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Abstract
As the complexity of data analysis increases, even well-designed data interfaces must guide experts in transforming
their theoretical knowledge into actual features supported by the tool. This challenge is even greater for casual users
who are increasingly turning to data analysis to solve everyday problems. To address this challenge, we propose data-
driven, contextual, in-situ help features that can be implemented in visual data interfaces. We introduce five modes
of help-seeking: (1) contextual help on selected interface elements, (2) topic listing, (3) overview, (4) guided tour, and
(5) notifications. The difference between our work and general user interface help systems is that data visualization
provide a unique environment for embedding context-dependent data inside on-screen messaging. We demonstrate
the usefulness of such contextual help through two case studies of two visual data interfaces: Keshif and POD-Vis. We
implemented and evaluated the help modes with two sets of participants, and found that directly selecting user interface
elements was the most useful.
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Introduction

Using computer applications effectively can be demanding
for both first-time and experienced users. While general
user interface improvements, better interaction models, and
increased familiarity have made applications easier to use,
using new interfaces and learning new concepts always
pose challenges.1 Unfortunately, we may have become
victims of our own success; users today expect to use new
applications—even complex ones—immediately with no or
minimal training, and to learn and troubleshoot as they
go. In particular, designing self-instructional interfaces for
data science tools faces many challenges because of the
complexity of sensemaking. As a consequence, visualization
tools such as Tableau, Spotfire2, or Keshif3 must guide
experts in translating their analytical knowledge into actual
tool features. This step is even more challenging for casual
users or novices, who may have limited data analysis
vocabularies yet are increasingly searching for data-driven
answers in their everyday lives. However, traditional help
materials based on static datasets and fixed application
settings are a poor fit for current data analysis environments
by requiring the user to translate abstract information
into their task at hand. Contextual and integrated help
systems have the potential to provide this crucial help and
training guidance. Specifically, data interfaces constitute an
unprecedented opportunity for data-driven contextualization
where the features of the underlying dataset—such as
variable types or distributions—and analysis settings—such
as chart types and data selections—can be used to guide the
user to learn the tool and perform data analysis.

We present a contextual, data-driven, and in-situ
help framework for visualization. We implemented this

framework in two visual data interfaces: (1) HelpIn for
the multidimensional data browser Keshif,4 and (2) Help
Mode for POD-Vis, a visual analysis system to explore
longitudinal medical outcomes. With contextual integration
of help instructions using visual callouts, superimposed
labels, and dynamic annotation into a live visual data
interface (Figure 1), our framework responds to active data
and application context to reduce the physical distance of
help material to the interface, thus minimizing the need for
the user to split their attention between tool window and
help system.5 The features of data, visualizations, queries,
and application and task history help users to quickly find
help material of interest by contextual filtering and ranking,
and to comprehend dynamic narrative answers. We introduce
five modes of help-seeking across the pull/push model
(help initiated by the user vs. system)6: Point&Learn, Topic
Listing, Overview, Guided Tour, and Notifications. While
updating interface design can quickly make screenshots
or videos outdated, our framework allows help material
to be adjusted incrementally during development, enabling
iterative maintenance.

We evaluated our contextual help framework as follows.
For Keshif, we compared HelpIn to its stripped-down version
with non-contextual topic index and non-integrated answers
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Figure 1. Overview of contextual help in POD-Vis (left) and Keshif (right). 1 Users can toggle the help options in
POD-Vis—“Help Mode”, and Keshif—“HelpIn”. 2 Hovering over interface elements triggers the Point&Learn help feature. 3 While
Help Mode is enabled, in-context messages are displayed to help learn interface and data actions. 4 POD-Vis includes a
step-by-step Guided Tour of the data analysis process. 5 Tips are sent as Notifications to Keshif users, and accessed when
needed.

using shared instructional material. Similarly, for POD-Vis,
we evaluated its Help Mode as part of our iterative design
process. While our participants showed similar task progress
across the help system conditions, the Point&Learn mode
was found the most useful in their feedback, and objectively
lead to higher task performance while also increasing time
spent on help. Given high-quality help instructions, the
preference across static vs. integrated topic answers were
split. We also present help-seeking behaviors for visual
analytics.

Background
Using new or rich interfaces can be a demanding task
for users with a variety of backgrounds. Therefore, the
design of effective help systems and documentation is
an integral part of human-computer interaction research.
Here we summarize the motivating related work, existing
approaches, and the differences of our contributions.

Basic Help Techniques
As one of the most common help methods, help topic indices
are commonly used to offer alphabetical, hierarchical, and
search-based access to help. However, empirical studies
suggest that users often avoid using both paper and online
help manuals, and are frustrated by navigation, terms of
indexing, and level of explanations.7 In other words, users
are increasingly eschewing this kind of traditional help
mechanisms, favoring instead integrated help.

As a common UI pattern, tooltips (callouts) are simple text
labels that offer brief information next to a UI component on
demand (such as on mouse hover). However, they generally
present static (non-contextual) descriptive information, and
they are not indexed for navigation.

Guided tours use a sequence of tooltips as a fixed, step-by-
step introduction to various interface components and tasks.
Some guided tours are coupled with overlays consisting

of multiple tooltips that can describe multiple components
at once (for example Keshif3). However, both of these
approaches are intrinsically static and precanned, and thus
cannot provide help on-demand and on targeted questions.

Automated wizards aim to complete specific tasks on
behalf of the user with minimal interruption. However, as
argued above, wizards are static and tend to not provide data-
specific context. This contrasts with how people are taught
to carry out data analysis under different datasets and a rich
range of configurations; describing general strategies while
contextualizing them in concrete data.

A more dynamic approach to presenting help and guidance
is to use a multi-layered approach8 that structures help
material from simple (on first-use) to complex (on continued
use). In a similar fashion, the training wheels strategy9

blocks complex actions and error states on introductory use.
We borrow inspiration from both of these ideas in our work
in this paper.

Video-based Training
Videos can introduce multiple interface features in a
recorded sequence, often using verbal explanations. The
research on video-based training commonly aims to
allow navigation by video-content. To provide a content-
annotated timeline, ToolScape10 uses crowdsourcing to
extract annotations, and Waken11 identifies events and
interface components by image processing. Nguyen and
Lie12 propose controlling the video playback by making the
videos partially interactive within the captured video frame,
while Pongnumkull et al.13 propose synchronizing a tutorial
video to a live interface when the user aims to achieve the
same task on video.

However, videos fundamentally present a fixed linear
flow using static material that cannot adjust to an active
application. Users can disengage from video training
for reasons including long segments, abstract conceptual
information, inconsistencies within and compared to
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other documentation, or extensive zooming14. Changes
in interface design can easily outdate existing videos.
Therefore, producing and maintaining high-quality videos
remains demanding; with videos offering limited integrated
and contextual help support.

Context-aware Help Systems

AmbientHelp15 uses a secondary monitor to continuously
and ambiently present help material (videos and manuals)
outside of the primary work monitor, with relevance
detected using most recent user actions. Targeting web-
search applications, Ekstrand et al.16 propose context-
profiles including recently used tools, actions, and open
interface components. Our help modes, on the other hand,
provide descriptions of data elements with an interpretation
of actual live data.

Myers et al.17 focus on answering why and why-not
questions in user interfaces. Their query model can extract
topics from pointed elements or recent actions, and present
answers with textual description and relevant interface
components highlighted. Yeh et al.18 use screenshots to
overlay the help on the interface directly. However, image
targeting rules can result in false positives/negatives, and is
not robust to changes in interface design. Also, this system
cannot be aware of the full application state or underlying
data, or control the application. A key distinguishing element
of our help modes is that it provides descriptions of live data
with explanations of how to interpret and act on that data in
context of the data interface itself.

Help and Training for Visual Data Interfaces

Existing studies on visualization help commonly focus
on providing training for a single visualization design
or technique. Recently, Kwon and Lee19 studied the
effectiveness of different learning approaches for scatterplots
(static, video, and interactive). Other recent approaches
include converting visualizations to natural language
descriptions of data features and potential insights, such as
the recent Wordsmith20 and Narratives21 tools developed
for dashboards created with Tableau software. While our
framework also features customized narrations, these come
in response to help seeking rather than detecting and
presenting potential insights. Our method also enables
finding relevant help topics rather than insights.

To our knowledge, there exists no comprehensive,
integrated, and responsive help system developed for
rich visual data interfaces similar to our work. Closely
tied to help and training, literacy and knowledge have
received attention in visual data analytics community. For
assessing visualization literacy, Boy et al.22 propose a
principled approach based on Item Response Theory. In the
Cognitive Exploration Framework23, knowledge is modeled
to influence cognitive activities in visual data exploration as a
dynamic construct that can be extended with new knowledge
of data and the application over use. These discussions on
visual literacy and sensemaking further motivate our work
towards improving help for data interfaces.

Design Rationale
The principles of minimalist documentation24 motivates the
design and contributions of our work: (i) getting started fast,
(ii) training on real tasks (and real data), (iii) reading in
any order, (iv) coordinating system and training, (v) using
the situation (context), (vi) leveraging prior knowledge, and
(vii) supporting reasoning, and improvisation. While our
implementation also aims to (viii) support error recognition
and recovery, as well as (ix) develop optimal training
designs, we do not claim contributions on these principles.
Based on these principles, we derive the following design
characteristics (DCs) and motivate their use:

DC1 Bridge to the familiar. New help systems should build
on existing help system conventions. Thus, our design
and contributions reflect Caldwell and White’s help-
system design goals25 of navigability, consistency,
relevance, coherence, conciseness, reuse, and fidelity.

DC2 Minimize separation. Earlier studies have empiri-
cally shown that physical and temporal separation of
information sources undermine learning, i.e. the split-
attention effect.5

DC3 Enable rapid switching. Our design enables rapid
switching between consulting help and using the
interface (analyzing data).26

DC4 Coexistence. Help systems should avoid interference
with the main interface and should remain unobtrusive
while the user focuses on the original task.27

DC5 Demonstrate first. We guide the user through
complex operations by demonstration in the context of
the interface28—showing rather than telling.29

Design Space: Contextual Help in Visual
Data Interfaces
A help system for a software application is a form of
documentation integrated into the software that is designed
to aid the user in correctly operating the software.7

For visualization software, a help system instructs and
guides the user in utilizing the visualizations, interactions,
and data transformations to the best effect.8 Contextual
help, accordingly, uses the current software application
state to provide customized and targeted help to facilitate
comprehension.16 Such contextual features can be used to
filter and rank help material by relevance, and also to present
dynamic and integrated answers.

Here we discuss how to design a contextual help system
for data-visualization that draws on the design constraints
DC1–DC5 above. In doing so, we identify two orthogonal
axes that we can use when reasoning about such systems:

• Initiating help: Is the help explicitly invoked by the
user (pull), or is it initiated by the computer system
upon detecting specific context (push)?

• Type of context: The help context ranges from (i)
data-driven, (ii) application-driven, and (iii) history-
driven contextual features.
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Below, we discuss these factors at length. In each category,
we exemplify finding and integrating relevant help content.
We will be using these three categories—DDC, ADC, and
HDC—when discussing concrete help mechanisms later on
in the paper.

Initiating Help: Push vs. Pull Models
Help systems can be organized into traditional pull
mechanisms, that are initiated by the user, and less common
push mechanisms, that are initiated by the computer system.
These terms are drawn from mixed-initiative interaction,6

where user-initiated action is blended with computer-
initiated action. In other words, this classification deals
primarily with how help is initiated. Context is used to
determine how to actually deliver the help.

A pull-based help system requires the user to request the
help, whereas a push-based one will detect situations where
the user may be in need of help and show it automatically.
The pull model is unobtrusive and lets the user focus on their
primary task. The push model, on the other hand, may enable
the user to carry out future tasks more efficiently through
opportunistic learning.30 Both mechanisms have their use; a
sophisticated user application likely requires both.

Data-Driven Context (DDC)
This context category describes features of the underlying
data, such as data types, distributions, and relations, and the
states of data visualization and queries.

Help Seeking. Relevance of help content can be defined
by existing data types, features and query states. For
example, help content concerning computing temporal
characteristics, such as extracting month, would be relevant
only when data has a temporal component. If the data is
not filtered, content on clearing filters would not be relevant.
Help content can reflect the existing data visualization types
as well. For example, selecting data by geographical regions
would be relevant only when a map is visible. Ranking help
content on relevance can reflect frequency of data types as
well. For example, if numeric data type is common, tasks on
numeric data can have higher priority (see Topic Relevance
and Ranking above). To further support data-driven help
seeking, data glyphs, or visualization components can be
directly selected to retrieve their contextual information.
Topic names can also reflect visualization states. For
example, if application allows two modes for visual scale,
the topic name can reflect the alternative (target) setting.

Help Comprehension. To try to aid comprehension, help
descriptions can highlight appropriate data types, features,
or distributions. A heuristic approach may select a data
aggregate that includes about half of the data. For example,
in our POD-Vis system, we suggest aggregating data into
halves, tertiles, and quartiles. In addition, the descriptions of
help can include information about the data distribution and
features. For example, description of a record can include
its sorted rank, or multiple encodings in a visual glyph can
be clarified with legends and exact values. The answer can
also respond to the visualization state and visual encodings.
For example, in a scatterplot, requesting help information
on a filtered-out dot (record) can describe why it is filtered
out (i.e. which query it fails). If points are color coded by

category, the description can describe the color mapping and
the category of the point.

Application-Driven Context (ADC)
This context category describes the application state, as well
as UI components (such as widgets, buttons, menus, etc.) that
are visible or are reachable through interaction.

Help Seeking. The help material relevance can reflect
active application settings. For example, if none of the
panels in the interface is collapsed, the “uncollapse panel”
topic would not be relevant. Relevant help material can
be requested by interface components, either by direct
interaction (pointing), or using a textual list of components.
For example, pointing to a sorting icon can suggest “Change
sorting criteria” and “Sort in reverse” topics. Considering
help-system as application status, presenting related help
topics to a selected help material can expand users’ repertoire
and provide supporting information. In addition, the position
of help panels (and tooltips) can be adjusted to avoid, or
minimize, overlap with highlighted components. Location-
aware presentations has been shown to increase training
performance31.

Help Comprehension. Help can be presented by high-
lighting relevant interface components, such as where to
click to change a setting, to minimize the distance between
answer and action. The help descriptions can be responsive,
describing the current state, and the role and use of alterna-
tive states.

History-Driven Context (HDC)
This category is based on the actions performed by the user.

Help Seeking. The help topics can be ranked by recency
or frequency of usage, emphasizing either more/less or
most/least frequently used features. The action history
information can be used to refresh the user’s memory or
clarify most recent interactions, or to enable discovery of
new (or unused) features. User actions can also be used to
infer high-level behavior. For example, if the user scrolls
frequently in a visualization panel, the help system may
suggest to maximize it. Or, when user frequently highlights
two categories, the system may suggest comparing the
two by a locked selection. Modeling user actions through
methods such as clickstream analysis32 can lead to powerful
help personalization.

Help Comprehension. The answer may exemplify the
most recently used components if there are alternatives to
achieve the task.

Implementing Contextual In-Situ Help
Our contextual help system is based on five modes for
help-seeking based on the contexts defined earlier: (i) Topic
Listing, (ii) Overview, (iii) Point&Learn, (iv) Guided Tour,
and (v) Notifications. The framework is designed as an
overlay on top of a visual data interface. It blends a
semitransparent help overlay with the underlying interface
in the background, enabling the user to stay oriented. To
demonstrate our ideas, we integrate our contextual help
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systems in two separate web-based data exploration tools,
Keshif4 and POD-Vis.

For Keshif, the help features were implemented as a plugin
called HelpIn. All five help modes were implemented as
part of the plugin. Oftentimes, visual data interfaces are
developed using programming frameworks—as defined by
the project or team needs. The POD-Vis tool, on the other
hand, currently includes the Point&Learn and Guided Tour.
For brevity we explain the help modes using HelpIn, but
include images from POD-Vis when applicable.

Both HelpIn (Keshif), and Help Mode (POD-Vis) feature
a stencil approach31 to highlight interface components that
are selected by the user (Figure 1), or to present part of
a help topic answer (Figure 3). We propose the following
components (with design constraints addressed for each):

• Overview presents a short narrative summary of active
data analysis state (DC1, DC2, DC5);

• Topic Listing reflects an explicit pull action with the
user controlling the topic search by keywords (DC1);

• Point & Learn makes it easier to pull help based on
the pointed interface area (DC2, DC3, DC4);

• Guided Tour is initiated (pulled) by the user, yet the
sequence of material is pushed by the help system
(DC1, DC2, DC4, DC5); and

• Notifications reflect the explicit push mode by
monitoring application use, and suggesting specific
help directly (DC4, DC5).

We emphasize minimalism and simplicity in the help
language, to reduce verbosity, and to maintain consistency
across all components.24 Our material reflects the design
language of the underlying application, such as using the
same icons and color design, thus reducing the extraneous
cognitive load.33

Contextual Help Modes
In this section, we describe the design of five help-seeking
modes and the topic answer, which provides instructions.

Overview (pull)
The Overview mode (Figure 2) shows a narrative high-level
summary of the active data analysis and interface state.
This approach minimizes separation (DC2), bridges to the
familiar (DC1), and demonstrates first (DC5). It orients the
user in data analysis and exploration by describing multiple
relevant features that affect the active view (such as active
selections, and visualization modes). It also allows the user
to see how these modes can be changed by linking to
individual help topics. The Overview mode uses both data-
driven (DDC) context—by integrating specific data from
the current dataset selection—and application-driven (ADC)
context—by highlighting relevant interface components.

Topic Listing (pull)
The Topic Listing mode (Figure 3) lists all help topics,
ranked (and filtered) by relevance given the current context.

1

2

Figure 2. The Overview mode. 1 The interface state is briefly
described using the active settings and data features. 2 The
user can interact to learn how to change the related states (for
example, changing selections or visualization modes).

While this mode reflects the traditional pull approach (DC1)
with tag-based filtering and text-search to navigate through
help topics, our context-aware ranking improves upon the
static help listings and navigation of topics. In contrast, a
static topic listing uses only static application-driven context
(ADC). In addition, the system provides contextual options
to hide (or show) non-relevant topics, and to prioritize
unused (or most recently used) features. Providing paths to
topics that may be currently irrelevant can help users learn
about extended tool capabilities.

1

2

3

4

5

Figure 3. The Topic Listing mode. 1 Topics are filtered to
those relating to Select action, and ranked by contextual
relevance. 2 Non-relevant topics are shown with (!), and are
ranked below relevant topics. 3 Ranking options can be
modified. 4 Topic names reflect the dataset (Records are Bird
Strikes) and application state (ex: absolute vs. relative visual
scales - not visible in this screenshot). 5 Recently used topics
are marked with a clock icon.

Topic Relevance and Ranking by Context. Several
different ranking methods are possible. Ranking by
application-driven context (ADC) would merely rank help
topics based on their overall importance. Ranking by the
current data selection would favor operations that are
specifically related to the current data-driven context (DDC).
Finally, a history-driven context (HDC) ranking would
promote recently used actions; or, inversely, ones less
recently used (or unused).

Ranking and filtering help topics using contextual
information can offer more relevant options up-front and
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improve navigation. Each topic defines a list of context
features (such as data, application, or UI state) to compute
topic relevance. This is done by adding the weights of
satisfied context features. The richer the required context
features of a topic, the heavier the topic weighs. The context
feature weights are defined in help material, and reflect the
importance and commonality of the feature within expected
interface use. The ranked topic relevance is computed using
the following strategies):

• Ranking by data (DDC): The currently visible data
dimensions, data items, or data types (such as the
number of numeric attributes) can be used to control
the weight. This means that more common features are
given a higher ranking.

• Ranking by UI components (ADC): If topics
reflect multiple targeted UI components (such as by
recognizing UI hierarchy), the topic that relate to
more specific components are ranked higher based on
component specificity.

• Ranking by history (HDC): If topics are ranked by
recency of use (history), a score that reflects if and how
recent the feature was used is added. When ranking for
the most recent first, the score is inversely-proportional
to how recent the feature was used. When ranking for
unused first, the score is highest for topics that have
not been used, and lowest for the most recently used.

• Static: Topic weight (if defined) is added. This allows
adjusting ranking per-topic irrespective of context.

1

2

4

3

Figure 4. The Point&Learn mode. 1 A category is selected
by pointing. 2 Its parent, categorical summary, is also
highlighted. 3 Descriptions of the category is responsive to
data, visualization and selection states. It includes a basic
description, the visual encoding, and for each visual feature,
describes the encoded value and how to read the interface. 4

Related topics include those pertaining to the category and
categorical summary component.

Point & Learn (pull)
In the Point & Learn mode (Figure 4), the user selects
an interface or visualization component by hovering their
mouse over it. This directly minimizes the separation often
inherent in many help systems (DC2) while enabling rapid

switching (DC3) and coexisting with the existing data
interface (DC4). The help panel shows the information
relevant to the pointed element, including its name,
description (along with visual encodings and settings), and
related help topics, while the pointed element is highlighted
using a stencil window and tooltip in the semi-transparent
overlay. In other words, this is a fundamentally application-
driven help mechanism (ADC), but the help can be extended
with data-driven context (DDC) to connect its use to the user.

The hover-action provides responsive interaction design to
quickly learn about multiple components. Clicking freezes
the selected element, and enables interaction with the help
panel (such as activating a related help topic). The freeze-
action can also trigger updating help material, such as
showing connected components of the selected item (such
as a data record) on the interface. The selection can be
unfrozen by clicking outside the help panel. The framework
recognizes the hierarchical composition of UI elements on
pointer-based selection.

For example, a measure label appears inside a category
(glyph), which appears inside categorical summary, which
appears inside a panel (of the data browser). While the
description follows the most specific element (such as the
measure label), the help topics and stencils can reflect
multiple layers in hierarchy. We limit the hierarchy to two
components (self and parent) to retain focus on the material,
and not overwhelm the user.

Guided Tour (pull)
The Guided Tour mode (Figure 5) aims to quickly familiarize
the user with the interface using a pre-determined sequence
of help material (topics or interface components). The
user controls the pace by explicitly stepping through the
sequence. Related topics to the active step are available on
request. The system displays the progress through a dot
pattern, and clicking on a dot jumps to the tour to a specific
step. If the user exits or changes help mode during the tour,
they can later resume from the last active step.

Guided tours bridge to the familiar (DC1) yet minimize
separation (DC2); while they are typically not rapid, but
instead constitute an interface mode of their own, this design
also means that they coexist (DC4) well with the existing
interface. They also promote demonstration (DC5). While
normal guided tours are purely application-driven (ADC),
our approach also populates the tour with data from the
current dataset, i.e., using data-driven context (DDC).

Notifications (push)
The Notifications mode suggests relevant help topics on-the-
fly using an explicit push-model. To not disrupt to the user,
we followed a subtle design that uses on the corner to present
incoming notifications. On mouse-over, the icon reveals
the related task name—an ADC approach—and allows for
dismissing the notification. In our current prototype, we
enable notifications on a per-topic basis over an extended
period of time if the user has not used the relevant feature yet.
The notifications can also be used as a tip-of-the-day feature
to suggest new topics for revisiting the interface. Generating
relevant notifications require detecting user behavior by
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Figure 5. The Guided Tour mode. 1 The tour progress is
visible, and user can control it forward, backward, or to a specific
step. This step shows answer to a help topic, “Highlight–select
to preview Companies.” 2 The tooltip of the main action, which
is a mouse-over on a visual glyph, is highlighted by color. 3

Additional tooltips describe the effect of this action on other
interface components. 4 Detailed description of the topic
presents an easy-to-read summary of tooltips and additional
information. 5 Related topics, and 6 the context under which
this topic applies can be viewed on demand as well.

tracing their actions (HDC), in addition to taking data (DDC)
and application (ADC) context into account.

Notifications promote coexistence (DC4) by subtly
integrating help with the existing data interface, and
proactively demonstrate the interface to the user (DC5).

While earlier intelligent help systems such as Microsoft’s
Clippy have not proven to be effective,34 finding the
right content and presentation design for notifications can
enable opportunistic learning (DC5). In other words, more
semantics and less intrusiveness (DC4) is desired.28 To
achieve unobtrusiveness and usefulness, the notifications
should not be frequent (avoid false positives), and help the
user when appropriate (avoid false negatives). We present
Notifications as a design prototype that covers the explicit
push model for help, and we claim no contributions on
identifying when to raise notifications.

Topic Answers (pull)
A contextual topic answer aims to ease help comprehension
(rather than help seeking), and can be reached through the
topic listing or relevant topics of a pointed component.
The topic answer is presented directly on the interface by
highlighting all the UI components that can achieve or affect
the task using a stencil window and tooltips (Figure 6).
Help descriptions include not only how to perform the task,
but also how it affects the rest of the interface, such as
in coordinated-views design pattern for selection tasks.35

When a dynamic demonstration of an answer is appropriate,
the system can present an animated sequence of steps,
highlighting information relating to each step directly on the
interface. The user can replay these animation sequences to
better attend to interaction details and sequences. Clicking on
a highlighted UI component passes the mouse-click through
overlay and executes the action.

The help overlay closes if there are no other actions to
execute for the task, or shows the next action step if other
steps remain. When multiple components can achieve the
same task, a single tooltip is shown for each component

group (Figure 6). The contextual features of a help topic are
shown under “Relevant when...” part of the help panel. The
selected topic can be non-relevant contextually if one or more
context features are not met in live interface, such as when
input data does not include the relevant data type, or when
data is not filtered for a topic modifying an existing filter
selection.

1

2

4

3

Figure 6. The Topic Answer mode. 1 Two distinct actions
can satisfy this task, either by 2 using the dropbox, or 3

clicking an icon in a numeric summary. 4 Notice that all
relevant icons are highlighted, yet “Click” action tooltip is shown
only for one. Clicking on the stencil boxes records the mouse
event; the action is executed and HelpIn closes.

Case Study 1: Keshif
Keshif3 is a data visualization browser designed around
coordinated multiple views (CMV),35 faceted browsing,36

and brushing and highlighting.37 The tool can be used
to view multivariate tabular datasets, such as relational
databases, as well as sets and network data. It is implemented
as a web-based application using modern web technologies.

We implemented contextual help as the HelpIn plugin for
the Keshif data visualization browser. The program logic of
HelpIn is implemented in JavaScript, and help material is
also described as JavaScript objects. The material includes
lists of contextual features, help topics, UI components (for
Point&Learn mode), and guided tour steps. To evaluate
the context, HelpIn accesses the DOM of the webpage
and/or accesses the underlying application state and dataset
in JavaScript directly. It can also modify the application
state through this direct code access. The stencil areas used
for answers and Point&Learn components are expressed as
DOM class names, which also enable detecting help topics
for tracking historical context of use (for example, HelpIn
can track a click on .summaryCollapse button to “Collapse
summary” topic).

To understand how HelpIn influences the help-seeking
and learning performance, behavior, and experience of first-
time users for data analysis tasks, we conducted a laboratory
experiment. For comparison to the contextual in-situ help
system (HelpIn), we used non-contextual help topics with
non-integrated topic answers (Baseline).‘ We present a
quantitative analysis on performance, and the interactive
help system use to answer tasks. We also present subjective
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feedback of our participants regarding the observed usability
and efficiency of the help system and help materials.

Pilot Studies
We ran pilot studies with 4 participants to refine the study
protocol. We observed significant variations for help use
and analytical reasoning between participants, which limited
effectiveness of between participant design protocol across
help systems. Within participant design also allowed us
to collect feedback on subjective preferences. We also
noted that without a brief introduction to help system, the
participants could not make informed decisions during the
study since they were not aware of help system features.

Participants
After the pilot study, we recruited 14 participants (7 male,
7 female) using university public mail-lists and message-
boards. All participants were first-time users of Keshif. Two
participants had experience creating visual dashboards using
SAP or D3.js. Other participants did not have visual data
analytics training beyond basis statistics courses, and most
previous experience were related to coursework. They all had
some experience with drawing charts using Excel. Thus, the
majority were novices in visual data analytics, as well as in
Keshif. We compensated participants with $10 cash.

Study Design
We used a within participant design with the help system
(Baseline vs. HelpIn) as the independent variable. The
ordering of help systems shown to the participants were
counterbalanced, i.e. 7 participants completed tasks with
Baseline first, and the other 7 started with HelpIn. The
system conditions were as the following:

• The Baseline condition included a traditional (non-
contextual) topic listing with alphabetical sorting, and
did not integrate answers into the interface, i.e. did
not include stencil highlights or tooltips. The answers
included static media (images, animated gifs) using
samples from other datasets.

• The HelpIn condition used contextual and integrated
help with Topic Listing, Point & Learn, and Overview
modes.

Baseline was created using a stripped-down version of
HelpIn to eliminate other differences across the systems.
The help material used across the system conditions were
the same except the help modes, the use of context, and
integration of answers. The material, with 32 topics and 50
components, focused on the exploratory use of Keshif (i.e.
did not include authoring data visualizations). We disabled
Notifications as its efficiency depends on inferring user
behavior with minimal false positives/negatives, which is not
among our contributions. We used the Guided Tour mode for
training only.

Task Description
The participants were given 12 tasks across three task types
and four datasets. The three task types (Explain, Re-target,

Analyze) cover both understanding the data interface, and
executing actions to achieve desired outcomes. Specifically:

Explain (T1): We asked participants to “Focus on the
summary and explain the chart, including the meaning of
each color, numbers, and trends you identify.” This task is
aimed to assess data comprehension. The charts included
different data selections and modes, and measured different
characteristics across the datasets.

Re-target (T2): We provided a current configuration
of the data interface, and a targeted configuration as
a screenshot. We asked the participant to “Modify the
page on the computer to exactly match the one shown
in the screenshot.” The target included 2-4 reconfigured
settings and adjustments, different for each dataset. This
task required understanding multiple differences across two
configurations, finding relevant help topics to learn how to
make necessary changes (if needed), and executing correct
actions.

Analyze (T3): We asked the participant to answer a
specific analysis question, such as finding the company
with a minimum number of workers, or illnesses count in
outbreaks within two states.

The questions required interacting with the interface
and changing multiple settings. We used four datasets
(companies, bird strikes on airplanes, foodborne outbreaks,
and traffic accidents; all tabular datasets of comparable sizes
and features) to limit the effects of learning the features of
the underlying data. For each dataset, participants answered
all three task types in the order noted above. Dataset were
also presented in the order noted above. Participants were
shown a timer; with 2.5 minutes to complete each task.
The tasks across different datasets used targeted features
of Keshif, and were of comparable difficulty based on
our pilot studies and earlier experience evaluating Keshif.
The features considered challenging which would benefit
from the help system use included: linked selections,
measure metric (count/ sum/ average), visual scale mode
(absolute/ relative), label mode (absolute/ percentage),
changing histogram axis scale (linear/log), and the use of
percentile charts. We created a grading rubric on a [0,5]
scale for each task. Zero noted no progress, and five noted
a correct answer with all expected outcomes. Since tasks
involved changing or describing multiple interface features,
the rubric helped assess task progress and differences in
performance with more granularity. The task duration limit
and complexities created a challenging, yet inviting scenario,
where participants had to use the help to best complete the
tasks.

Procedure
We asked participants to follow the below procedure during
the experiment:

• Training. After initially completing a background
survey, all participants were introduced to Keshif,
and the help system (HelpIn) in approximately 8
minutes. Participants completed a self-paced 12-
step Guided Tour for Keshif. Then, the facilitator
gave a 1-minute demonstration on how the help
system can be opened/closed, and the three help
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modes: Topic Listing, Overview, and Point&Learn.
If participants completed the Guided Tour early, they
could choose to explore the tool and help system in
the remaining training time. The training involved a
separate dataset—homicides in Washington D.C.

• Tasks. Next, participants attempted 12 tasks in
sequence; with a brief introduction to the task-specific
dataset. We did not enforce a specific use of help
system—i.e., the participants were free to choose
when and how to seek help, and to interpret the
material. However, we encouraged participants to use
the help system for each task. If the help system was
not used before an answer, we gently reminded them
about its availability before participants finalized their
answer. We encouraged participants to use the help
system when they felt stuck, but we did not help them
directly—both during training and the tasks. Each
task was followed by a task survey on subjective task
performance, and usefulness of the help content and
system features. After attempting all tasks, participants
completed an overview survey and a short interview on
effectiveness of various help techniques and materials.

• Data Collection and Metrics. Sessions were held in a
university lab. Participant sessions lasted for about one
hour, and were screen and audio recorded for further
analysis. We used Google Chrome on a Macbook
Pro with a 15-inch Retina display and a mouse for
interaction. We quantitatively measured system use
by recording time spent on tasks, help, help mode
usage count, task progress, and response time. We
also collected survey responses and qualitative data
from semi-structured interviews. One of the authors
used the grading rubric by reviewing audio and screen
recordings to code the interaction features involved
while using HelpIn and while performing tasks.

Results
Here we report on the overall performance of our contextual
help system in Keshif, as well as specific details about its
use.

Performance. We observed no performance differences,
measured by task progress, across attempts with HelpIn
vs. Baseline conditions (total progress scores 252 vs.
248, given 84 attempts each). We found no major
performance difference across those who used HelpIn first,
or Baseline first (total progress scores 256 vs. 244, given
84 attempts each). However, we found that participants
performed significantly better in attempts where they used
Point&Learn, compared to those where they used Topic
Listing (with average progress 3.15 vs. 2.51, sample sizes of
82 and 53 attempts). The total progress per participant ranged
between 18 to 45 (60 points total), showing significant
individual variations in how participants performed. The
total scores per task were distributed mostly in [43-57] range
(for 9 tasks), while 3 outlier tasks had total scores 14, 18 and
34—indicating that tasks were of comparable difficulty

Time on Help. Of 168 task attempts (12 tasks by 14
participants), only 30 (18%) were finished before time-out,
i.e., participants used all allocated time in 82% of their

attempts. Thus, we focus our time-analysis on the use of
help system. Our participants spent significantly more time
with HelpIn than with Baseline (52 vs. 30 second average,
sample size: 84 attempts each). This was mainly contributed
by Point&Learn (54 sec average, based on 53 attempts where
this mode is used), compared to Topic Listing mode (35sec
average, based on 82 attempts with this mode). In addition,
participants who used Baseline first spent significantly more
time on help system compared to those who used HelpIn
first (34 vs. 50 second in average, sample size 84). Using
HelpIn first reduced total time spent on help, without major
differences in task performance.

When Help Is Not Needed. Among 168 total attempts,
42 (25%) did not use help system, which also lead to higher
average performance (3.57), compared to attempts with help
use (2.77). This suggests that when participants felt confident
in taking on the tasks, they did not seek help, and performed
objectively better overall. In regards to not seeking help, a
participant noted, “If it is a slightly familiar system, and I
feel I can get about exploring things on my own, I prefer
that than the help.” In other reasons, one noted, “I wasn’t
sure it could really pinpoint what I wanted,” and another said,
“Because my time is so limited.” Of the 30 attempts that were
finished before timeout, 15 (50%) did not involve any use of
the help system. The 6 remaining help use cases (40%) were
to confirm an answer; not to search for answers.

The Characteristics of Help System Use. Figure 7
shows the distributions of the number of times the help
system was used. Help was sought in HelpIn more than
Baseline (58% vs. 42%). When all modes were available,
Point&Learn was used significantly more than Topic Listing,
and Overview was only used a few times. Distribution
of help use across different datasets shows that tasks on
different datasets were of comparable challenge. Participants
used the help system 7-16 times in total through the
study. Help seeking per task is also distributed between
11 to 21 uses. The outlier task is where the participants
could not find answers to necessary steps with ease. We
observed that help system was opened 20 times to confirm
the answer or observation. 18 (90%) of these cases were
with Point&Learn, while 2 were with Topic Listing. This
demonstrates Point&Learn can also support the user to
confirm or clarify the meaning of data visualizations.

Figure 7. Help mode usage. Top: The distribution of the
number of times the help system was used (of 171 total). The
distribution across systems (HelpIn vs. Baseline), and help
modes. Middle: The distribution across datasets. Bottom: The
distributions per 14 participants, and 12 tasks, shown with jitter
on overlaps.

Help Topic Listing Search Behavior. Of the 82 attempts
that used Topic Listing, topics were searched by tags 41
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times (50%) and by text 27 times (33%). Of all the tags
selected (63), the majority (55) were action-tags (verbs),
instead of component-tags (nouns). Our prototype used strict
text matching with topic names, which frequently (22/35) did
not return the relevant topics. The failed queries included
names of the data attributes (9 cases, such as querying
“workers” to find a topic that applies to “number of workers”
attribute), as well as synonyms (10 cases, such as querying
“combine” to add multiple filters, or “reorder” to sort). These
interactions show that participants preferred to search by
action rather than component (component names may have
been unfamiliar), and that text query search needs to be
flexible with synonyms, and match attribute names with
components.

Subjective Preferences. Participants rated the help
system features at the end of the study (Figure 8).
Point&Learn was found to be most useful, as exemplified by
the quote: “(it was) my favorite part of the tool”. When asked
about preferences in static or integrated answer presentation,
8 preferred integrated, and 6 preferred static. A participant
noted, “Integrated answer is definitely tremendously more
useful as it showed you on the page itself where to be looking
for (. . . ) It was able to point you in the right direction”. In
favor of static answers, another noted, “My attention is so
concentrated over (main help box) that I just might miss out
on (tooltips) (...) (On integrated answers) I don’t know what
the expected outcome would be (...) I really don’t know if
I did something right, or if that I am in a wrong state and
I have to do something more.” Therefore, neither approach
surpassed the other in our prototype. Preferences are also
likely to be shaped by quality and content of help material
and personal preferences. We observed that animated GIFs
were good for demonstrations, and that Keshif’s integrated
answers could provide more animations to demonstrate
changes to the interface after user actions. We also noticed
that some participants faced challenges while translating
questions into relevant topics, i.e., about what to get help. A
non-native English speaker noted, “(English is) not a native
language for me, so it’s just a little bit too long, so it’s
just slightly helpful”, while another one contrasted, “I don’t
know if it is possible for the text to be more succinct.”.

Figure 8. Participant feedback. Feedback on feature
usefulness by the participants.

Case Study 2: POD-Vis
POD-Vis (Probing Outcomes Data with Visual Analytics)
is a web-based visualization tool that was developed
for visual exploration of large datasets that are often
collected by scientists, clinicians, health systems, and

private and government stakeholders. POD-Vis users may
be employed by large organizations such as health systems
and pharmaceutical companies, or small practices such as
think tanks and group practices. Users can have diverse
data analysis practices with differences in statistical and
data exploration abilities, and varying access to resources
such as human expertise (Statisticians, Analysts, Clinicians)
and data analysis tools. POD-Vis was built to be simple
and support preliminary data exploration compared to other
visual analytics or statistical tools.

Overview. The POD-Vis tool was designed so that any
user can explore a dataset easily—by choosing predictors
and outcomes of interest to find meaningful patterns and
associations (Figure 1). Data exploration is made possible
by generation of quick statistical summaries, automatically
generated visualizations such as bar charts, box plots, and
spaghetti plots. Users can create cohorts or sub-groups of
subjects through interactive data filtering of variables in
the datasets. Cohorts are compared by viewing results of
statistical analyses, and also through visual exploration of
data visualizations. We conducted two rounds of usability
testing using two datasets collected by the Michael J.
Fox Foundation Parkinson’s Progression Markers Initiative
(PPMI).

Help Mode and Formative Testing. Similar to the HelpIn
system, we included a Help Mode in POD-Vis that can
be toggled on and off. The first version of POD-Vis
included (i) Point&Learn, and (ii) a static, non-contextual
Guided Tour. We conducted a remote task-based user study
with 20 experts—colleagues of one of our authors—from
across domains (Neurology, Epidemiology, Informatics,
Pharmacology) to improve usability and identify new
features. Participants were given a verbal, guided tutorial
of the tool during this study, and then completed two
representative tasks of increasing complexity. Each study
session lasted no more than 60 minutes. We identified
the need to improve the help features, and to create a
standardized help repository.

Evaluation. Following an iterative design process, we
improved POD-Vis features based on findings from our
formative testing. We recruited 35 participants through
personal connections of one of the authors from across
domains, and conducted a second round of summative
usability testing. Both the usability studies were conducted
remotely due to the COVID-19 pandemic. 6 participants quit
the study due to emergencies—leading to 29 participants, in
total.

• Training. POD-Vis is a complex system, and our
participants were expected to learn the interface,
and interpret the underlying data within 60 minutes.
To standardize training, we created a web tutorial
containing annotated screenshots with sufficient
information to complete the usability tasks. In the
tutorial, we included tutorial tasks that were meant
to help participants learn the POD-Vis interface. We
explained the Point&Learn capability of POD-Vis, and
we ensured that participants enabled the Help Mode
during the tutorial tasks. Participants could ask the
researchers for help during training. Some participants
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preferred a verbal version of the tutorial (8/29)—some
were overwhelmed by all the features, some preferred
a guided tour from the researcher “like a YouTube
tutorial”; the researcher verbally read and explained
the web tutorial to the participants.

• Tasks. After completing the tutorial, participants were
asked to attempt 6 usability tasks that were designed
such that each participant needed to interact with
all the main features of POD-Vis. While attempting
to complete the 6 tasks, participants had the choice
to enable the Help Mode. Point&Learn features
were always enabled, but the in-context, positional
messages, that were part of the Guided Tour (see 3

in Figure 1).

• Data Collection and Metrics. We collected demo-
graphics, recorded task completion, and calculated
time spent on the tutorial, and each individual tasks.
We instrumented the POD-Vis testbed to collect inter-
action logs such as transition between POD-Vis fea-
tures, clicks on specific buttons of interest (defined by
the research team), and usage of the help mode. We
rely on the clickstream timestamps and video analysis,
to quantify completion times of various sections of
the usability session. At the end of sessions, partici-
pants filled a questionnaire that was adapted from the
validated System Usability Scale (SUS). Additionally,
participants answered questions about the help fea-
tures.

Results
Overall, 21/29 participants completed all 6 tasks, 4/29
completed 5 tasks, 3/29 completed 4 tasks, and 1/29
completed 3 tasks. 25/29 participants spent an average of
38 minutes attempting and completing the tutorial and five
tasks. Task 6 included a discussion with the facilitator by
viewing results of Tasks 4 and 5, and therefore could be
completed by scrolling alone. We did not log scroll events.
On average, participants spent 25.51 minutes on the tutorial
alone. Only 13/29 participants chose to enable Help Mode
while attempting the tasks. Enabling Help Mode was not
influenced by time spent on the tutorial because average
tutorial time for participants who enabled (26.52 minutes)
Help Mode was very similar to those who did not (24.69
minutes). Similarly, we did not see any difference in task
performance between people that used and did not use
Help Mode. However, based on subjective feedback (SUS)
16/29 participants “strongly agreed”, and 10/29 “somewhat
agreed” that the tutorial and help messages were effective in
learning the tool. Finally, during our qualitative debriefing
at the end of the sessions, participants mentioned that it was
easier to rely on the researcher for help during the session,
but in their own time, the Help Mode features would be
“extremely helpful.”

Discussion

Here we discuss our results and their implications for
visualization.

Experiment Results: Keshif and POD-Vis
The Baseline condition was a non-contextual version of
HelpIn (Keshif) with non-integrated topic answers. To create
a shared basis of training material, we avoided using
fully-separated help material or videos which may lead
to differences beyond help system design. Future studies
may target evaluations across media types and designs. Our
experiment also did not aim to measure long-term retention,
or open-ended use. The effectiveness of the help system may
be more pronounced during more ecologically valid settings,
i.e., outside a lab setting.

Similar task performance across Baseline and HelpIn
in the Keshif study, and in the POD-Vis study could be
contributed by the training and study design. However, in
both studies, the priming was minimal, and participants
would not have been able to complete tasks within the
session duration. In Baseline (Keshif), our participants
strongly noted the absence of Point&Learn mode, and
were less expressive on differences in the presentation of
help topic answers and contextual topic ranking, although
their final feedback was mostly positive. In addition, our
participants showed more progress in tasks in which they
used Point&Learn, compared to the tasks where they
used Topic Listing. We believe that not yielding expected
results (with and without help) is more a reflection of the
shared instructional basis (tool design, usability, instructional
content, tasks), and the challenges of high-level data
analysis, rather than a failing of the help system.

Overall, we think that our studies qualitatively demon-
strate the importance of implementing contextual help fea-
tures in visual data interfaces. In the POD-Vis study, a static
web tutorial required users to switch between tabs while
attempting the tutorial tasks, which leads to a stronger split-
attention effect.5 Both studies helped us identify oppor-
tunities to improve help features, tool usability, and help
instructions for Keshif, and POD-Vis. Based on participant
feedback and system use, text query search can be improved
to find more relevant topics by considering attribute names
and synonyms, and Point&Learn components can be nar-
rowed down to the level of glyphs used in visualizations.
Videos can also provide additional benefits in explaining
interfaces by using spoken (audio) narratives, which may
compliment visual channels. Future work can integrate audio
into the live interface help.

Generalizing Contextual In-Situ Help for
Visualization
Our implementations of contextual in-situ help modes
in two different visual data interfaces demonstrate that
the core concepts of data, application and historical
contexts, and the help modes can be generalized. Both
implementations are tool-specific, and currently does not
support targeting new interfaces (tools) easily. However,
we believe that our help modes can be modularized for
the web, and other applications in the future. High-quality
material requires careful design and iterative improvements
on content and its integration, beyond what a modular
implementation may provide out-of-the-box. Our design
space and implementation provides a structured basis to
undertake similar task for other visual data tools.
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Overall, the state of art in help systems for data
visualization is curiously lacking. This may be because
today’s users are highly resistant against looking for help and
reading documentation on their own. However, our work in
this paper yields hope. We believe that help systems must
evolve past the traditional help window with an index and
a search feature, and instead become deeply integrated and
contextualized in the data visualization application itself.
Help should be immediate and unprompted, scaffolding
memory for features, yet not obtrusive and disruptive. We
believe there is much work to be done in this space to achieve
this vision in the future.

Finally, we note that we designed our contextual help
systems primarily for practiced use where the user is
motivated to learn all of the features of the help system.
Accordingly, our user study involved an 8-minute training
phase to simulate such practiced use among our participants.
It could argued that a help system should also be designed
for novice and first-time users and thus require no training.
While we agree with this, we first note that we believe our
contextual help systems will work well even for a first-time
user because of its clear and explicit visual design. After all,
the training phase in our evaluation was conducted entirely
using the HelpIn Guided Tour itself. Second, we would argue
that complex visualization systems such as Keshif and POD-
Vis are rarely used by casual first-time users. Still, we agree
that understanding first-time use would be highly interesting,
and leave understanding such settings for future work.

The Synergy Between Interface Design and
Help Design
From the perspective of interface designers and developers,
our integrated approach enables preparing and maintaining
the training material along with the design and implemen-
tation of the interface. This can reduce time-consuming
updates to existing material after interface changes, and
can shift the preparation of the help material from post-
implementation (waterfall model) to the course of interface
development. In addition, the design of help material should
build upon the design of the interface. While providing
help and documentation is necessary to support the wide
range of tasks or learning requirements, improving design
of the underlying interface should be prioritized to minimize
the need for help, and to push towards self-explanatory
interfaces. In other words, the help material should not be
the primary resource to enable usability.

Conclusion
We have presented a framework for contextual in-situ help
systems for visual data interfaces. This framework uses data
and visualization features, in addition to application and
action history context, to find relevant help material, and
to present answers that are integrated and responsive to the
active interface and dataset. The approach is also based
on both traditional user-initiated pull as well as computer-
initiated push requests. We identified five modes to seek
for help—Point&Learn, Topic Listing, Overview, Guided
Tour, and Notifications—as well as contextual approaches
to support both help seeking and help comprehension.
While our experiment with participants of mostly data

analytics novices show that full-featured contextual help
did not improve task performance overall compared to a
non-contextual version of the same help material, both
performance and subjective feedback highlights the utility of
using Point&Learn, one of the modes, to seek help and to
perform data analysis.
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