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Dataopsy: Scalable and Fluid Visual Exploration using
Aggregate Query Sculpting
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Fig. 1: The Adult Income [17] dataset visualized in Dataopsy. (a) The initial view in Dataopsy is a single supernode, an aggregate
representation of all 45,000 data points in the dataset. Dataopsy provides six interactions (P6) to explore the dataset iteratively. (b)
For example, a user can partition the initial supernode by RACE, transforming it into five new supernodes. (c) The user can prune
the OTHER category in Race and then add GENDER on the vertical axis and EDUCATION on the horizontal axis for partitioning. At
the top of each view in Dataopsy, a control panel contains stylized buttons for performing and tracking the interactions.

Abstract—We present aggregate query sculpting (AQS), a faceted visual query technique for large-scale multidimensional data. As a
“born scalable” query technique, AQS starts visualization with a single visual mark representing an aggregation of the entire dataset.
The user can then progressively explore the dataset through a sequence of operations abbreviated as P6: pivot (facet an aggregate
based on an attribute), partition (lay out a facet in space), peek (see inside a subset using an aggregate visual representation), pile
(merge two or more subsets), project (extracting a subset into a new substrate), and prune (discard an aggregate not currently of
interest). We validate AQS with DATAOPSY, a prototype implementation of AQS that has been designed for fluid interaction on desktop
and touch-based mobile devices. We demonstrate AQS and Dataopsy using two case studies and three application examples.

Index Terms—Multidimensional data visualization, multivariate graphs, visual queries, visual exploration.

1 INTRODUCTION

E pluribus unum—Latin for “out of many, one”—is one of the official
mottos of the United States, and also happens to be a dominant strategy
for managing scale in data visualization: through aggregation of many
data items into one visual mark [15]. Visualizing today’s real-world
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datasets, from the Facebook social network to the billion-parameter
large language models (LLMs) of Jurassic-1 and GPT-3, is more or
less impractical when using a representation that insists on using one
mark per data item—so-called unit visualizations [38]. This fact is ex-
acerbated by today’s trend towards mobility in data analysis [28] using
mobile devices that have pathologically small mobile screens [21]. And
finally, even if we had enough pixels, there is a limit to the number
of data items that the human perceptual system can interpret effec-
tively [15, 33]. What is truly needed to tackle the next generation of
data visualization challenges are techniques that are “born scalable”;
i.e., that have been designed to be scalable from inception.

In this paper, we propose such a “born scalable” visualization tech-
nique that we call aggregate query sculpting (AQS). AQS is primarily
designed for multidimensional tabular data, but can also be used for
multivariate networks (i.e., links connecting data items or nodes). Un-
like typical overviews containing thousands or tens of thousands of
data items, the initial AQS view is a substrate containing a single su-
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pernode (aggregate node) representing all of the data items or nodes
in the dataset (Figure 1a). From this point on, the goal of AQS is to
provide the user with a set of fluid interactions to split the supernode
into smaller data subsets during exploration, similar to how a sculptor
will iteratively cut a large piece of clay into pieces to shape and mold
separately. There are six such interactions, and they are summarized by
the acronym P6 for pivot, partition, peek, pile, project, and prune. Piv-
oting splits a supernode into facet supernodes based on a data attribute;
partitioning lays out facet nodes in visual space; peeking shows the data
distribution inside a node; piling merges two or more nodes; projection
extracts a subset into a new visual substrate where P6 operations can
continue; and pruning eliminates undesired supernodes.

To validate the utility of aggregate query sculpting, we present
DATAOPSY, a web-based prototype implementation of AQS capable of
visualizing thousands of entities in a standard web browser. Dataopsy
and its AQS concepts draw on many existing concepts. Pivoting is
based on graph pivoting techniques from PivotGraph [48] as well as
Tableau (née Polaris [46]). Microsoft’s Sand Dance [12] and Google’s
Facets [20, 49] use a similar attribute-based 2D layout, but Dataopsy is
designed for networks and maintains aggregate supernodes instead of
a unit representation. Furthermore, the projection technique, which is
inspired by Shneiderman and Aris’s semantic substrates [3,44], enables
creating multiple linked substrates in the same visual space to avoid
inelegant deep facet nesting, which is a problem for PivotGraph, Polaris,
Sand Dance, and Facet browsers. Finally, the Dataopsy interface is
designed for fluid interaction on a desktop and tablet. The result is a
smooth and scalable data exploration application for multivariate data
synthesizing features no comparable tool possesses.

We present two case studies and three application examples involving
Dataopsy to demonstrate the utility of aggregate query sculpting. In the
first case study, two data scientists and algorithmic fairness researchers
used Dataopsy to evaluate machine bias in the Adult Income dataset [6,
17]. In the second case study, a creative writer used Dataopsy to
navigate a complex set of scenes, locations, chapters, characters, and
events from a fiction novel and sculpted it for adaptation to a screenplay
format. As an application example, we showed how an analyst could
use Dataopsy to understand the linguistic properties of inter-community
conflicts from 300,000 Reddit posts [27]. We then analyzed 1.7 billion
taxi rides in New York City to identify hotspots for rides [34]. Finally,
we used the VisPub [24] dataset to analyze the IEEE VIS scientific
community over the years. Overall, the case studies and examples show
the generalizability and scalability of AQS and Dataopsy in exploring
diverse multidimensional datasets.

2 BACKGROUND

Building and managing queries is as old as visualization itself; the
“zoom and filter” part of Shneiderman’s visual information seeking
mantra [43] refers to controlling which data items to show on the
screen, primarily to manage scale. In this section, we review the related
work on query management and visual information seeking, including
for multivariate datasets, faceted browsing, and multivariate graphs.

2.1 Multivariate or Multidimensional Visual Exploration
Multidimensional datasets consist of many attributes per observation,
and are routinely found in both tabular as well network applications.
For example, the U.S. Census dataset of citizen demographics includes
hundreds of attributes capturing individuals living in the United States,
including properties such as age, gender, education, annual income,
and marital status. Searching and filtering such multivariate datasets
was a challenging prospect often involving writing SQL queries until
Williamson and Shneiderman proposed dynamic queries using double-
ended range sliders [50]. These sliders enabled selecting an interval in
both quantitative and—later—categorical axes [2] in the dataset.

Significant work has since been conducted on searching and query-
ing multidimensional datasets. Many visual query techniques are inti-
mately tied to a visual representation. For example, axis filtering [41]
is designed for filtering on the axes in a parallel coordinate plot. Ex-
Plates [25] spatializes multidimensional interaction into 2D space. As
the name implies, the ScatterDice system [14] is based on scatterplot

matrices and introduces the concept of query sculpting where a dataset
is filtered from different angles until the final desired result is reached.
The idea was later generalized in the VisDock [7] cross-cutting inter-
action library and became a fundamental feature of the Keshif visual
data browser [51, 52]. In this paper, we build on query sculpting but
generalize it to visual aggregates, where massive datasets have been
hierarchically grouped into aggregation trees for scalability [15].

Polaris [46] and FromDaDy [23] were early examples of highly inter-
active multivariate query and visualization systems. Most multivariate
visualizations are unit visualizations [38] in that they represent each
data item with exactly one visual mark. More recently, Microsoft’s
SandDance [12] and Google Facets [20, 49] enable using similar inter-
action, layout, and query techniques to visualize multivariate datasets,
such as machine learning training data. ATOM [38] was designed
as a declarative grammar for building unit visualizations. We differ
from prior works in several dimensions. First, instead of unit marks,
we use aggregated marks to scale unit visualization to large datasets.
Second, AQS introduces six interactions for iterative explorations of the
aggregated marks. While some of these interactions are motivated by
prior works, the combination of them provides analytical capabilities
that no prior works possess. For example, Polaris’s Cross and Nest
operations motivated our pivot and partitioning operations. However,
Cross and Nest could create inelegant nesting and visual clutter. We
solve this limitation by integrating the Projection operation, motivated
from semantic subtrates [3, 44]. Finally, prior works primarily focus
on desktop applications whereas AQS is suitable for data analysis in
touch-based mobile devices and extends to network analysis.

2.2 Faceted Browsing
Faceted browsing [53], where a corpus is explored along one or more
conceptual dimensions, was introduced as an alternative to keyword
search and image similarity for browsing large-scale image repositories.
The idea was quickly generalized to any multidimensional dataset
and then adopted by many internet search providers, particularly for
e-commerce and real estate websites.

Of course, faceted browsing is a powerful idea with applications to
many information retrieval and query research problems. One of the
early applications was FacetMap [45], a highly visual and dynamic
visualization that summarizes the current state of the filters and search
results based on a space-filling rectilinear layout approach. FacetMap
shares many similarities with Dataopsy and AQS, but our approach
uses a single set of vertical and horizontal axis mappings for displaying
dimensions. For this reason, Dataopsy yields visual representations
that are more stable and easier to understand. Nevertheless, we draw
inspiration from FacetMap’s aggregated and scalable visual encoding.

Several other research tools are based on faceted browsing.
FacetLens [29] build on FacetMap and uses a similar representation,
but support visual comparison view as well as more advanced pivoting
operations. FacetZoom [9] enable smooth exploration of hierarchi-
cal metadata using a continuous zooming interaction. Finally, Pivot-
Paths [11] provides a fluid and highly interactive browsing experience
that externalizes the links (or paths) between different facet values.
These existing tools all served as inspiration for our work in this paper.

2.3 Multivariate Graphs
From a data visualization perspective, the leap from table to network is
small: all you need are relations connecting entities [33]. Practically,
this means adding a second “edge table” linking keys in the original
node table. While layout techniques are mostly radically different for
tables vs. networks, there is one approach that is shared: attribute-based
layout [35, 48], where the position of a node on a geometric axis is
dependent on a specific attribute associated with the node. Not surpris-
ingly, this kind of visual mapping is commonly applied to data points
when mapping a data table to visual space, such as in a scatterplot.

A canonical example of attribute-based layout is PivotGraphs [48],
which uses vertical and horizontal space to unpack a single aggregated
node in a node-link into 2D space. Aggregated edges show relations
in the resulting graph. Our work in this paper draws heavily on Pivot-
Graphs, but generalizes the idea to both tabular as well as network data,
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and also introduces several new operations to improve on the idea.
GraphDice [4] is another example of attribute-based layout: it is

essentially a network version of the original ScatterDice [14] system
discussed above. However, unlike PivotGraphs, GraphDice is a unit
visualization system with one visual mark per data item. While our
Dataopsy system is based on visual aggregates, we borrow the faceted
navigation supported by the GraphDice tool for our work.

Scale is a perpetual problem for graph visualization. ASK-
GraphView [1] supports interactive visual exploration of node-link
diagrams consisting of millions of nodes through the use of clustering
and animation. ZAME [13] instead uses adjacency matrices and a level-
of-detail pyramid to support massive scale. DOI graphs [47] handle
the problem by showing only subsets of graphs. Finally, Refinery [26]
uses a similar form of “associative browsing” to support browsing on
limited neighborhoods of a massive heterogeneous graph.

Heterogeneous—or multimodal—graphs are a specialized subset of
multivariate graphs because one attribute governs the type of the node;
e.g., students and courses in a registrar’s database, books, magazines,
and digital media in a library database, or gokarts, trainers, and drivers
in a racing club roster. Aris and Shneiderman studied how to best
visualize such multimodal data by separating them into individual
semantic substrates [3, 44], one for each node type. Ghani et al. [19]
studied the use of visualization techniques for heterogeneous data
for social network analysis, presenting an approach akin to parallel
coordinate displays for network data in response. Finally, Ploceus [31]
generalizes the idea of linked tables yielding heterogeneous networks,
presenting an algebra and an interactive visualization system to support
it. All of these existing tools and techniques were influential in our
design of AQS. However, none of them provide the same kind of fluid,
highly interactive, and scalable approach to visual exploration and
querying that AQS and Dataopsy do.

3 AGGREGATE QUERY SCULPTING

Aggregate query sculpting (AQS) is an iterative filtering technique
for multivariate data. It draws inspiration from the ScatterDice tech-
nique [14] where the query sculpting concept was introduced based on
the metaphor of a sculptor repeatedly chiseling away at a block of stone
until the sculpture is complete. However, while the original implemen-
tation of the techniques was intended for unit visualizations [38] such
as scatterplots, where each individual data point is represented by a
unique visual mark, aggregate query sculpting, as the name suggests, is
designed for aggregated visual representations where individual marks
can represent many—potentially thousands or even millions—of data
items. We use the term “born scalable” to refer to visual representations
and interaction techniques that were designed for massive scale.

Here we describe the data model for aggregate query sculpting and
the fundamental P6 operations in abstract terms. In the following
section, we discuss how to implement the P6 operations in the web-
based DATAOPSY prototype tool for multivariate data.

3.1 Design Rationale
We designed aggregate query sculpting by harnessing prior art from the
literature with three specific design goals (DG1–DG3) in mind:

DG1 Born scalable: Realistic datasets cannot be visualized as unit
visualizations [38] because of both technical and perceptual limi-
tations. Instead, robust visual representations must be designed
from the ground up using visual and data aggregation [15].

DG2 Fluid interaction: We envision an iterative and progressive fil-
tering method based on fluid interaction [16], where user actions
promote flow [8], are based on direct manipulation [42], and
minimize the gulfs of execution and evaluation [36]

DG3 Faceted browsing: Multidimensional datasets are easily navi-
gated, filtered, and queried using faceted search [53] where filters
can be expressed across multiple hierarchical dimensions (facets).

3.2 Data Model
All AQS operations are applied to a multidimensional dataset D′ ⊆ D,
where D is the full dataset currently being visualized. The D′ is called

a supernode even if the data is not relational. Supernodes that are
part of networks also have superlinks E′; edge subsets drawn from the
full edge set E. Some AQS operations operate purely on a data level,
whereas others operate on a visual level, and others still operate on
both. Furthermore, the operations tend to apply either to entire rows
or entire columns—or the entire dataset—in a substrate based on the
visual layout. We discuss these details for each operation below.

3.3 Visual Representation
A multidimensional visual representation managed using aggregate
query sculpting includes one or more semantic substrates [3, 44]: a 2D
visual space of any geometric dimension. Additional substrates can be
laid out depending on the nature of the data and the user’s wishes; for
example, two substrates can share a horizontal axis, making it useful to
stack the substrates vertically (one above the other).

Each substrate contains one or more supernodes D′ (which could
potentially be the entire dataset D if only one substrate is in use). Inside
the substrate, visual aggregates representing datasets are organized in a
regular 2D grid with row and column headers. Each supernode D′ is
represented by a single visual mark (DG1); this is typically a simple 2D
geometric shape such as a circle. The size of the underlying data can be
conveyed using multiple different methods (sometimes redundantly),
such as using a label, a color scale, or the size of shape. When the
dataset is a multivariate network, the relationships (edges) between
entities (vertices) in the underlying network are also aggregated into su-
perlinks that are represented using single link marks (DG1). Again, the
number of aggregated edges can be conveyed using color or thickness.

3.4 Interaction
We envision aggregate query sculpting as a highly interactive and
fluid [16] query technique where the user rapidly performs multiple
operations to identify the data they are interested in (DG2). Further-
more, operations can be performed on individual rows or columns, or
entire groups of rows or columns by using the partitioning hierarchy
(Figure 2). To facilitate such rapid, direct, and reversible interaction, we
suggest including an interaction stack where users can easily overview,
undo, and redo individual operations.

(a) Row-level operations. (b) Column-level operations.

Fig. 2: Operation scope. Aggregate query sculpting operations are
performed on entire facets, which means that the scope will be entire
rows or columns (or dimensions that are currently hidden).

3.5 Query Operations
We define aggregate query sculpting based on six fundamental sculpting
operations that we call P6 for pivot, partition, peek, pile, project, and
prune. Each operation is applied on a row or column basis to ensure
a consistent grid layout. For the treatment below, assume that D is a
multidimensional dataset consisting of cars with standard dimensions
such as gas mileage, acceleration, weight, cylinders, origin, etc.

� Pivot. The pivot operation splits a supernode D′ into N dis-
joint supernodes {D′

1, . . . ,D
′
N} based on a group criterion. This is a

generalized form of faceted browsing (DG3). Some group criteria
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use nominal data types; for example, we could imagine pivoting D′

based on the number of cylinders, resulting in three supernodes D′
i

for 4, 6, and 8 cylinders (Figure 3). Alternatively, we could pivot by
binning a quantitative value, such as five intervals of gas mileages for
[0,10), [10,20), [20,30), [30,40), and [40,∞) miles per gallons.

400

cars.csv

(a) A single supernode.

250 100 50

4 6 8

Cylinders

(b) Three pivoted supernodes.

Fig. 3: Pivoting and partitioning supernodes. Laying out pivoted
supernodes along the horizontal axis.

! Partition. The partition operation is a pure visual operation for
laying out supernodes D′

i in 2D space along a vertical or horizontal
geometric axis. Partitioning will use the entire available space along the
chosen geometric axis in the current substrate. This is typically done by
allocating an equal amount of visual space to each supernode, although
it is also possible to allocate visual space proportional to the size of
each supernode (i.e., the number of items in each supernode). The
approach is similar to PivotGraphs [48] and Polaris [46], but supports
nesting in multiple levels. If the chosen geometric axis has already
been used for partitioning, the next level of partitioning will be nested.
For example, if we first partition the horizontal axis based on the three
sets of cylinders (4, 6, and 8), we can then partition each of these three
categories based on the four gas mileage groups; see Figure 4.

4 6 8
Cylinders

MPG

Fig. 4: Nested axis partitioning. Example showing how to nest multi-
ple pivoted axes inside a single geometric axis.

� Peek. Sometimes the user wants to see inside a supernode with-
out pivoting and partitioning. The peek operation transforms the visual
representation of one or all aggregate marks into a glyph representa-
tion [15] showing the contents of each mark based on some axis. For
example, peeking can change the color-coded circles into pie charts
showing the origin (U.S., Europe, or Asia) of each group of cars pivoted
and partitioned based on number of cylinders and then gas mileage.

4 6 8

Cylinders

Europe USA Asia

250 100 50

Fig. 5: Peeking into supernodes. Representing each visual aggregate
as a pie chart showing the origin of each subset of cars.

í Pile. Piling merges two or more selected supernodes into a sin-
gle supernode (i.e., as the union of the selected supernodes), potentially
enabling the user to name the resulting supernode. This can be useful
when an automatic binning operation yields too many individual supern-
odes, some of which are meaningless on their own. For example, the
user could choose to pile the [0, 10) and [10, 20) gas mileage supernode
into a single supernode that they name “poor fuel economy” (Figure 6).

252525 757575 200 75

<10 <20 <30

25

MPG

<40 ≥40

pile

(a) Selecting two supernodes to pile.

100 200 75 25

<20 <30 <40

MPG

≥40

(b) Resulting four supernodes.

Fig. 6: Piling supernodes. Grouping the two lowest mileage supernode
of cars into a single supernode.

� Project. Partitioning multiple pivots into the same geometric
axis will eventually yield deep nesting and an explosion of supernode
combinations. To reduce clutter, the project operation enables selecting
a subset of the data and projecting it onto a new semantic substrate that
is laid out independent of the originating substrate. The selected data
is subtracted from the original substrate, ensuring that the substrates
remain disjoint. For example, the user could select all of the low fuel
economy cars and project them onto a new substrate to enable further
exploration while avoiding to add to the existing nested hierarchy of
partitions (Figure 7).

100 200 75 25

<20 <30 <40

MPG MPG: < 20

≥40

project

100

Fig. 7: Projecting to a new substrate. Extracting low fuel economy
cars to a new semantic substrate for continued exploration.

@ Prune. Finally, prune allows for eliminating (e.g., hiding; all
actions are reversible) selected supernodes from view. The operation is
similar to the FromDaDy multidimensional visualization tool [23]. It
can be applied to entire nested hierarchies, or to specific data values.
For example, the user could easily eliminate all U.S. cars from the
low fuel economy substrate by pruning on that data value in the origin
dimension (Figure 8).

prune

MPG: < 20

100

(a) Selecting a category to prune.

MPG: < 20

75

(b) Resulting supernode.

Fig. 8: Pruning supernodes. Eliminating entire subsets or values from
consideration using pruning.

4 DATAOPSY: AQS FOR MULTIDIMENSIONAL DATA

We developed Dataopsy, a web-based visual analytics tool, to demon-
strate AQS in practice. Dataopsy can be used in a standard web browser
using any medium to large screen device For example, Figure 9 shows
Dataopsy on a Samsung Galaxy S8 tablet device. In this section, we
describe the visual interface of Dataopsy as well as query actions and
interactions supported. We also include a video demonstration in the
supplemental materials.
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Fig. 9: Dataopsy on a Samsung Galaxy S8 tablet. The tool is particu-
larly powerful on a mobile tablet device with touch or pen interaction.

4.1 Card Design
The central user interface (UI) component of Dataopsy is a card (Fig-
ure 1c), following the design of the popular UI component with the
same name.1 Cards are typically used to couple relevant information
into a modular container. We chose cards as our core component as
our system should support semantic substrates, views with identical
functionalities albeit different underlying data subsets.

The default card, called Main, contains all data points in a single
supernode (Figure 1a). From this initial card, the user can use the
� Projection operation to create a new substrate, which is then projected
in a new card with identical design. The cards in our system are flexible.
By default, they align horizontally and take 2/3 of the horizontal and
vertical dimensions of the screen; but users can change their order,
collapse them, or delete them at any time. Each card has two sub-
components: a header and a body.

4.1.1 Card Header
The header contains styled icons to support P6 (Figure 10). We do not
include a separate icon for � pivoting as ! partitioning or laying out
the visual marks on the 2D space directly depends on pivoting. Instead,
we provide two icons and dropdowns within them to ! partition hor-
izontal and vertical axis. Clicking the @ prune icon deletes selected
data points from the card. Similarly, clicking the � project icon copies
selected data points from the current card and opens a new card with
the copied data. í Pile option combines selected data points together.
Users can optionally provide a name to the merged categories using
a popup. A user selects data points by directly interacting with the
visualization (described in Section 4.3).

All AQS operations are saved in an î interaction log or stack (Fig-
ure 10d). Using this stack, a user can go back and forth between any
stage of the exploration process. Further, we provide options to n save
and download the current state of the data as a CSV file. This is helpful
for exporting data after transforming the original data using pruning and
piling. Finally, a user can optionally � configure data attributes such
as defining alphabetical or numerical sorting options for the attributes.

4.1.2 Card Body
The card body contains the SVG container for the visualization. We
describe the visualization design within the card body next.

4.2 Visual Representation
Dataopsy uses a 2D grid view to lay out the supernodes along the
horizontal and vertical axis. Figure 11 shows an example representation
of 300,000 posts among different communities on Reddit [27]. We
describe the details about the representation below.

1https://www.nngroup.com/articles/cards-component/

Pivot x and y axis

Peek

Prune

Projection

Pile

Save Data

Log

Data Configa

b

c d e

Fig. 10: Different components of the card header. (a) Buttons and
dropdowns as styled icons for supporting P6. (b) Two checkboxes to
toggle seeing links and link arrows. (c) A sample dropdown containing
the data attributes that opens when a user clicks on either ! partition or
� peek icons. (d) Interaction log recorded by Dataopsy. This dropdown
opens up when a user clicks on the Log icon. The user can go back and
forth between different stages using this dropdown. (e) A histogram
of the target variable. A user can select and prune data using this
histogram (e.g., pruning data points with less than 5 occurrences).

4.2.1 Axis Labels
We used hierarchical grouping to place the labels on the geometric axes.
The order of the variables on the hierarchy depends on the order they
were added for ! partitioning by the user. For example, in Figure 11,
we first add the readability index and then sentiment on the vertical
axis. We also place variable names on the axis whenever space permits.
On the vertical axis, we only show the first variable name as nested
variable names may look indecent.

4.2.2 Supernodes
The visual marks in Dataopsy are typically aggregations of multiple
data points, in contrast to the typical one mark per one data. We call
these visual marks supernodes, although they may or may not have links
depending on whether the domain is a network or not. In the current
implementation of Dataopsy, we represent the supernodes with circles;
however, they can be any 2D geometric shapes such as rectangles.

Dataopsy automatically determines the radius of the circles based
on Equation 1.

S = min(width/Nx,height/Ny)

r =

{
S, if S > α

α, otherwise
(1)

Here Nx and Ny are the numbers of categories on the horizontal and
vertical axes. (width,height) is the dimension of the SVG, inherited
from the card body. We set α , the minimum possible radius, to 5. When
r =α , we update the size of the SVG by using Equation 2. However, we
do not change the size of the card body; instead, we wrap the extended
SVG within the card body and provide scrollbars to see the extended
contents (see supplement for an example). This allows us to scale the
representation for a large number of categories and avoid visual clutter.

width = Nx · r
height = Ny · r

(2)

By default, each circle encodes the number of data points in the
supernode using a linear color scale. However, the user can transform

5

https://www.nngroup.com/articles/cards-component/


NoConflict arising from a post? Yes

Fig. 11: Two-dimensional grid view with hierarchical nesting. Ana-
lyzing linguistic properties of 300,000 inter-community posts on Red-
dit [27]. Each row in this dataset contains information about a Reddit
post from a source to a target community. We ! partition the vertical
axis by the use of anger-related words, according to Linguistic Inquiry
and Word Count (LIWC) and sentiment of the posts, and the horizontal
axis by the readability index. We � peek at the variable of interest,
whether or not a post starts a conflict between the source and target
community. Posts with higher uses of anger-related words give rise
to more conflicts among communities. Also, posts that are difficult to
read (readability index > 100) have less chance of starting a conflict.

the circles into pie charts for seeing distribution along a new dimension
using the � peek operation. Figure 11 shows one example of � peek-
ing, where we see the number of conflicts arising from the Reddit posts
in pie charts. We also place the number of data points at the center
of the circles whenever space permits. For example, Figure 9 and 12
show the numbers in the circles whereas Figure 11 does not show the
numbers due to the small size of the circles. The user can always see
the numbers in a popup when hovering over the circles or pie charts.

4.2.3 Superlinks

Similar to the concept of supernodes, we call aggregated links con-
necting the supernodes superlinks. We encode edge weights with the
thickness of the links. We used D3’s arc function to draw the links. To
reduce visual clutter, we bundle the links and set their default color to
light gray with opacity set to 0.3. Despite these design decisions, too
many links can create clutter. To avoid that, Superlinks are hidden by
default. A user can choose to see all links by toggling the “Show Links”
option (Figure 10b). Similarly, a user can choose to see direction arrows
for the links by toggling “Show Link Arrows.” Finally, on hovering
over a node, we also highlight links originating and ending at the node
with light purple and green colors, respectively (see Figure 13 and 15).

4.3 Interactions
We designed fluid interactions to help users perform AQS operations.
There are multiple ways to interact with the visualization in Dataopsy.

The first is to interact with the axis labels. On hovering over an
axis label, Dataopsy highlights all supernodes belonging to that row
or column. Clicking labels will toggle selecting the whole row or
column. After selection, a user can use the icon buttons in the card
header (Figure 10) to @ prune, � project, or í pile the selected values.

Similar to the axis labels, a user can interact with the supernodes
directly. On hovering over a node, we highlight the axis labels relevant
to the node and show the number of data points belonging to the node

in a popup. If the data contains links, we also show the links originating
and ending at the node. On clicking a node, Dataopsy will toggle
selecting the data points belonging to the node and allow a user to
@ prune, � project, or í pile.

4.4 Implementation Notes
Dataopsy is currently a web-based prototype. We used Python running
in a flask server as our backend. We used D3 for rendering the
visualization in the frontend. All user interactions are supported by
JavaScript. The source code and a demo of Dataopsy is available here:
https://github.com/tonmoycsedu/Dataopsy

5 CASE STUDIES AND APPLICATION EXAMPLE

Section 4 demonstrated how AQS can be used to analyze large-scale
social media data (Figure 11). In this section, we demonstrate AQS
using Dataopsy in four more scenarios: two case studies involving
participants and two application examples.

5.1 Case Study: Data Exploration and Fairness Evaluation
ML and fairness researchers and practitioners often need to ensure how
their models perform with respect to sensitive attributes (e.g., gender
and race) in the datasets. This is important since ML models can inherit
biases from datasets and propagate the biases in sensitive domains (e.g.,
loan approval, hiring, and healthcare allocation) [6, 18].

We worked with two data scientists and fairness researchers to ex-
plore how AQS and Dataopsy can be used to evaluate fairness of an
ML model. The first participant (P1) is a male research scientist at
a large technology company with a Ph.D. in Computer Science and
more than 7 years of research experience in data science, visual analyt-
ics, and algorithmic fairness. The second participant (P2) is a female
Ph.D. student of Computer Science with more than 4 years of research
experience in data science and algorithmic fairness.

After a discussion with the participants, we decided to use the Adult
Income dataset in this study. We chose this dataset as it is widely used
in the algorithmic fairness and visual analytics literature [6,17,18]. The
dataset contains 45,222 data points where each data point represents a
person described by 14 attributes recorded from the U.S. 1994 census.
Here, the prediction task is to classify if a person’s income will be
greater or less than $50,000 based on attributes such as age, gender,
education, marital status, etc.

The first author of this paper met with the participants separately over
Zoom. Before the meetings, we asked participants to train a classifica-
tion model using the dataset. Both participants used Logistic Regression
to train the model. Their models achieved 86% accuracy across the
training and test sets (70%-30% split). Participants saved the predicted
labels and original attributes in a CSV file.

Each study session started with a training phase where participants
explored different features of Dataopsy using a training dataset. We
encouraged participants to ask questions at this stage. After training,
participants uploaded their saved CSV files to Dataopsy and analyzed
the model performance. Participants followed a think-aloud protocol
during the study. The sessions ended with semi-structured interviews
focusing on the utility, limitations, and future directions of Dataopsy.

5.1.1 Results and Feedback

Evaluating Intersectional Fairness. To evaluate the fairness of
the trained model, P1 started by ! partitioning the horizontal axis to
train and test sets and the vertical axis to male and female individuals
(Figure 12a). P1 immediately noticed that the dataset is highly skewed
towards men. Suspecting the skewed dataset might impact accuracy
across the subsets, P1 visualized the ratio of the accurate predictions
using the � peek action (Figure 12b). However, the model performed
better for females in terms of accuracy. To investigate further, P1 added
race on the vertical axis to ! partition male and female individuals
(Figure 12c). P1 noticed that accuracies are consistent across training
and test sets for all subsets. Among the subsets, Female White and
Male White have the highest number of data points. P1 selected these
two subsets and use the � projection action to create a new substrate.

6
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Fig. 12: Evaluating Fairness in Income Prediction Dataset. (a) Participant (P1) starts by ! partitioning 45,000 data rows into MALE-FEMALE
and TEST-TRAINING subsets. (b) Using the � peek action, P1 evaluates the accuracy of the model on the subsets. (c) P1 further ! partitions
male and female subsets by race. P1 � projects FEMALE-WHITE and MALE-WHITE (i.e., all WHITE individuals) into a new substrate. (d) P1
now ! partitions the new substrate (all WHITE) horizontally by gender and dataset and vertically by marital status.

P1 then restarted ! partitioning the new substrate, this time by mar-
ital status on the vertical axis and gender and dataset on the horizontal
axis. P1 immediately noticed that two subsets, White Married-AF-
spouse and White Married-civ-spouse, were suffering from low accu-
racies (rows 2 and 3 in Figure 12d). Further, data points pertaining to
White Widowed Male in the test set had a much lower accuracy than
the ones in the training set. P1 continued this faceted browsing to find
under-performing subsets in the dataset.

P2 followed a similar method to evaluate fairness across subsets. P2
mentioned that Dataopsy allows exploration of the full intersectional
space, whereas comparable ML tools often allow only one or two
dimensions (e.g., Google Facets).

EDA using Dataopsy. Both P1 and P2 thought Dataopsy is a
useful tool for exploratory data analysis (EDA). P2’s work requires
extensive data analysis, where finding interesting insights often requires
hours of coding in computational notebooks. P2 thought Dataopsy’s
faceted browsing provides a faster and more structured way to explore
a dataset. P1’s work often requires obtaining a balanced dataset across
intersectional groups to reduce the chances of biases in model training.
P1 thought Dataopsy is a handy tool to find empty or imbalanced groups
or subsets in a dataset.

Recommendation for Dataopsy as a Fairness Tool. P1 and
P2 provided several recommendations for adapting AQS in a dedicated
fairness tool. One common suggestion was to add functionalities to an-
swer “why” a subset of interest suffers from low accuracy after finding
the subset. Such functionalities may include examining individual data
rows (P2), observing the distribution of all features inside a subset (P1),
and counterfactual analysis (P2). Another suggestion was to include
more metrics to evaluate fairness (e.g., F1 score, and Theil Index).

Fig. 13: Visualizing a story in Dataopsy for writing an adapted
screenplay. Here we are seeing a partial view of the story Anne of
Green Gables by L. M. Montgomery. The horizontal axis represents
chapter and the vertical axis represents entities grouped by their type
(person, place, etc). The color of circles represent the number of
mentions, extracted using BookNLP. On hover, Dataopsy highlights
how an entity (Mr. Bell) is connected to other entities in the story.

5.2 Case Study: Planning for an Adapted Screenplay

In this case study, we demonstrate AQS for a novel application domain:
planning for an Adapted Screenplay. Screenplays dictate the making
of films, TV shows, and stage performances. Screenplays are often
adapted, where writers design their stories based on existing texts. An
adapted screenplay is around 120 pages in length whereas a typical
novel is around 400-800 pages. The critical challenge of writing an
adapted screenplay is to decide what plotlines, characters, or places
from the original story to include in the adapted story. With consultation
from a creative writer (W1), we explore how AQS can be helpful in this
scenario. The writer is a 27 years old female with published articles in
their portfolio and a BA degree in English.

For this study, we met with the writer online via Zoom. Before
the meeting, we asked the writer if they have a novel of choice. The
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Fig. 14: Exploring taxi rides in New York City (NYC). (a) We ! partition the whole dataset (around 1.7 billion trips) by YEAR. We select the
trips (around 430M) from pre-pandemic years (2016-2019) and � project them in a new view. (b) We ! partition the pre-pandemic trips by the
pickup and dropoff boroughs. Most trips (300M) originated and ended in Manhattan. (c) We can further drill down on the Manhattan trips by
� projecting them on a new view and ! partitioning them by pickup and dropoff zones within Manhattan. On hover, we see the number of trips
between a hotspot, trips between LENOX HILL and UPPER EAST SIDE NORTH.

writer chose Anne of Green Gables by L. M. Montgomery, a famous
children’s book with around 400 pages. We used BookNLP2 to extract
different types of entities (Persons, Facilities, and Locations) from the
story. Similar to our previous case studies, the study included a training
phase at the start of the session. We then asked the writer to visualize
the collection of entities using Dataopsy and devise a skeleton of the
proposed adapted screenplay with the help of the AQS operations.

5.2.1 Results and Feedback

Obtaining an Overview from Different Perspectives. W1
started exploring the story by ! partitioning the horizontal axis into
the 35 chapters of the book. They then ! partitioned the vertical axis
by the type of entities (persons, places, etc.), followed by the actual
entities (Figure 13). W1 then quickly hovered over several entities to
see how they are connected to each other.

W1 stated that ! partitioning helped them to see the story from
different perspectives. During the session, we noticed W1 continuously
changing partitioning order. For example, sometimes W1 used entities
and chapters to partition the vertical axis linearly. Other times, W1
used chapters on the horizontal axis and entities on the vertical.

Iterative Pruning and Piling. W1 found @ pruning and í piling
to be the most useful operations for developing a skeleton for the
adapted screenplay. W1 started by pruning entities with low frequency
and dependency in the story. Pruning allowed W1 to reduce several
plotlines, characters, and places. W1 also used piling to reduce the size
of the story. For example, after pruning several entities of a chapter,
W1 piled (i.e., merged) the chapter with the previous chapter.

2https://github.com/booknlp/booknlp

Recommendation for Dataopsy as a Writing Support Tool.
W1 provided several suggestions for adopting AQS and Dataopsy in
a writing support tool. One expected suggestion was to include a text
editor and link the text with entities in the visualization. This would
allow writers to see the context in the text and take informed decisions
before pruning or piling. Another suggestion was to include social
relations (e.g., brother, mother) as a feature so that writers can decide
which characters to prune from a social circle.

5.3 Example: Understanding Taxi Trips in New York City

We present an application example on the New York City (NYC) taxi
ride dataset [34] to demonstrate how AQS and Dataopsy scale to large
datasets. The dataset contains every reported trip from 2009 to 2022
in NYC (approximately 1.7 billion trips). We chose this application
because it is a large dataset (69 GB) with many facets for exploration.

The size of the dataset yields a range of analyses to perform. For
this example, we show how past taxi rides can be analyzed to identify
hotspots and devise a policy for allocating taxi cabs in 2022. Lock-
downs and a lack of passengers during the COVID-19 pandemic (2020-
2021) heavily disrupted NYC taxi service.3 Many taxi drivers changed
their profession during this time. As the world reopened after the pan-
demic, analyzing past taxi rides can inform the allocation policy of
taxis throughout the city.

We used DASK, a Python library for parallel computing, to conduct
the backend analysis. After loading the dataset, we first ! partition
the vertical axis by YEAR (Figure 14a). Applying the partition took 30
seconds for Dataopsy. The number of trips has gradually declined over

3https://www.cnn.com/2021/01/09/us/
yellow-taxi-drivers-new-york-covid/
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Fig. 15: Internal citations among the four tracks of IEEE VIS. (a)
On hover, light purple links highlight InfoVis papers citing previous
papers and light green links show papers citing InfoVis papers. (b)
Similar analysis for VAST.

the years. As expected, we see a significant drop in 2020-2021. For
demonstration purposes, we only select data from the first two months
of 2022. As taxi rides should presumably return to pre-pandemic status,
we select (i.e., � Project) the trips from the most recent pre-pandemic
years (2016-2019) for further investigation. We then ! partition the se-
lected trips (430M) by their pickup and dropoff boroughs (Figure 14b).
As expected, most taxi rides originated and ended in Manhattan. We
can � Project the Manhattan trips (300M) and further ! partition these
trips by their pickup and dropoff zones within Manhattan (Figure 14c).
We can now clearly see the hotspots within Manhattan. Note that the
default width and height of the SVG are extended using Equation 2
due to the large number of zones. Please see the full screenshot of
Figure 14c in the supplement. We can further explore the hotspots (e.g.,
� projecting and ! partitioning a hotspot by month).

5.4 Example: Scientometric Analysis of IEEE VIS Pubs
Our final example is a scientometric analysis of IEEE VIS publications
using the VisPub [24, 40] dataset. This example was designed to show
how AQS can be used to analyze multivariate networks. We can explore
this dataset at different levels of aggregation. For example, Figure 15a
shows a citation network between four conference tracks: Vis, InfoVis,
VAST, and SciVis. On hover, Dataopsy highlights references originated
(light purple) at InfoVis and papers citing InfoVis papers (light green).
We noticed that InfoVis papers cite their own papers the most. VAST
papers also cite many papers from VAST, although they cite many
InfoVis papers too (Figure 15b).

6 DISCUSSION

Here we discuss design implications, limitations, and future work
relevant to AQS and Dataopsy.

Changing Perspective with Partitioning. We noticed that partic-
ipants often used different combinations to partition data, even within
the same session. One key observation is that the order of partitioning
can change the perspective even if the underlying data is the same. It
can potentially affect what information or insights people see first. This
phenomenon gives rise to several interesting questions for the VIS com-
munity such as How exactly does the order of pivoting and partitioning
impact the data exploration process? and Is there an optimum order
to hierarchically nest the partitions? Prior work on finding optimum
ordering for parallel coordinates are inspiring in this case [39, 54].

Designing and Evaluating Fluid Interaction. Our case studies
show promises for interaction design for exploring multivariate data.
The supported interactions in AQS (P6) are larger than in a typical
visualization system. Although AQS was not formally evaluated in
the case studies, participants used praises such as “cool,” “nice,” and

“wow” to describe the usability of Dataopsy. Our future work will
focus on evaluating Dataopsy in comparison to similar methods (e.g.,
Google Facets [20, 49]). We can ask users to find answers to queries
(e.g., What percentage of white, married, and female individuals were
accurately labeled by the model?) and measure efficiency by counting
and comparing the number of steps taken to answer the queries using
different methods. We can further use NASA-TLX [22] and SUS [5] to
evaluate the perceived workload and usability of Dataopsy.

Trade-offs between Aggregated and Unit Representation.
AQS is a top-down technique where the exploration starts with a single
mark aggregating all data items. This strong aggregation enables us
to scale analysis to large datasets. However, compared to unit visual-
izations, there are fewer chances of serendipitous findings using our
approach. Due to the lack of an overview, users need to have prior
knowledge and hypotheses to construct the queries. We can partially
address this limitation by introducing a recommender system that can
recommend subsets using anomaly detection algorithms and prior user
interactions [6, 37].

Scalability. As a theoretical concept, AQS is scalable to any num-
ber of data points. However, as an early prototype, Dataopsy currently
lacks a few engineering features for handling “really big” datasets.
For example, despite using parallel computing, for the NYC taxi ride
dataset, on average, it took 30 seconds for Dataopsy to respond to the
data operations (e.g., partitioning). There are established methods to
handle such large datasets in visualization displays [10, 30, 32], which
could further improve response time.

Visualizing Quantitative Values. Dataopsy has limitations for
analyzing quantitative values. For example, when visualizing a quanti-
tative attribute using � peeking, Dataopsy uses binning and categorical
color scales to show the distribution in a pie chart, which can be chal-
lenging to decode. One option is to extend the supported visual mark
type (e.g., histogram in rectangles) to resolve this issue. We will fol-
low the example of prior work such as Polaris [46] to integrate this
feature into our tool. Another relevant problem with � peeking is that
it becomes difficult to measure the size of the nodes (i.e., cardinality)
without the color saturation (Figure 11). A solution could be using cir-
cular curves along the circles/pies to indicate the size. Another possible
solution is using varying circle sizes to represent cardinality.

Adopting Aggregate Query Sculpting. We recommend that prac-
titioners and researchers adopt AQS if the following conditions are met:

• The data has a sufficient amount of facets (>=2).

• The number of data points is too many for unit visualization.

• The goal is to obtain higher-level insights and patterns rather than
finding lower-level similarities between individual data points.
(For example, AQS may not be feasible for finding clusters in an
embedding space.)

• Domain-specific functionalities for the application are easy to
integrate with AQS.

7 CONCLUSION

We have presented Aggregate Query Sculpting (AQS), a novel inter-
action technique for visualizing and exploring multivariate data. The
goal of our work was to solve challenges for large-scale data containing
many attributes. Visualizing such datasets using unit visualizations
(e.g., scatter plots) often results in visual clutter and inelegant represen-
tation. We propose aggregation to be key for solving this issue. As a
born scalable technique, AQS initially aggregates all data points into a
single visual mark, a supernode. From there, AQS provides six opera-
tions, abbreviated as P6, to iteratively sculpt the data to a desired form.
Based on the concept of AQS, we developed Dataopsy, a prototype tool
for exploring multivariate data. Dataopsy is equipped to analyze multi-
variate data from versatile domains. We hope our work will motivate
future research for designing visualization that is equipped to manage
large-scale data, yet easy to explore.
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