
DataSite: Proactive Visual Data
Exploration with Computation of
Insight-based Recommendations

Accepted in Information Visualization
(N/A):1–14
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Zhe Cui1, Sriram Karthik Badam1, M. Adil Yalçin2, and Niklas Elmqvist1

Abstract
Effective data analysis ideally requires the analyst to have high expertise as well as high knowledge of the data.
Even with such familiarity, manually pursuing all potential hypotheses and exploring all possible views is impractical.
We present DataSite, a proactive visual analytics system where the burden of selecting and executing appropriate
computations is shared by an automatic server-side computation engine. Salient features identified by these automatic
background processes are surfaced as notifications in a feed timeline. DataSite effectively turns data analysis into a
conversation between analyst and computer, thereby reducing the cognitive load and domain knowledge requirements.
We validate the system with a user study comparing it to a recent visualization recommendation system, yielding
significant improvement, particularly for complex analyses that existing analytics systems do not support well.

Keywords
Exploratory analysis, user interfaces, proactive visualization, visual insights.

Introduction
Data exploration using visual analytics37 is often character-
ized as a dialogue between analyst and computer, with each
conversational partner providing unique and complementary
capabilities2: the analyst provides creativity, experience, and
insight, whereas the computer provides algorithms, compu-
tation, and storage. In practice, however, most current visual
analytics systems put the analyst in the driver’s seat to guide
the analysis. This one-sided arrangement falls short when the
analyst does not know how to best transform or visualize the
data, or is simply overwhelmed due to the sheer scale of the
dataset or the limited time available for analysis. A balanced
dialogue would share control between the two conversational
partners—analyst and computer—in a way that leverages
their respective strengths. Such a proactive approach to data
analysis would automatically select and execute appropriate
computations to inform the analyst’s sensemaking process.

In this paper, we present DATASITE, a proactive visual
analytics system where the user analyzes and visualizes
the data while a computation engine simultaneously selects
and executes appropriate automatic analyses on the data in
the background. By continuously running all conceivable
computations on all combinations of data dimensions, ranked
in order of perceived utility for the specific data, DataSite
uses brute force to relieve the burden from the analyst
of having to know all these analyses. Any potentially
interesting trends and insights unearthed by the computation
engine are propagated as status notifications on a feed view,
similar to posts on a social media feed such as Twitter or
Facebook. We designed this feed view to support different
stages of exploration. Status updates are continuously and
dynamically added to the feed as they become available
during the exploration. To provide a quick overview, they are
presented with a brief description that can be sorted, filtered,
and queried. To get more details on an individual response

without committing to the active path of exploration, we
allow the analyst to expand an update to see details in
natural language as well as an interactive thumbnail of a
representative visualization. Finally, the user can select an
update to bring it to the manual specification panel, allowing
for manual exploration.

Our web-based implementation of DataSite consists of a
web client interface for multidimensional data exploration
as well as a server-side computational engine with a
plugin system, allowing new components to be integrated.
The client interface is a shelf-based visualization design
environment similar to Tableau (based on Polestar23).
The server-side computational engine currently includes
common analysis components such as clustering, regression,
correlation, dimension reduction, and inferential statistics,
but can be further expanded depending on the type
of data being loaded into DataSite. Each computational
plugin implements a standardized interface for enumerating
and ranking supported algorithms, running an analysis,
and returning one or several status updates to the feed
view. Computational tasks are run in a multithreaded,
non-blocking fashion on the server, and use rudimentary
scheduling based on their perceived utility for the dataset.

While our proactive analytics approach and DataSite
prototype are novel, they are part of a greater trend on the use
of recommendation engines for visualization (e.g.,26,43,44).
However, additional empirical evaluation is still needed to
understand how (a) mixed-initiative and proactive analytics

1University of Maryland, College Park, MD, USA
2 Keshif LLC, Alexandria, VA, USA

Corresponding author:
Zhe Cui, University of Maryland, College Park, MD 20742, USA.
Email: zcui@umd.edu

Prepared using sagej.cls [Version: 2016/06/24 v1.10]



2 Accepted in Information Visualization (N/A)

compares to traditional exploratory analysis, as well as
(b) specific approaches to this idea compare to each
other. Towards this end, we present results from two user
studies involving exploratory analysis of unknown data,
one that compared DataSite to a Tableau-like visualization
system (PoleStar23), and one that compared it to a partial-
specification visualization recommendation system (Voyager
244). Using DataSite’s feed, our participants derived richer,
more complex, and subjectively insightful findings compared
to when using PoleStar, or even Voyager 2’s recommendation
feed. This supports our hypothesis that a true proactive
analytics platform such as DataSite can improve coverage
and increase complexity of insights compared to reactive
or partial-specification approaches. Beyond the DataSite
system, our approach can be applied to other exploratory
analysis tools to promote richer exploratory analysis, even
for non-experts, analysts pressed for time, or analysts
unfamiliar with a dataset before exploration.

Background
DataSite extends the literature on exploratory visual analysis
and visualization recommendation to better aid analysts with
data exploration in a proactive manner. Here we discuss the
state-of-the-art research and inspirations for DataSite.

Exploratory Visual Analysis
Exploratory data analysis (EDA)14,38 is the canonical user
scenario for visualization. The key characteristic for EDA
is that the analyst is not initially familiar with the dataset,
and may also be unclear about the goals of the exploration.
The exploratory process involves browsing the data to get an
overall understanding, deriving questions from the data, and
finally looking for answers.

Efficient data exploration often relies on visual inter-
faces38. Dynamic queries32 is an interaction technique for
such interfaces, where users formulate visual queries as a
combination of filters. Writ large, faceted browsing allows
for creating queries on specific dimensions of the data47.

Visual Specification
Specifying visual representations is one of the key
challenges in visualization. Research efforts here span the
spectrum from programming languages to point-and-click
interfaces. Visualization toolkits such as D36 represent one
side of this spectrum, and gives unprecedented control
over the visualization, but at the cost of significant
programming expertise and development time. High-
level visual grammars, such as Grammar of Graphics42,
ggplot241, and Vega-Lite28, abstract away implementation
details, but may still have a high barrier of entry and steep
learning curve due to the need for visual design knowledge.

A recent development in visual specification has been
the introduction of interactive visual design environments
such as Lyra27, iVoLVER19, and iVisDesigner24. Even more
recent tools include Data Illustrator16 and DataInk45, both
of which use direct manipulation to allow designers to bind
visual features to data. Common among them is that they
require no programming, and are thus positioned at the very
other end of the spectrum from visualization toolkits and

grammars. However, interactive view specification can be
clumsy and inefficient at times, and may still be plagued by
challenges due to the intricacies of visualization design.

Shelf-based visualization environments such as Polaris34,
Tableau35, and PoleStar23 fall in the middle of the spectrum.
Common among these is their ability to allow the user to drag
and drop data dimensions, metadata, and measures to specific
“shelves,” each one representing a visual channel such as
axis, shape, scale, color, etc. This point-and-click approach
to visual specification is flexible enough to construct a wide
range of visualizations, but not so complex so as to become
technical, such as Lyra, iVoLVER, and iVisDesigner. In
DataSite, we employ a variant of a shelf-based visualization
environment for this very reason.

Visualization Recommendation
The idea behind visualization recommendation is to use
recommendation engines12 to suggest relevant views to
the user, thus reducing the cognitive load. While this idea
has seen a resurgence in the visualization community in
recent years, it is by no means a new idea. Mackinlay17

first proposed automatic visualization design based on
input data in 1986. His work combines expressiveness and
effectiveness criteria inspired by Bertin5 and Cleveland
et al.7 to recommend suitable visualizations. Tableau’s
Show Me system18 provided a practical and commercial
implementation of these ideas.

Many similar approaches to automatic visual specification
exist. Sage25 extends Mackinlay’s work to enhance user-
directed design by completing and retrieving partial
specifications based on their appearance and data contents.
The rank-by-feature framework31 sorts scatterplot, boxplots,
and histograms in a hierarchical clustering explorer to
understand and find important features in multidimensional
datasets. SeeDB40 generates a wide range of visualizations,
and define which ones would be interesting by deviation
and scale. Perry’s22 and Van den Elzen’s39 work attack the
problem that generates multiple visualizations shown with
small thumbnails.

Recommendation engines have been used to great effect
for visualization in the last few years. Voyager43 generates
a large number of visualizations and organizes them
by relevance on a large, scrolling canvas. Visualization
by demonstration26 lets the user demonstrate incremental
changes to a visualization, and then gives recommendations
on transformations. Zenvisage33 automatically identifies and
recommends interesting visualizations to the user depending
on what they are looking for. Recently, Voyager 244 builds
on Voyager, but supports wildcards in the specification
and provides additional partial view suggestions. “Top-K
insights”36 provides theory for generating insights, which is
the main motivation of our paper. All of these ideas were
formative in our work on DataSite, but our approach takes
this a step further by focusing on continuous computation
from a library of automatic algorithms, with findings
propagated to the user in a dynamically updating feed.

Proactive Computation alongside Visualization
The idea of proactive visual analytics discussed in our paper
builds on the idea to opportunistically run computations in

Prepared using sagej.cls



Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 3

Input Data

Format and Load User Interaction

D
at

a 
Fi

el
ds

Categorical

Temporal

Numerical

Pr
e-

de
�n

ed
A

lg
or

ith
m

s

Average/Variance

. . .
. . .

Natural language 
descriptions

Proactive 
Speci�cation

Fe
ed

 
Co

m
po

ne
nt

s

Rendering

Proactive
Features

Correlation

Frequency Count

Regression

Data processsingManual 
work�ow

DataSite
work�ow

Charts Users Insights

Reactive Speci�cation

Common
Procedure

Figure 1. The structure and workflow of the DataSite visual analysis system. The manual and proactive (DataSite) visualization
workflow have shared common procedures in the middle. Components within the red rectangle are the key parts of DataSite:
proactive computational modules that can run through various data fields, visualization, and natural language descriptions. These
together offer suggested features in the feed.

anticipation of user needs, which is observed in Novias20,
TreeVersity9, and Analyza8 (Explore in Google Sheet).
Novias identifies visual elements of evolving features and
provides multiple views in an interactive environment.
TreeVersity provides a list of outliers in textual form,
which identifies changes in the data automatically. The most
similar research to DataSite is Analyza, which provides
auto-computed features in natural language. In contrast,
DataSite aims to push proactive computation to depth and
complexity rather than just simple overall statistics in the
dataset. Furthermore, DataSite pushes features to a feed
view that is akin to social media feeds users are already
accustomed to.

Design Rationale: Proactive Analytics
The core philosophy for proactive analytics is that human
thinking is expensive, whereas computational resources are
(generally) cheap. Following this philosophy, a proactive
approach to visual analytics should automatically run
computations in the background and present its features to
the analyst in an endeavor to reduce the analyst’s cognitive
effort during the sensemaking process. In essence, the
solution is to use brute force computational power of the
computer to help balance out the equation between the
human analyst and the computer tool. This leverages the
respective strengths of each partner while complementing
their weaknesses:

• Human analyst: The human operator analyzing data.

– Strength: creativity, experience, deduction,
domain knowledge.

– Weakness: limited short-term memory, compu-
tational power, lack of analysis expertise, and
limited perception.

• Computer analytics tool: The tool facilitating analysis.

– Strength: significant memory and computational
power; large library of analytical algorithms.

– Weakness: no creativity, intuition, or deduction.
Lack of domain knowledge.

Based on these ideas and the related work (see the
previous section), we derive the following design guidelines
for proactive visual analytics tools (we give examples of
illustrative systems for each guideline):

D1 Offload computation from analyst to machine. The
analytical tool should be designed so as to offload as
much as possible of the analysis from the user. Given
our core philosophy, this means that the tool should
never be idle waiting for the user to act. Instead, it
should always be running tasks in the background, and
start another task as soon as one finishes.

– Example: The Voyager43 and Voyager 244

systems pre-emptively perform computation on
features of the current dataset to provide new
views to the user.

D2 Present automated features incrementally with
minimal interruption to the analyst. Automatic
features derived by the background computational
processes must be propagated to the user, but the
presentation of these features should be designed
so as not to interrupt the user’s cognitive processes
needlessly. These features should be accumulated in
a feed where they can be easily surveyed and viewed
at the user’s own initiative rather than in a blocking
manner that requires action.

– Example: The InsightsFeed tool1 progressively
runs calculations in the background and updates
the displays as new results come in.

D3 Reduce the knowledge barrier of human thinking.
Data analytics is a nascent discipline with rapidly
evolving methods, many requiring the data to support
specific assumptions or exhibit certain properties, so it
is often difficult even for expert-level analysts to stay
abreast of current practice4. This is another situation
where timely proactive support can save analyst effort
by investing CPU time: the tool can simply run every
conceivable analytical method from a large library
of methods (ordered by perceived utility) and only
present interesting trends.

Prepared using sagej.cls



4 Accepted in Information Visualization (N/A)

– Example: Tang et al.36 propose a tool that
automatically calculates the top-k insights from a
multidimensional dataset based on an importance
function used to score different findings.

D4 Eliminate “cold-start” through exposing poten-
tially relevant features of the data early during
exploration. A challenge related to the knowledge
barrier is the so-called “cold-start problem”; the fact
that, when beginning analysis on a new dataset, it can
be challenging to know how to get started because the
data can be overwhelming and difficult to get a handle
on. Again, this can be mitigated by not choosing
but simply performing all applicable analyses from a
library of such methods.

– Example: Schein et al.29 define the cold start
problem for recommender systems and propose a
method for deriving recommendation scores for
new items based on similarities to existing items.

The DataSite System
DataSite consists of (1) a user interface for proactive
visual analytics containing components for visualization
authoring along with a dynamically updated feed view, and
(2) a proactive computation engine continuously running
background modules on a target dataset. The user interface
runs in a client on a modern web browser and consists
of a manual visualization view coupled with a feed view.
The client interface is designed for an analyst to use
when manually analyzing data in their web browser. The
computation engine, on the other hand, runs in a server
process, thereby offloading computation (D1). The feed
view accumulates features as status updates (D2), each
consisting of a title, an icon, a detailed textual description,
and a representative interactive visualization. Working in
concert, the feed view reduces the knowledge barrier
(D3) by continuously displaying trends from the proactive
computation engine. The feed also provides a starting point,
eliminating the cold start problem (D4).

Client-Side: Visualization Interface
The DataSite interface comprises a data schema panel, an
encoding panel, a manual chart specification view, and a
feed view (Figure 2). The data schema, encoding, and
chart specification views together compose a basic shelf-
based visualization system for exploring the data. The main
visualization view is shown in the center of the screen, with
the data schema and encoding on the left. This interface
design is consistent with typical exploratory visualization
tools, such as Tableau, QlikView, and Spotfire.

Augmenting this design, the dynamically updated feed
view is the key interface-level contribution of DataSite.
The feed accumulates features generated by the server-side
computation engine. To give ample space for the analyst’s
navigation through the interface components, the feed is
placed on the right side of the screen to complement the
manual specification view. The data and encoding panel can
be hidden to free up additional space.

The feed view is inspired by social media feeds, where
events pinned by participants appear in a dynamically
updating list in chronological order. A data feature in the
feed is a notification from a computation engine. Once
a feature has been computed by a server-side analysis
component, it will be dynamically added to the feed. The
feed view can be searched and filtered; sorted by the
computational measure, the time it was produced, or in
alphabetical order; and grouped by type. Each feature is
initially represented as a short title and an icon explaining
the underlying computation task. Users can expand a feature
to see a detailed text description as well as an associated
chart for the data attributes processed by the underlying
computation (Figure 3), and then collapse it when needed.
When the user manually selects or drag-and-drop data
attributes in the encoding panel, the feed will be reordered,
with computational categories that contain the selected data
attributes moved to the top.

Each update item in the feed consists of the following
components (expanded on demand):

• Title: Each update has a compact title that gives a brief
idea of the contents of the feature or insight. This title
and the thumbnail is the only thing shown when the
update is collapsed, thus taking a minimum of display
space. For example, the Pearson correlation generates
titles such as “ρ = 0.5 for Weight and MPG.”

• Icon/thumbnail: A small iconic representation that
gives a visual indication of the contents. For
computations that generate charts, this could be a
miniature thumbnail of the chart.

• Textual description: A description of the feature
presented on the feed view in a proactive manner.
For example, for the Pearson correlation coefficients21

between Weights in lbs and Miles per Gallon in cars
dataset11, the textual description is: “Correlation of
0.5 was found between attributes Weights in lbs and
Miles per Gallon.” This active description gives the
analyst the sense that the computer is their collaborator
in helping them explore the data. To avoid overloading
the feed with an excessive number of features, we
combine related trends and illustrate them with a
single chart (e.g., min/max are combined, described as
a range, and shown on a bar chart, see Fig. 4).

• Charts: Manual view specification yields full control
to the analysts, but may cause high cognitive load.
To avoid this, DataSite shows the most efficient
encodings for each chart corresponding to tasks from
a computational module according to the existing
metrics5,7,17. Charts are lazily rendered when clicked,
thus reducing the page load significantly. For instance,
with two categorical attributes, DataSite renders a
heatmap (Figure 5) with the intersecting frequency
counts marked in color. Similar to the approach in
previous research2,43, charts can be moved to the main
view panel by clicking a specify the chart icon on the
top right. Furthermore, charts highlight aspects of the
underlying computation as visual cues: for example,
charts generated from the clustering computation will
highlight the clusters within the chart.

Prepared using sagej.cls



Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 5

Feed

Group of Features

Expanded Feature

Manual Chart Specification

Text Search and Filters

Data Panel Encoding Panel

Click

Figure 2. DataSite is a proactive visual analysis system that allows the analyst to explore data on the web-based client using a
standard visualization interface (data, encoding, and manual chart specification panel), while a server-side component
automatically selects and executes relevant computations without prompting. Features gleaned from these analyses are surfaced
and updated dynamically in a Feed View (right) on the client, similar to posts in a social media feed.

Figure 3. Example of features in the feed: a brief textual
description (“Correlation metric between Miles per Gallon and
Displacement attributes in a Cars dataset.”) with a
corresponding auto-generated chart (scatterplot for these two
specific attributes). A red line that shows the computed
correlation trend between two attributes is also shown.

In addition to automatic updates, analysts can pin views
from the manual chart visualization window, saving that view
as an update in the feed. The feed view keeps track of these
user-generated updates as a separate category. This is the
same as bookmarking charts, and in the future we plan to
make the feed a collaborative space, where either human or
computer pin features to allow sharing of findings.

Figure 4. Chart types for different computational modules used
in DataSite. From left: histogram bar (mean/variance),
histogram line (min/max), and scatterplot (clusters in 2D).

Server-Side: Computation Engine
The server-side DataSite computation engine begins ana-
lyzing a dataset as soon as it is uploaded. The engine

consists of multiple computational modules (easily extended
as plugins); Table 1 shows a sample. A single module can
yield several tasks; for example, a simple Pearson correlation
module would create a task for each combination of numeri-
cal attributes, but not for categorical attributes.

A scheduler analyzes the data and runs computations
in a specific order; see the next section for details on
scheduling analysis. The computation engine is multi-
threaded using a computational thread pool, executing each
computation in the scheduled order. For each finished task,
the computational module will generate a status update that
will be pushed to the visualization interface. As soon as a
computational thread is freed up, the scheduler will recycle
the thread for a new task. In this way, the engine is never
blocked by complex, long-running tasks. Furthermore, each
computation module executes independently, so a single
module failure does not affect the overall system. For
example, if one module fails executing due to errors or
invalid data, it will not return results, but other modules can
still execute without interruption.

By virtue of this modular architecture, DataSite can
be easily extended with new computation modules. The
current implementation provides statistical analysis, K-
means clustering (3, 5, 7 clusters), density based clustering
(DBSCAN with various parameters), linear regression, and
polynomial regression modules. Figure 4 shows sample
charts created in the feed view for some computation
modules. Again, computational modules can be added easily,
and the goal of the framework is to have as many modules as
possible such that computational engine is always running
and recommending insights to the user.

Scheduling Automatic Analysis
The scheduler is a core component in the computation
engine. It passes the dataset through its entire library of
loaded computational modules, receiving an estimate of the
computational complexity and relevance from each module
based on the meta-data—number of attributes, types, and
dataset size. Furthermore, the scheduler also encodes typical

Prepared using sagej.cls



6 Accepted in Information Visualization (N/A)

Figure 5. Representative chart (heatmap) automatically
generated for co-occurrence frequency counts of two
categorical data fields (origin country and number of cylinders)
in a Cars dataset. Darker color indicates more counts in that
category combination; in this example, V8 cars from the USA.

analytical practice by focusing on main effects and trends
in the dataset, and then turn to specific combinations of
dimensions of the data. All of the metrics are then used
by the scheduler to determine which modules to run, and
in which order to run them. It may also reschedule jobs
in response to results returned from another module; for
example, to run post-hoc analysis in response to a significant
result from an analysis of variance test. In addition, the
scheduler may choose to launch long-lasting analyses—
such as multidimensional scaling or cluster analysis—early,
knowing that these results will take a while to return.

DataSite currently utilizes asynchronous multi-threaded
operations for all the existing computation modules
mentioned above. The system starts executing all the
algorithms asynchronously when initially receiving the
dataset. It then waits for results to come back, updating
the feed in response. In the future, we anticipate letting the
user guide the computation order, either more implicitly,
or explicitly (by providing interactions to steer the
computation). This would enable customizing the DataSite
scheduler to the analytical practice of a specific user while
retaining the overall hybrid model. However, such implicit
or explicit computational steering of proactive analysis is
outside the scope of our current work.

Implementation
DataSite is based on a client/server architecture. The client
side is developed using AngularJS,∗ a JavaScript-based web
application framework. The visualization functionality in the
DataSite client is based on the PoleStar interface (available
as open source)23, which is built on top of Vega-Lite28.

We implemented the computational engine using
Node.js,† a non-blocking server-side JavaScript framework.
Datasets of interest can be uploaded by the user on the client
interface, and sent to the server. The server processes them
using the engine and proactively sends the finished features
to the feed view. This structure enables managing a wide
array of input data formats, and scales to large datasets.
In essence, the server does all the heavy lifting: loading
data, maintaining the connections to clients, executing
computational modules, and updating features.

Usage Scenario
Here we illustrate how an analyst can use the DataSite
system to examine and find interesting features and insights
about the class car dataset11. As soon as the analyst
uploads the dataset into DataSite, the system will queue up

Figure 6. Feed items for average weight in lbs, as well as
range (in lbs).

computations scheduled by their suitability for the specific
dataset. Meanwhile, the client-side shows the interactive
interface to enable the user to begin data analysis (Fig. 2).

From the data panel (Fig. 2, left), the analyst will see the
dataset has three categorical attributes, one temporal, and
six numerical attributes. To encode the field, the analyst can
manually drag-and-drop or auto-add it to the encoding panel
(Fig. 2 middle) to create a visualization. To start exploration,
he/she may want to get an overview of the dataset. Without
creating any visualization manually, DataSite updates with
notifications that are automatically computed by the server
in the Feed field on the right. The analyst finds that the
average weight of cars is 2,979 lbs, and the range is from
1,613 to 5,140 lbs (Figure. 6). The feed is dynamically
updated with notifications once each computation is finished.
There are simple statistics for numerical attributes, such
as mean and variance, ranges (which are min and max),
and correlations, as well as frequency counts for categorical
attributes. Notification in the feed include a brief natural
language description. The analyst may be interested in why
the Displacement and Miles per Gallon has a correlation
of -0.76. The analyst clicks on the notification, causing
it to be expanded to show a corresponding chart (Fig. 3)
explaining the finding: As the Displacement increases, Miles
per Gallon decreases. In order to view details and conduct
further modifications to the chart, the analyst can move the
chart into the main view (Fig. 2 right) by clicking the icon on
the top right.

The analyst may also want to understand the highest
frequency counts for the number of cylinders. To achieve
this, the analyst uses the filter drop-down option, clicks on
the Frequency Count filter, and types “cylinders” into the
text bar. The feed will filter the precise results: cars with 4
cylinder engines has the highest frequency. The analyst can
then pin interesting manual specification charts in the feed,
which can be used for tracking the progress of analysis and
re-visiting the analysis in the future.

Evaluation Overview
DataSite creates a new method for visual exploration
through a mixture of manual and automated visualization
specifications driven by proactive computations. For this
reason, we are interested in understanding whether the
exploratory analysis with DataSite supports bootstrap
understanding and broad coverage of the data. We are also
curious about knowing how/why the feed helps, and how
it changes the analyst’s approach in finding features. To
answer these questions, we conducted two user studies: (1)

∗https://angularjs.org/
†https://nodejs.org/

Prepared using sagej.cls

https://angularjs.org/
https://nodejs.org/


Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 7

Modules Data Formats #Attr. Chart Description
Mean/variance numerical 1 hist. (Fig. 4) Attribute A has mean of X with variance of Y .

Min/max (range) numerical 1 hist. line Range (min, max) was found in attribute A.
Freq. counts categorical 1 aggr. (Fig. 4) X was the most/least frequent sub-category in A.
Freq. comb. categorical 2 heatmap (Fig. 5) Most frequent combination was found between X

in attribute A, and Y in attribute B.
Correlation numerical 2 scatterplot Correlation of A was found between X and Y .
K-means numerical 2 scatterplot (Fig. 4) K-means with N clusters between X and Y has

average error E.
DBSCAN numerical 2 scatterplot DBSCAN between X and Y with minPts = p

estimated K clusters.
Linear Regression numerical 2 regression line Linear regression between X and Y has estimate

error of E.
Poly. Regression numerical 2 regression line Polynomial regression between X and Y has

estimate error of E.

Table 1. Example computational modules with corresponding data and chart types. We have currently used algorithms working
with one or two data attributes in our computation engine. Brief textual descriptions for each module are also listed.

comparing with a manual visualization specification tool,
PoleStar, focusing on data field coverage; and (2) comparing
with a visualization recommendation system, Voyager 244,
focusing on data exploration to compare the effects of adding
a Feed (in DataSite) versus Related Views (in Voyager 2).
In other words, Study 1 aims to understand the fundamental
utility of the feed view itself, while Study 2 expands this
to understanding DataSite’s proactive analytics workflow
compared to a recent visual recommendation system.

Dataset
To enable comparisons of our results with PoleStar and
Voyager 2, we reused the same datasets for our studies. One
is a collection of films (“movies”) containing 3,178 records
and 15 data fields, including 7 categorical, 1 temporal, and 8
quantitative attributes. The other dataset contains records of
FAA wildlife airplane strikes (“birdstrikes”), which contains
10,000 records and 14 data fields, with 9 categorical, 1
temporal, and 4 quantitative attributes. These two datasets
have similar complexity (w.r.t. number of attributes), and are
easy to understand.

Study Design and Procedure
In both user studies, we used 2 tools with 2 datasets (one
dataset on each tool interface). Participants in both studies
started with an assigned tool and dataset, and then moved
to the second interface. To deal with learning effects, we
counterbalanced the order of tools and datasets—half of our
subjects used PoleStar/Voyager 2 first and the other half used
DataSite first (similarly with the dataset).

Each participant began a session by completing a short
demographic survey. However, we did not screen participants
based on the demographic information provided. The
participant was then introduced to the first interface assigned.
The participant were first shown the interface and a tutorial
on how to use the tool with the classic automobile dataset for
training purposes. For DataSite, they were also shown the
feed view and its associated operations. The participant was
then allowed to train using the interface with the automobile
dataset, and were encouraged to ask questions about the

dataset and tools until they indicated that they were ready
to proceed.

The experimenter then briefly introduced the participant
to the experimental dataset and asked him/her to explore the
dataset “as much as possible” (open-ended) within a given
time of 20 minutes for each system. They were asked to
speak out aloud their thinking process and insights. We did
not ask the participants to have specific questions to answer
during the session, as this may bias them in exploration and
limit their focus to specific subsets rather than the whole
dataset. After completing a session with the first tool, the
participants repeated the same procedure for the second tool
and dataset. After completing the tasks for both tools, they
were asked to complete a questionnaire with Likert-scale
ratings on the efficiency and usefulness of each tool as well
as the participant’s rationale for their ratings. Participants
were also encouraged to verbalize their motivations and
comments on each tool. Each session with two studies as well
as exit survey in total lasted around 60 minutes.

All the sessions were held in a laboratory setting in a
university campus. Both tools ran on Google Chrome web
browser on a Windows 10 laptop with a 14-inch display.
The experimenter observed each session and took notes.
Participant’s interactions with the tool were logged into files,
including application events. The audio of the session was
also recorded for further analysis.

User Study 1: Comparison with PoleStar

In this study, we compare DataSite with a Tableau-
style visual analysis tool (PoleStar). As described earlier,
this study was motivated by a fundamental question:
what happens when you incorporate a feed view into a
conventional visualization tool. We therefore studied the
data field coverage during open-ended visual exploration
influenced by the Feed in DataSite against Polestar (a
baseline interface without the Feed view). Note that apart
from the Feed view, the DataSite interface resembles the
PoleStar interface. Our hypotheses were: (1) DataSite would
have higher data field coverage and more charts viewed,
(2) DataSite would allow exploration of complex charts

Prepared using sagej.cls



8 Accepted in Information Visualization (N/A)

with multiple encodings (capturing multiple attributes), and
support faster understanding of the data.

Participants

We recruited 16 paid participants (7 female, 9 male) from
the general student population at our university. Participants
were 18 to 35 years of age, with some prior data analysis and
visualization experience. All of them had experience with
data analysis and visualization tools: All (16) had used Excel,
10 had used Tableau, 7 Python/matplotlib, 7 R/ggplot, and 3
had used other analytics tools. No participant had previously
seen or analyzed the datasets used in our study. They had not
heard of or used DataSite or PoleStar, though some found
PoleStar to be similar to Tableau.

Results and Observations

As mentioned in the evaluation overview, participants’
interaction logs and notes taken by experimenter were
collected during the study. We used the linear mixed-effects
model3,10 for our analysis of the collected data. We modeled
the participants and datasets as random effects with intercept
terms (per-dataset and per-participant bias), and regarded
different tools and the order of tool usage as fixed effects.
This setting accounts for the variance of tools and datasets
with individual subject’s performance during the study. We
used likelihood-ratio tests to compare the full model with
other models to evaluate the significance of difference.

Overall, correctness in collected insights was high across
both conditions (PoleStar and DataSite), with no reliable
difference. For this reason, we chose to disregard further
analysis of this effect.

To assess the broad coverage of data fields, we consider
the number of unique data field sets. Users may have been
exposed to a large number of visualization charts, while the
unique field sets shown and interacted with are conservative
and reasonable measures of overall dataset coverage. Based
on this, there is a significant improvement of data attribute
coverage with DataSite (30% increase compared to PoleStar:
χ2(1) = 19.26, p < 0.005). Participants interacted with
more charts, both from the feed as well as by modifying
encodings from the charts present within the feed. This
confirms the first hypothesis.

There are more multi-attribute charts (encoding two or
more data attributes) that participants viewed and interacted
with using DataSite than PoleStar (χ2(1) = 10.31, p <
0.005). This is expected since DataSite provides pre-
computed features, while participants had to manually
create all visualization charts themselves in PoleStar. 75%
participants have seen at least 50% more data fields in
DataSite. Participants also found twice the number of charts
using DataSite that are informative and worth “speaking
out” (χ2(1) = 7.82, p < 0.005). 10 participants have created
more than 3 advanced charts with the help of feed (and
“spoke out” about them): they started with charts from
feed and added more data fields as encodings to the charts.
This suggests that the DataSite system through its Feed
view leads to the users viewing more number of charts
that are beneficial from their perspective. It also indicates

that DataSite encourages the user to reach complex (multi-
attribute) charts during visual exploration, confirming our
second hypothesis.

Participants showed great interest in the features within
the feed view. Most of them spent at least 25% of time on
exploring the feed itself. All participants felt that the feed is
useful for analysis and provides guidance of “where to look”
in the data. They rated DataSite higher than PoleStar in terms
of efficiency (Likert scale, 1 to 5, mean: 4.67 vs 3.40) and
comprehensiveness (mean: 4.20 vs. 3.21). All participants
rated the usefulness of the feed 3 or higher.

User Study 2: Comparison with Voyager 2
The results from the first study were promising and they
answer our fundamental questions about the utility of the
DataSite feed view. In Study 2, we compared DataSite with
Voyager 2, a modern visualization recommendation system.
The goal was to observe differences and further understand
the utility of the feed in DataSite compared to the Related
Views and wildcards in Voyager 2. Our hypotheses are:
(1) DataSite will provide comparable if not more data field
coverage owing to its rigorous computation engine; and (2)
DataSite will better guide the user’s exploration towards
faster and comprehensive understanding in the given time.

Participants
We recruited 12 participants (8 female) from our university.
All had similar demographics (between 18 and 35 years of
age) and data analysis experience as before: all participants
(12) had used Excel, 8 Tableau, 6 Python/matplotlib, 1 with
R/ggplot. They had not heard of DataSite or Voyager 2, or
seen the datasets involved.

Results: Quantitative
We used the same linear mixed-effect model for statistical
analysis in Study 2 similar to Study 1. As for Study 1,
participant insights were collectively accurate independent
of condition (DataSite and Voyager 2); thus, we chose not to
analyze this aspect further.

Data Field Coverage We first looked into the participants’
performance separately for both datasets (movies and
birdstrikes), and compared the effects of visualization tools.
We consider the number of unique field sets that users have
shown and examined, respectively (similar to the previous
study). In Figure 7, we see that for movies and birdstrikes
datasets, the number of unique field sets that users interacted
with (hovered mouse for more than three seconds) is similar:
DataSite has 5 and 4 more unique field sets respectively
in the birdstrike dataset (median: 30 in DataSite vs. 25
in Voyager 2) and movies dataset (median: 31 in DataSite
vs. 27 in Voyager 2). Overall, DataSite promotes slightly
more data field coverage in total (mean: 30 and 26), mainly
because the feed contains an exhaustive list of features across
computational modules.

In regard to the number of unique field sets that have
been shown (the user may look through the charts without
interaction) to the users, DataSite users (mean 43, s.d. 19.7)
were shown fewer charts than Voyager 2 (mean 54, s.d. 13.5).
The reason may be that Voyager 2 shows charts by default,

Prepared using sagej.cls



Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 9

Figure 7. Box plot showing the distributions of unique fields
that users interacted with per tool and dataset. DataSite has
slightly larger number of unique field sets in both cases.

while DataSite needs user interaction to expand the features
in the feed to see the charts. As for the number of charts that
participants spoke out aloud during the study, the tools have
a significant difference (χ2(1) = 7.34, p < 0.05): DataSite
(mean 14.53, s.d. 2.04) gave participants 30% more charts
to “speak out” about, compared to Voyager 2 (mean 11.63,
s.d. 2.32). In other words, participants found more charts
to be informative and worth talking about using DataSite.
Among all the “speak out” charts, an average of 35% are
directly from the feed. Other “speak out” charts in DataSite
are either moved from the feed to the main view and then
edited, or manually created. This indicates that the feed view
contributes to more data field coverage and more charts that
analysts find useful and worth pointing out.

When using DataSite, all participants viewed and
interacted with charts in the feed. Most of them (11 of 12)
spent more than 30% percent of time exploring the feed.
Two participants even used the feed as the main interface
for exploring the datasets. Beyond this, two participants
interacted with more than 70% of total charts, and 75% of
their “speak out” charts were directly from the feed.

Text Search and Filter Usage We analyzed the usage of
filters and text search bar. We were interested in observing
whether filters and text search can aid them in searching
for desired features within the feed view, and whether it
is efficient and easy to use compared to Related Views
and Wildcards in Voyager 2. All participants have used
the drop-down filters at least 5 times, and 9 of 12 tried
text search. 8 of 12 of them said that the filters and the
text search were useful for quick search of the feed during
the study session. 7 of 12 had used the combinations of
text search and filter. Three participants found wildcards in
Voyager 2 to be not very intuitive. They used wildcards fewer
times during the exploration, which matches the results from
Wongsuphasawat et al.44. In comparison, filters and search
options not only contribute to fast data exploration, but also
improve the efficiency of drilling down into features during
proactive visual analytics. This is one of the advantages of
providing descriptions for features in the feed view.

User Ratings We collected user’s feedback and ratings for
tools in the post-study survey. For each tool, participants
were asked to evaluate the tools based on the efficiency,
enjoyability, and ease of use, on Likert scale ratings from
1 (least) to 5 (most). The participants rated DataSite (µ =

4.32, σ = 0.67, p = 0.14) higher than Voyager 2 (µ = 3.92,
σ = 0.67) regarding the efficiency. For enjoyability and ease
of use, the ratings are comparable: enjoyability (DataSite:
µ = 4.33, σ = 0.65; Voyager 2: µ = 4.08, σ = 0.67), ease
of use (DataSite: µ = 3.92, σ = 0.85; Voyager 2: µ = 4,
σ = 0.60). When asked about the comprehensiveness of their
explorations of the dataset (DataSite: µ = 4.42, σ = 0.87;
Voyager 2: µ = 3.75, σ = 0.51, p = 0.013), 7/12 users rated
DataSite higher and 4/12 rated both tools with the highest
(5) score. Two participants gave lower ratings for DataSite
compared to Voyager 2 and mentioned that it is because
they felt in Voyager 2 it was easier to browse multiple
charts while in DataSite they had to explicitly click. Overall,
DataSite was seen to be more efficient and presenting a more
comprehensive coverage of the data fields with respect to
visual exploration than Voyager 2, while maintaining the
similar level of enjoyability and ease of use.

Users also responded very positively when asked whether
features in the feed provide guidance in their data analysis:
50% chose 5 and the rest chose a 4 rating. When it comes
to comparison (Fig. 8) between two tools on a 5-level
symmetric scale (with range [−2, 2].), most participants
(11 of 12) preferred DataSite (µ = 1.25, σ = 0.87) to be
most useful or useful for data exploration. Beyond this,
participants were asked about their preferences between the
two tools for focused question answering (as questioned by
Wongsuphasawat et al.44). 7 of 12 users preferred DataSite,
and 4 were neutral with no preference, with 1 preferring
Voyager 2 (rated -1). This is a little surprising since DataSite
was primarily designed for visual exploration (and not
question answering).

Data Exploration

Focused Question 

Answering

Voyager 2

very helpful.

Voyager 2

helpful.
Neutral DataSite

very helpful.

DataSite

helpful.

Figure 8. User preference in terms of visualization tools for
open-ended exploration and focused question answering.
DataSite received higher preference in both; 11 of 12
participants prefer DataSite for data exploration, and 9 of 12
prefer DataSite for focused question answering.

Results: Qualitative
To better understand the results from the statistical analysis,
the participant ratings, and how DataSite helped participants
explore the datasets, we present our observations below.

Comparing Charts and Features DataSite and Voyager
2 are qualitatively different in that the Voyager 2
recommendation engine stems from query generation
and partial view specification using wildcard specifiers44,
whereas DataSite is based features computed by specific
computational processes (Table 2). Thus, the primary output
of Voyager 2 is a sequence of charts generated from this
query engine, each arranged in a scrolling “related views”
panel that are derived from the specified view. DataSite, on
the other hand, generates notifications in the feed view based
on results returned from the computational modules loaded.

Prepared using sagej.cls



10 Accepted in Information Visualization (N/A)

For this reason, it is difficult to directly compare features in
the DataSite feed with chart recommendations in the Voyager
2 interface. Nevertheless, Voyager 2 is the closest baseline
we have, so even if the comparison is not entirely apples to
apples, we think that the general metrics of data coverage,
insights, subjective rankings, and qualitative feedback that
the Voyager 2 evaluation44 uses are appropriate.

Nevertheless, there are many common charts in both
DataSite and Voyager 2. One simple example is that in
DataSite, there are descriptive analyses that shows the
frequency counts of categorical attributes. This is also shown
in Univariate Summaries in Voyager 2. When specifying two
“Quantitative Fields” as wildcards in Voyager 2, the specified
views contain the scatterplot combining two numerical fields.
If there is a correlation between the fields, this is easily seen
using visual inspection of the scatterplot. For DataSite, this
is shown with a description of the correlation and a trending
line of regression estimate in a scatterplot, which helps users
understand the data. This is an example of how the query
generation engine in Voyager 2 can yield similar results as a
directed analytical component in DataSite. We explore more
about the pros and cons of this difference in the discussion.

Comparing User Findings As mentioned above, DataSite
features are based on computational algorithms, and it
has more “advanced and detailed” analysis (quoted from
a participant) than standard visualization tools. Several
participants showed great interest in the regression estimate
and clustering visualization. One participant said that
clustering chart gave him the clear indication that most
birdstrike accidents had very small damage and only a few
caused severe outcomes. Based on this insight highlighted
by DataSite, the participant was easily able to dig deeper into
which accidents yields the most serious damage.

As an example for the regression line, participants learned
its use based on how a car’s horse power increases with
the number of cylinders. DataSite creates visualization from
algorithmic and analytical perspectives, which may be closer
to human thinking, compared to Voyager 2, that generates
charts from data attributes using a query engine. In more
general terms, DataSite provides a suite of computational
components that uncover the underlying relationship within
the dataset, which may not be easily seen if using manual
view specification. Participants mentioned that the feed
provides “much more detail”, while Voyager is “basic” and
“does not give a log of insights”, and sometimes that charts
in Voyager 2 “do not make much sense”.

On the other hand, DataSite features are intrinsically
limited by the computational components currently available
and loaded in the system. This is to contrast with the
chart-generating feature of Voyager 2, where the power of
visualization can yield answers to questions not provided by
specific modules. We go deeper into this discussion at the
end of this paper.

When Participants Used the Feed The 12 participants
were divided evenly to have different orders of the tools
(DataSite first or Voyager 2 first). Four out of six who used
Voyager 2 first, examined the feed (first interacted with the
feed) in the beginning of their analysis with DataSite. For
those exposed to DataSite first, 5 of 6 did the same. The rest
started their manipulation first with manual specifications. It

is worth noting that when the participants did not have any
idea of how to construct interesting charts to get insights,
they (8 of 12) switched to the feed for charts and inspirations
(during the middle 10 minutes). 10 of 12 scanned through
the feed at least once in the last 5 minutes of the session. 9
of 12 participants returned to the feed at least 3 times during
the study. All of them specified at least 3 charts from the
feed into the main view. This suggests that the feed can help
analyst in multiple phases of exploration.

In-depth Data Exploration Users usually create charts in
manual specification tools with less than three attributes for
encodings to limit the information encoded to a perceivable
level. 7 of 12 participants found more advanced charts (3 or
more data fields/attributes, the same below) that they “spoke
out” in DataSite than Voyager 2 (at least 20% more). They
mentioned that the summary in feed provides descriptive
analysis, while charts alone in Voyager 2 may need more
time to understand. It is worth noting that one participant
used feed as the only interface for data exploration without
additional manual specifications, and none did the same in
Voyager 2. She explained that the feed provides a systematic
approach towards analyzing the dataset, while she had
difficulty understanding Related Views in Voyager 2.

#Charts Simple stats Corr Freq Clust Regr

mean 2.25 4.38 4.31 3.54 3.26
std. dev. 1.25 2.5 3.46 1.02 1.57

Table 2. Mean and standard deviation of participant
interactions with computational results. Participants interacted
with advanced features more (e.g., correlations, frequency
counts, clustering, etc), while few features regarding simple
statistics (min/max and mean/variance) were examined.

“Speaking Out” Charts in the Feed The number of “speak
out” charts that users verbally referred to during the study
revealed interesting aspects for data analysis by general
users. Table 2 gives mean and variance of features in
different categories that the participants “speak out” about.
Participants were more interested in plots of multiple
numerical fields and categorical fields, rather than a single
numerical field. Specifically, they merely viewed the charts
in range/mean/variance modules (average number of charts
are around 1), and from our observations, they skimmed
through the natural language descriptions but did not click
to see the charts. This implies that simple statistics are
not interesting enough for analysts to examine, or the text
descriptions alone are sufficient to understand.

For complex computations, charts are viewed more by
expanding their textual description in the feed. This is
because there are usually no intuitive attribute combinations
to creating informative charts with data fields (participants
had to rely on random combinations or based on their general
understanding). After seeing the charts in the feed, they all
agreed that those charts were more informative than the ones
they created by manual view specification. This is a good
confirmation of the utility of proactive visual exploration.

Inspirations from the Feed The feed view provides recom-
mendations for visual data exploration from an analytical
perspective. The features suggest certain combinations that

Prepared using sagej.cls



Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 11

yield effective visualizations. All the participants manually
specified similar charts (w.r.t. encodings) after they had seen
the charts within the feed, especially heatmaps representing
frequency combination of two categorical fields. More than
80% (10 of 12) of the participants mentioned that the feed
gave them some ideas of which features and encodings
can be used to make the chart more informative. On the
other hand, Related Views in Voyager 2 show visualization
recommendations to users that can be easily browsed, but
participants thought of them just as related charts rather than
specific analytical insights. They browsed through Related
Views a lot but had never considered about how and why the
specific chart was suggested. Also, 2 participants felt that the
descriptions sometimes were not very easy to understand.

Participant Feedback
In this section, we list comments, suggestions, and feedback
from the free text comments in the post-study survey
and audio recording transcripts. For example, participants
described that DataSite helped visual data exploration
process: “The feed helps gear you in the right direction,
especially if you are new to a dataset. It tells you something
notable that is worth looking into.” As for comparisons to
Voyager 2, “DataSite is more specific because it gives you
the options with various kinds of results. The feed is very
helpful in data analysis.” One participant even remarked
that “[DataSite] will be very useful for day-to-day usage,
especially for advanced data analysis, and can be used in
industrial applications.”

Overall, the feed view was lauded, with one participant
noting that “the feed in DataSite provides a good starting
point to visualize data if you don’t have any idea about the
dataset.” However, participants also provided suggestions on
how to improve the feed. Said one participant, “it would be
better to make feed more user friendly, such as drag-and-
drop to move charts into the main view.” The feed was also
perceived to be daunting, or as one participant put it: “the
feed is very useful, but sometimes it has a lot of results and
can be a little overwhelming.” Another participant said that
“in DataSite it is a bit difficult for me to understand the
results in the feed, while Voyager 2 provides intuitive charts.”
One participant suggested that “it would be interesting if
there were guided tips that can help when I’m stuck in a
chart, such as ‘try changing x and y axis’ when the axis label
is difficult to read.”

Discussion
Our results show that the feed interface in DataSite expedites
the process of data exploration both in breadth and depth:
participant preference for both open-ended as well as
focused exploration was favorable to our tool. Below we
explain these results in depth, and then discuss some of the
limitations of our work.

Explaining the Results
Compared with the study results in Voyager 2, DataSite
has a comparable unique field set coverage. The reason
why DataSite does not improve the coverage significantly
is that Voyager 2 shows all the charts by default, while

DataSite only shows charts on demand when participants
click on the descriptions. In other words, DataSite requires
participants to actively examine the charts in the feed rather
than merely browsing them in Voyager 2’s Related Views.
Most participants preferred DataSite for data exploration,
and rated the feed very useful to aid data analysis and provide
trends and guidance of creating meaningful visualization.
It is worth noting that DataSite also yielded higher ratings
in focused exploration. While DataSite is not designed
primarily for targeted exploration, the study reveals a
potential effect on that. This also motivates us to consider
what and how a targeted data analysis system should adjust,
and what evaluations can be done to achieve that purpose.

One observation from our evaluation studies is that
simple statistics (average, range, variance, etc) did not
interest participants much. A comprehensive evaluation of
what features would be more interesting to the analysts is
needed. The salient features lower barrier for bootstrapping
exploration. However, too many features may distract user’s
interest, which have to be balanced carefully. While Voyager
2 also provides efficient visualization recommendations,
results from our evaluation indicate that participants felt
that the feed was more targeted and worth analyzing.
Three participants noted that while they were going through
Voyager’s related views, they sometimes forgot what they
had seen using manual view specifications. We speculate
that DataSite explicitly labels the features using a textual
description facilitates more targeted analysis.

It is worth noting that DataSite exhaustively applies com-
putations to all the possible data fields (and combinations).
While this enhances data coverage, not all modules and
corresponding charts represent a clear insight. For example,
categorical attributes such as “name” may have thousands of
entries, and it is very difficult to find salient trends via such
a chart. While DataSite ranks features by their significance,
a more precise saliency measure is needed. The challenge is
how to measure the efficiency of analytical features from a
human perspective, and how to unify the metrics across var-
ious types of computations. This requires comprehensively
measuring the efficiency for each visualization. This is fur-
ther complicated by the fact that different analysts may have
different perspectives, or the same analyst may have different
perspectives depending on the question in the study. For the
automobile dataset, buyers may wish to see which car is more
economic and safer (higher fuel mileage and fewer accident
records), while sellers may be interested in popularity (higher
profits and larger number of sales). These contexts should
also be considered for personalizing features. Automatic
guided tooltips, suggested by one participant, would be one
way to achieve this.

Limitations
Our goal with DataSite is to take computational guidance
to its logical extreme, building on the current trend
of recommendation engines for visualization. However,
this kind of automatic analysis approach is fraught with
challenges, including eroding an analysts’ independent
thought process (as discussed by Wongsuphasawat et al.44),
automating key decisions that would benefit from analyst
insight, and even HARKing15 (hypothesizing after results
are known) and p-hacking30 (extensively mining a dataset

Prepared using sagej.cls



12 Accepted in Information Visualization (N/A)

in search of significant findings). We do not claim that
DataSite’s mixed-initiative method is optimal for balancing
the analytic burden between analyst and computer, only that
it is one instance in the design space that shows promise.

However, while DataSite automates some of the analytical
process, it does not aim to replace the analyst. Data analysis
is best performed with an analyst in the loop, and DataSite
ensures the analyst is always in control. From our evaluation,
the average number of insights from different data sources
are 8 manually created, 11 from the feed, and 7 from the feed
with modifications. This observation shows that participants
generated almost the same number of insights from feed
(automatic) and manually created.

Another valid point of criticism is that computational
power is not always cheap; some algorithms are simply
not tractable to be run for an entire dataset in an
exhaustive manner. This means that DataSite’s scheduling
algorithm requires fine tuning; pure brute force, as somewhat
provocatively stated earlier in this paper, is not a universal
solution. Our current implementation can scale up to tens
of thousands of entries in the dataset, which is comparable
to many existing visualization tools44,46. In particular, our
evaluations involve datasets with 10,000 (bird strikes) and
3,000 (movies) items. Still, while there is potential for a more
scalable system, it is beyond the scope of this paper.

Top-Down vs. Bottom-Up Data Analysis
One of the strengths of visualization is its data-driven,
bottom-up, and self-informing nature: as Tukey notes38, the
type of exploratory data analysis so powerfully supported
by visualization allows for deriving hypotheses and insights
from datasets that are not previously known or well-explored.
This same focus on hypothesis generation permeates much
research on visual exploration, including in particular Keim’s
seminal work13, which quotes visualization as “especially
useful when little is known about the data and the exploration
goals are vague.” Put simply, visualization allows you to ask
(and often answer) questions you didn’t know you had. This
is also the strength of a visualization recommendation engine
such as Voyager 2, where the philosophy can be expressed as
generating as many pertinent charts as possible in the hope
of informing the user.

It is also diametrically opposite to the top-down approach
afforded by the server-side computation engine used in
DataSite, where a suite of pre-defined computational
modules are used to extract potentially significant features
from a dataset and bring them to the user’s attention.
The significant difference between this and traditional
confirmatory data analysis methods, including statistical
packages such as R, SAS, and JMP, is that DataSite
eliminates the need for both (a) forming hypotheses, and
(b) testing them using the correct methods. It does this in
the most possible straightforward way: by relying on sheer
brute force to test all the hypotheses through state-of-the-art
computational modules designed by the DataSite developers.
However, by definition, such a suite of modules is limited
by the actual modules provided, which makes this approach
less flexible to unknown datasets. A bottom-up visualization-
centric approach, on the other hand, will rely on the human
user to detect incidental features in the dataset. This means

that DataSite trades some of the flexibility of more open-
ended visual exploration tools for the benefit of reducing the
knowledge and hypothesis generation barriers of such tools.

It is important to keep this trade-off in mind when
contrasting top-down vs. bottom-up data analysis tools, such
as those compared in this paper. The ultimate purpose of
this paper is to explore this trade-off in more detail, not to
attempt to demonstrate the superiority of one approach or the
other. No approach is likely to be superior, and, in fact, their
combination will likely reap the most rewards. For example,
our DataSite implementation also includes manual view
specification to enable the user to independently visualize
the data, and also uses charts even when reporting on
features found. This is done in an effort to stimulate the type
of serendipitous, bottom-up sensemaking that visualization
scaffolds. It is clear that such a combined effort is the best
way to proceed in this domain even in the future.

Conclusion and Future Work

We have presented DataSite, a visual analytics system that
integrates automatic computation with manual visualization
exploration. DataSite introduces the feed, a list of
dynamically updated notifications arising from a server-
side computation engine that continually runs suitable
analyses on the dataset. The feed stimulates the analyst’s
sensemaking through brief descriptions of computational
modules along with corresponding charts. Filters and text
search bar enable quick scan and fast data exploration.
Two controlled user studies evaluate the approach compared
to PoleStar and Voyager 2, respectively, and show that
significant performance improvements over the manual view
specification tool (PoleStar) in both breadth and depth for
data coverage, as well as useful guidance in exploration.
It also provides more meaningful charts and features to
analysts over Voyager 2, while maintaining similar ease of
usage. The results are promising and indicate that the system
promotes data analysis in all stages of exploration.

DataSite can be seen as a canonical visual analytics system
in that it blends automatic computations with manual visual
exploration, thus establishing a true partnership between the
analyst and the computer. We regard it as the first step
towards a fully proactive visualization system involving a
human in the loop. Of course, many improvements can
be made towards a more efficient system; after all, while
CPU resources are cheap, they are not free. One potential
future research topic is guiding recommendations based
on the analyst’s interest, past interactions, and even their
personality. For example, consider a DataSite-like system
that would respond to an analyst drilling deep into a part
of a sales dataset over time to proactively compute future
sales projections for that part of the data in an effort to
anticipate future questions the analyst may have. Other ideas
may include mining the analyst’s click stream, browsing and
analysis history, and even social media profiles to determine
how to best guide the proactive computation. Finally, we
could also use interaction to dynamically update the ranking
of features in the feed, e.g., prioritize features for data fields
selected by the user.

Prepared using sagej.cls



Z. Cui, S. Badam, A. Yalçin, N. Elmqvist 13

Acknowledgments
This work was partially supported by the U.S. National
Science Foundation award IIS-1539534. Any opinions,
findings, and conclusions expressed in this material are those
of the authors and do not necessarily reflect the views of the
funding agency.

References

1. Badam SK, Elmqvist N and Fekete JD (2017) Steering the
craft: UI elements and visualizations for supporting progressive
visual analytics. Computer Graphics Forum 36(3): 491–502.
DOI:10.1111/cgf.13205.

2. Badam SK, Zhao J, Sen S, Elmqvist N and Ebert D
(2016) TimeFork: Interactive prediction of time series. In:
Proceedings of the ACM Conference on Human Factors in
Computing Systems. pp. 5409–5420. DOI:10.1145/2858036.
2858150.

3. Barr DJ, Levy R, Scheepers C and Tily HJ (2013) Random
effects structure for confirmatory hypothesis testing: Keep it
maximal. Journal of Memory and Language 68(3): 255–278.
DOI:10.1016/j.jml.2012.11.001.

4. Batch A and Elmqvist N (2018) The interactive visualization
gap in initial exploratory data analysis. IEEE Transactions
on Visualization and Computer Graphics DOI:10.1109/TVCG.
2017.2743990.

5. Bertin J (1983) Semiology of Graphics: Diagrams, Networks,
Maps. University of Wisconsin Press.

6. Bostock M, Ogievetsky V and Heer J (2011) D3: Data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 17(12): 2301–2309. DOI:10.1109/TVCG.2011.185.

7. Cleveland WS and McGill R (1984) Graphical perception:
Theory, experimentation, and application to the development
of graphical methods. Journal of the American Statistical
Association 79(387): 531–554. DOI:10.1080/01621459.1984.
10478080.

8. Dhamdhere K, McCurley KS, Nahmias R, Sundararajan M and
Yan Q (2017) Analyza: Exploring data with conversation. In:
Proceedings of ACM Conference on Intelligent User Interfaces.
pp. 493–504. DOI:10.1145/3025171.3025227.

9. Gómez JAG, Buck-Coleman A, Plaisant C and Shneiderman
B (2011) TreeVersity: Comparing tree structures by topology
and node’s attributes differences. In: Proceedings of the IEEE
Conference on Visual Analytics Science & Technology. pp.
275–276. DOI:10.1109/VAST.2011.6102471.

10. Green S, Heer J and Manning CD (2013) The efficacy of human
post-editing for language translation. In: Proceedings of the
ACM Conference on Human Factors in Computing Systems.
pp. 439–448. DOI:10.1145/2470654.2470718.

11. Henderson HV and Velleman PF (1981) Building multiple
regression models interactively. Biometrics 37(2): 391–411.
DOI:10.2307/2530428.

12. Herlocker JL, Konstan JA, Terveen LG and Riedl JT (2004)
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems 22(1): 5–53. DOI:10.
1145/963770.963772.

13. Keim DA (2001) Visual exploration of large data sets.
Communications of the ACM 44(8): 38–44. DOI:10.1145/
381641.381656.

14. Keim DA, Mansmann F, Schneidewind J and Ziegler H (2006)
Challenges in visual data analysis. In: Proceedings of the

International Conference on Information Visualization. pp. 9–
16. DOI:10.1109/IV.2006.31.

15. Kerr NL (1998) HARKing: hypothesizing after the results are
known. Personality and Social Psychology Review 2(3): 196–
217. DOI:10.1207/s15327957pspr0203 4.

16. Liu Z, Thompson J, Wilson A, Dontcheva M, Delorey
J, Grigg S, Kerr B and Stasko J (2018) Data Illustrator:
Augmenting vector design tools with lazy data binding for
expressive visualization authoring. In: Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM,
pp. 123:1–123:13. DOI:10.1145/3173574.3173697.

17. Mackinlay J (1986) Automating the design of graphical
presentations of relational information. ACM Transactions on
Graphics 5(2): 110–141. DOI:10.1145/22949.22950.

18. Mackinlay J, Hanrahan P and Stolte C (2007) Show me:
Automatic presentation for visual analysis. IEEE Transactions
on Visualization and Computer Graphics 13(6): 1137–1144.
DOI:10.1109/TVCG.2007.70594.

19. Méndez GG, Nacenta MA and Vandenheste S (2016)
iVoLVER: Interactive visual language for visualization
extraction and reconstruction. In: Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM,
pp. 4073–4085. DOI:10.1145/2858036.2858435.

20. Novais R, Nunes C, Lima C, Cirilo E, Dantas F, Garcia A and
Mendonça M (2012) On the proactive and interactive visu-
alization for feature evolution comprehension: An industrial
investigation. In: Proceedings of the International Conference
on Software Engineering. pp. 1044–1053. DOI:10.1109/ICSE.
2012.6227115.

21. Pearson K (1895) Notes on regression and inheritance in the
case of two parents. In: Proceedings of the Royal Society
of London, volume 58. pp. 240–242. URL https://www.

jstor.org/stable/115794.
22. Perry DB, Howe B, Key AMF and Aragon C (2013) VizDeck:

Streamlining exploratory visual analytics of scientific data. In:
iConference Proceedings. pp. 338–350. DOI:10.9776/13206.

23. PoleStar (2017) PoleStar. https://vega.github.io/

polestar/.
24. Ren D, Höllerer T and Yuan X (2014) iVisDesigner: Expressive

interactive design of information visualizations. IEEE
Transactions on Visualization and Computer Graphics 20(12):
2092–2101. DOI:10.1109/TVCG.2014.2346291.

25. Roth SF, Kolojejchick J, Mattis J and Goldstein J (1994)
Interactive graphic design using automatic presentation
knowledge. In: Proceedings of the ACM Conference on Human
Factors in Computing Systems. pp. 112–117. DOI:10.1145/
191666.191719.

26. Saket B, Kim H, Brown ET and Endert A (2017) Visualization
by demonstration: An interaction paradigm for visual data
exploration. IEEE Transactions on Visualization and
Computer Graphics 23(1): 331–340. DOI:10.1109/TVCG.
2016.2598839.

27. Satyanarayan A and Heer J (2014) Lyra: An interactive
visualization design environment. Computer Graphics Forum
33(3): 351–360. DOI:10.1111/cgf.12391.

28. Satyanarayan A, Russell R, Hoffswell J and Heer J
(2016) Reactive Vega: A streaming dataflow architecture for
declarative interactive visualization. IEEE Transactions on
Visualization and Computer Graphics 22(1): 659–668. DOI:
10.1109/TVCG.2015.2467091.

Prepared using sagej.cls

https://www.jstor.org/stable/115794
https://www.jstor.org/stable/115794
https://vega.github.io/polestar/
https://vega.github.io/polestar/


14 Accepted in Information Visualization (N/A)

29. Schein AI, Popescul A, Ungar LH and Pennock DM
(2002) Methods and metrics for cold-start recommendations.
In: Proceedings of ACM Conference on Research and
Development in Information Retrieval. pp. 253–260. DOI:
10.1145/564376.564421.

30. Selvin H and Stuart A (1966) Data-dredging procedures in
survey analysis. The American Statistician 20(3): 20–23. DOI:
10.2307/2681493.

31. Seo J and Shneiderman B (2005) A rank-by-feature
framework for interactive exploration of multidimensional
data. Information Visualization 4(2): 96–113. DOI:10.1057/
palgrave.ivs.9500091.

32. Shneiderman B (1994) Dynamic queries for visual information
seeking. IEEE Software 11(6): 70–77. DOI:10.1109/52.
329404.

33. Siddiqui T, Kim A, Lee J, Karahalios K and Parameswaran
A (2016) Effortless data exploration with zenvisage: An
expressive and interactive visual analytics system. Proceedings
of the Very Large Database Endowment 10(4): 457–468. DOI:
10.14778/3025111.3025126.

34. Stolte C, Tang D and Hanrahan P (2002) Polaris: A system
for query, analysis, and visualization of multidimensional
relational databases. IEEE Transactions on Visualization and
Computer Graphics 8(1): 52–65. DOI:10.1109/2945.981851.

35. Tableau (2017) Tableau. http://www.tableau.com/.
36. Tang B, Han S, Yiu ML, Ding R and Zhang D (2017)

Extracting top-k insights from multi-dimensional data. In:
Proceedings of the ACM International Conference on
Management of Data. pp. 1509–1524. DOI:10.1145/3035918.
3035922.

37. Thomas JJ and Cook KA (2005) Illuminating the Path: The
Research and Development Agenda for Visual Analytics. IEEE
Computer Society Press.

38. Tukey JW (1977) Exploratory Data Analysis. Reading, MA:
Pearson.

39. van den Elzen S and van Wijk JJ (2013) Small multiples, large
singles: A new approach for visual data exploration. Computer

Graphics Forum 32(3pt2): 191–200. DOI:10.1111/cgf.12106.
40. Vartak M, Madden S, Parameswaran A and Polyzotis N

(2014) SeeDB: Automatically generating query visualizations.
Proceedings of the VLDB Endowment 7(13): 1581–1584. DOI:
10.14778/2733004.2733035.

41. Wickham H (2016) ggplot2: Elegant Graphics for Data
Analysis. Springer. DOI:10.1007/978-3-319-24277-4.

42. Wilkinson L (2006) The Grammar of Graphics. Springer
Science & Business Media.

43. Wongsuphasawat K, Moritz D, Anand A, Mackinlay J, Howe
B and Heer J (2016) Voyager: Exploratory analysis via
faceted browsing of visualization recommendations. IEEE
Transactions on Visualization and Computer Graphics 22(1):
649–658. DOI:10.1109/TVCG.2015.2467191.

44. Wongsuphasawat K, Qu Z, Moritz D, Chang R, Ouk F, Anand
A, Mackinlay J, Howe B and Heer J (2017) Voyager 2:
Augmenting visual analysis with partial view specifications.
In: Proceedings of the ACM Conference on Human Factors in
Computing Systems. pp. 2648–2659. DOI:10.1145/3025453.
3025768.

45. Xia H, Riche NH, Chevalier F, Araújo BRD and Wigdor D
(2018) DataInk: Direct and creative data-oriented drawing. In:
Proceedings of the ACM Conference on Human Factors in
Computing Systems. ACM, pp. 223:1–223:13. DOI:10.1145/
3173574.

46. Yalcin MA, Elmqvist N and Bederson BB (2018) Keshif: Rapid
and expressive tabular data exploration for novices. IEEE
Transactions on Visualization and Computer Graphics 24(8):
2339–2352. DOI:10.1109/TVCG.2017.2723393.

47. Yee KP, Swearingen K, Li K and Hearst M (2003) Faceted
metadata for image search and browsing. In: Proceedings of
the ACM Conference on Human Factors in Computing Systems.
pp. 401–408. DOI:10.1145/642611.642681.

Prepared using sagej.cls

http://www.tableau.com/

	Introduction
	Background
	Exploratory Visual Analysis
	Visual Specification
	Visualization Recommendation
	Proactive Computation alongside Visualization

	Design Rationale: Proactive Analytics
	The DataSite System
	Client-Side: Visualization Interface
	Server-Side: Computation Engine
	Scheduling Automatic Analysis
	Implementation

	Usage Scenario
	Evaluation Overview
	Dataset
	Study Design and Procedure

	User Study 1: Comparison with PoleStar
	Participants
	Results and Observations

	User Study 2: Comparison with Voyager 2
	Participants
	Results: Quantitative
	Data Field Coverage
	Text Search and Filter Usage
	User Ratings

	Results: Qualitative
	Comparing Charts and Features
	Comparing User Findings
	When Participants Used the Feed
	In-depth Data Exploration
	``Speaking Out'' Charts in the Feed
	Inspirations from the Feed

	Participant Feedback

	Discussion
	Explaining the Results
	Limitations
	Top-Down vs. Bottom-Up Data Analysis

	Conclusion and Future Work

