus—say, a
9 on a scale of 1 to 10 commonly referred to as the Labeled
Magnitude Scale (LMS) [37]—may merely rate as moderate
for someone else, e.g., a 6. Furthermore, some people merely
have a higher sensory range than others; for example, so-called
“supertasters” [8] experience taste with far greater intensity
than others. Also, intensities are modified by their context;
for example, a word such as “large” or “small” all depend on
the noun it describes. This is why Stevens [68] can give the
following example without ambiguity: “Mice may be called
large or small, and so may elephants, and it is quite under-
standable when someone says it was a large mouse that ran
up the trunk of the small elephant.”

To address this, psychophysics researchers have introduced
the so-called “general” Labeled Magnitude Scale (gLMS) [9]
where instead of labeling the rungs on the scale using the same
specific sense—e.g., “10 is the most intense smell you have
ever experienced”—the scale is labeled using the strongest
imaginable sensation of any kind, i.e., not restricted to the spe-
cific sensory channel. This begins to address the personalized
concern, but arguably still makes for a subjective scale.

Nevertheless, mitigating the scaling problem takes time, and
scent intensity is typically untrained for most people. Since
our goal was to empirically understand information olfactation
with participants representative of the general population, we
did not provide any extended training in the intensity tutorial.
Furthermore, the nature of our experiment precluded us from
leveraging the gLMS scale since all trial blocks were preceded
by an “sensory legend.” However, we did base our scent
intensity on the power law of psychophysics [67] (Section 3.4).

Limitations

Perhaps the most significant limitation to our study is the
possibility of olfactory contamination. To combat this, we

designed our olfactory display to physically separate scents to
avoid direct contamination. We also conducted informal tests
of our system prior to conducting our user study in order to
verify that the stimuli were being presented to the participant
as expected. However, many of the adjustments made during
this period were based on the subjective sensory perception
of olfactory stimuli by the authors. A more robust validation
step would involve either capturing instrument readings from
positions relative to the olfactory display corresponding to the
position of the participants’ noses, or inserting validation trials
in the user study in which participants are asked explicitly to
distinguish between scents.

Another limitation, implicit in both our study design and Pat-
naik et al.’s [58] theoretical model, is that we assume, based
on existing empirical work, that olfaction is cross-modal. We
do not evaluate how effective temperature or airflow rate are
without an odorant. While we supervised the participants dur-
ing the study to ensure that the thermal and airflow channel
modifications were centered on their faces, there is still room
for improving the impact these features have on olfaction.

As noted earlier, our study involves both olfactory (scent and
intensity) and tactile (airflow and temperature) channels rather
than olfactory channels alone. However, this is also consistent
with our pragmatic philosophy to information olfactation; we
are not merely interested in the information-carrying capacity
of smell alone, but rather what information can be conveyed
using a typical olfactory display. This philosophy is also
consistent with the human-computer interaction audience.

Finally, our study was a laboratory study, which limits the pool
of potential participants. As a result, our study included 20
participants; not a large number of participants by any account.
With that said, to quote Dragicevic [26], “there is no magic
number of participants.” We are confident in the number of
participants and the validity of our results.

CONCLUSION AND FUTURE WORK

We put the theory of information olfactation to practical test by
empirically evaluating the olfactory perception of information.
While our efforts mirror seminal work by Mackinlay [54] and
Cleveland and McGill [15], it is the first study of its kind.

The disappointing results for odor intensity for all data types,
as well as for scent type in encoding quantitative and nomi-
nal data, warrants further exploration. While we believe our
hardware implementation accurately conveyed these signals
to the user, it is still an approximation simulating the desired
stimulus. The possibility remains that our participants may
not be perceiving the scent intensity with as granular a level
of detail as is required for the task at hand. Refining the gran-
ularity of detail in the level of intensity in scent for presenting
users with abstract information is an open area of research.
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