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Abstract

Persistent homology allows tracking topological features like loops, holes and their higher-
dimensional analogues, along a single-parameter family of nested shapes. Currently,
computing descriptors for complex data characterized by multiple parameters is becoming
a major challenging task in several applications, including physics, chemistry, medicine,
geography, etc. Multiparameter persistent homology generalizes persistent homology, thus
opening the way to the exploration and analysis of shapes endowed with multiple filtering
functions. Still, computational constraints prevent multiparameter persistent homology
to be feasible when dealing with real-sized data. In this paper, we consider discrete Morse
Theory as a tool to reduce the computation of multiparameter persistent homology to
a smaller dataset. We propose a new preprocessing algorithm, well suited for parallel
and distributed implementations, and we provide the first evaluation of the impact on
computations of multiparameter persistent homology.

Keywords: persistent homology, topological data analysis, multiparameter persistent
homology, Morse reductions, discrete Morse theory, homotopy expansion

1. Introduction

In recent years, the increasing amount of data available has led to the development
of information handling techniques beyond machine learning approaches. Topological
Data Analysis in particular provides a set of new tools for retrieving, organizing and
analyzing complex data by focusing on qualitative information about their shape. Recent5

applications of topological data analysis in neuroscience [1, 2], image processing [3, 4, 5]
and astrophysics [6] to name a few, have proven its strength and versatility.

Homology [7] is one of the most relevant tools used in topological data analysis but
has the drawback of being scarcely descriptive. Persistent homology [8] allows for mul-
tiresolution analysis of homology by means of filtrations. It is used in data analysis to10
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study evolutions of qualitative features of data and it is appreciated for its computability,
robustness to noise, and dimension independence.

So far, many optimization methods for computing persistent homology have been
proposed. Those more tightly related to this paper refer to another relevant tool for
topological data analysis, namely discrete Morse theory [9]. Indeed, discrete Morse the-15

ory provides an important preprocessing tool for homology computation. By defining a
discrete gradient vector field (also called discrete gradient) over the input datum, the size
of the input space can be reduced to the critical parts, generally few. The discrete gradi-
ent can also be built as to preserve the filtration structure, thus enhancing also persistent
homology computations via a reduction procedure. Although other persistent homology20

optimizations outperform this Morse-based preprocessing, these no longer apply to the
generalization of persistent homology, called multiparameter persistent homology.

Multiparameter persistent homology is an extension of persistent homology motivated
by the fact that data analysis and comparisons often involve the examination of properties
that are naturally described by multiple parameters (for instance, in computer vision with25

respect to photometric properties).
All available multiparameter persistent homology methods suffer from high compu-

tational costs and scalability problems. This prevents them to be feasible over real-sized
data sets. A Morse-based preprocessing solution, generalized to the multiparameter case,
has been proposed in [10, 11]. This can have, in theory, a valuable impact on multipa-30

rameter persistent homology computations. However, that preprocessing still presents
limitations in scalability with real data.

In [12] we have proposed the first algorithm capable of computing a discrete gradient
on simplicial real-sized multifiltered shapes and images. We have integrated the dis-
crete gradient into a visualization tool for studying regions of correlation in a multifield35

dataset, i.e., a regular grid with a vector-valued function defined on its vertexes. In this
work, we extend the algorithm presented in [12] to the computation of multiparameter
persistent homology. Taking [11] as-the-state-of-the-art for computing a discrete gradient
for multiparameter persistent homology computation, our contributions consist of:

• a new efficient and parallel algorithm for computing a discrete gradient on multi-40

parameter filtrations;

• a detailed analysis of complexity of the algorithm and a proof of the equivalence
between our approach and the one in [11];

• a comparison of complexity and computational performances of our algorithm with
respect to [11];45

• an evaluation of the advantages obtained by using our algorithm as a preprocessing
step in multiparameter persistent homology computations.

Our approach is well suited to be used with both simplicial complexes and regular
grids, it scales well when the size of the input complex increases and is well suited for a
parallel implementation. Moreover, we show that the use of the discrete gradient provides50

an improvement of at least one order of magnitude in the computation of multipersistent
homology.

The remainder of this paper is organized as follows. In Section 2, we introduce
the notions at the basis of our work. Related work is reviewed in Section 3. The new
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preprocessing algorithm is described in Section 4 where we also present a detailed analysis55

of complexity. In Section 5, we present the proof of correctness and theoretical and
experimental comparison of our approach with the one presented in [11]. The results
of computing multiparameter persistent homology with our approach are discussed in
Section 6. In Section 7, we draw concluding remarks and we discuss future developments.

2. Background60

In this section, we introduce the notions at the base of our work. After introducing
simplicial complexes we will describe two topological invariants that can be computed
on them, namely homology [7] and persistent homology [8]. Then, we describe multi-
parameter persistent homology, a multidimensional generalization of classic persistent
homology [13]. We conclude with discussing discrete Morse theory [9], a combinatorial65

tool of great value for (multiparameter persistent) homology.

2.1. Simplicial complexes

A simplicial complex is a discrete topological structure made of simple bricks, called
simplices. A k-dimensional simplex σ, or k-simplex for short, is the convex hull of k ` 1
affinely independent points. Often, we will write σk to indicate a k-simplex. A face τ of70

σ is the convex hull of any subset of points generating σ. If the dimensions of τ and σ
differ by one we call τ a facet of σ. Dually, σ is a coface of τ and a cofacet when the two
dimensions differ by one.

A simplicial complex S is a finite collection of simplices such that:75

• every face of a simplex in S is also in S,

• the intersection of any two simplices in S is either empty or a single simplex in S
(intersection property).

We will denote by Sk the set of k-simplices in S. An element in S0 is also called a vertex.
A simplicial complex S of dimension d is a simplicial complex having the maximum of80

the dimensions of its simplices equal to d.

2.2. Persistent homology

Homology is a topological invariant used in data analysis to qualitatively describe
shapes. The homology of a simplicial complex S detects independent k-dimensional
cycles of S, i.e., connected components (0-cycles), tunnels (1-cycles), voids (2-cycles),85

and so on. Cycles are formally captured by linear combinations of simplices whose
boundary vanishes. In this work, we focus on linear combinations over F2, i.e., the field
with only the two elements 0 and 1.

The chain complex CpSq “ pC˚pSq, B˚q associated with a simplicial complex S consists
of the family C˚pSq “ tCkpSqukPZ of F2-vector spaces along with the collection of linear90

maps B˚ “ tBk : CkpSq ÝÑ Ck´1pSqukPZ defined as follows:

• CkpSq is the F2-vector space generated by Sk, and its elements are called k-chains,
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(a) (b) (c) (d)

Figure 1: A filtering function defined on a torus. Blue, green, and red dots indicate the presence of
components, tunnels, and voids, respectively.

• Bk is called boundary map and defined by linear extension from the images of each
k-simplex τ :

Bkpτq “
ÿ

σPS

κpτ, σqσ,

with κpτ, σq “ 1 if and only if σ is a facet of τ . Elements in the kernel of Bk are called k-
cycles, while elements in the image of Bk`1 are called k-boundaries. The k-homology of a
simplicial complex S is defined as the quotient vector space of k-cycles over k-boundaries:

HkpSq “ ker Bk
M

im Bk`1
.

Persistent homology describes the homological changes occurring along an increasing
sequence of simplicial complexes, called a filtration. We consider R with its usual order,
and we call grades its elements. A filtration S of a simplicial complex S is a finite95

collection of simplicial subcomplexes Su in S, indexed by u P R, such that for all grades
u ď v, Su is a simplicial subcomplex in Sv. Here, we are interested in filtrations derived
by the sublevel sets of functions defined on S: a filtering function is a function f : S ÝÑ R
such that, if σ is a face of τ , then fpσq ď fpτq.

Given a filtering function f , Spfq defined by setting Su “ tσ P S|fpσq ď uu is a100

filtration of S. For each pair of grades u ď v of the filtration Spfq, we have that Supfq
is closed in Svpfq. This means that for all τ P Supfq, if condition κpτ, σq ‰ 0 holds for
some σ P Svpfq, then σ P Supfq.

In Figure 1 we show a torus filtered by using the height function as filtering function.
Each image illustrates a change in homology of the sublevel sets. In Figure 1(a) a new105

component is introduced. Two loops are created, in Figure 1(b) and (c), respectively.
A void is created in Figure 1(d). For each homological class, we have a representative
k-cycle appearing in the filtration. The marked blue dot is the representative 0-cycle for
the new component. The two green 1-cycles are representative for the two tunnels. The
set of triangles forming the entire torus surface corresponds to a 2-cycle.110

The inclusion of simplicial complexes in a filtration preserves cycles and boundaries,
that is, for all grades u ď v, we get a linear map ιu,vk : HkpS

uq ÝÑ HkpS
vq induced at

homology level, not necessarily injective since cycles can possibly become boundaries by
adding cells.

The persistent kth-homology relative to the the grades u ď v is the image of ιu,vk as a115

subspace in HkpS
vq, that is the space of all the homology classes of HkpS

uq which persist
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in HkpS
vq. The global persistent homology information, for all possible grades u ď v, is

encoded in the persistence module.
The kth persistence module HkpSq of the filtered complex S consists of:

• the collection of F2-vector spaces HkpS
uq varying the grade u P R,120

• the collection of all inclusion-induced linear maps ιu,vk : HkpS
uq ÝÑ HkpS

vq, vary-
ing the pairs of grades in I satisfying u ď v in R.

In this work, we are interested in a generalization of persistent homology obtained
by considering multiple filtrations at once. Such tool is called multiparameter persistent
homology. So, from now on, we will refer to classic persistent homology as one-parameter125

persistent homology.

2.3. Multiparameter persistent homology

Multiparameter persistent homology analyzes the changes in homology for a multipa-
rameter filtration (or multifiltration for short). Instead of a total order on R, we consider
a partial ordered set pRn,ĺq such that, for any u “ pu1, . . . , unq, v “ pv1, . . . , vnq P Rn,130

u ĺ v if and only if ui ď vi, for all i P t1, . . . , nu. We call grades the elements of the
partial order set. If u ĺ v and u ‰ v, we shortly write u ň v.

A multiparameter filtration S of a simplicial complex S is a finite collection of sim-
plicial subcomplexes Su indexed by u P Rn such that, for all grades u ĺ v, Su is a
simplicial subcomplex in Sv. Multiparameter filtrations can be induced by vector-valued135

functions. Any function f : S ÝÑ Rn satisfying fpσq ĺ fpτq for all faces σ of τ induces
a multifiltration Spfq by setting Su as the set of all simplices σ satisfying fpσq ĺ u. In
this case, f is called a (multi)filtering function on S and Su is called the sublevel set with
respect to the grade u.

Given a multiparameter filtration of a simplicial complex S, homology construction140

Hkp¨q can be applied to each sublevel set in the multifiltration. Each inclusion Su Ď Sv

between multifiltration sublevel sets induces a linear map ιu,vk : HkpS
uq ÝÑ HkpS

vq.
A homology class is persistent from grade u to grade v if it is not trivial in HkpS

uq

and still non-trivial in HkpS
vq. For each homology degree k, the kth persistence module

of a multifiltration of S is the family of vector spaces HkpS
uq with u P Rn along with all145

linear maps ιu,vk with u ĺ v. In Figure 2(b), we show the persistence module associated
with the bifiltration depicted in Figure 2(a).

2.4. Discrete Morse theory

The algorithm we propose retrieves a combinatorial object, called a discrete gradient,
compatible with the multiparameter filtration over a simplicial complex S. The relevance150

of this output has to be considered within the framework of Forman’s discrete Morse
theory [9]. A (discrete) vector is a pair of simplices pσ, τq such that σ is a facet of τ . A
discrete vector field is any collection of vectors V such that each simplex is a component
of at most one vector in V . A V -path is a sequence of vectors pσi, τiq belonging to V , for
i “ 0, . . . , r, such that, for all indexes 0 ď i ď r ´ 1, σi`1 is a facet of τi and σi ‰ σi`1.155

A V -path is said to be closed if σ0 “ σr, and trivial, if r “ 0. A discrete vector field V
is a discrete gradient if all of its closed V -paths are trivial. Simplices that do not belong
to any vector are said to be critical. Given a discrete gradient V , a separatrix from a
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Figure 2: (a) A bifiltration of a 2-dimensional simplicial complex. (b) A representation of the cor-
responding persistence module in degree 0 (connected components). For each F2-vector space in the
persistence module, the corresponding reference basis is made explicit, e.g., ā is the homology class of
the vertex a. Each matrix expresses the linear maps with respect to such bases.

critical cell τk`1 to a critical cell σk is a V -path from any facet of τk`1 to any cofacet of
σk.160

There are many ways to construct a discrete gradient on a simplicial complex. In this
work, we are interested in a specific class of discrete gradients, those consistent with a
multiparameter filtration. Given a multifiltration S of a simplicial complex S, a discrete
gradient V over S is called compatible with S if, for each pσ, τq P V and each filtration
grade u P Rn, it holds that

σ P Su ñ τ P Su

A discrete gradient implicitly represents a cell complex, called Morse complex and
computed by navigating the gradient V -paths. The cell of a Morse complex M of V
are in one-to-one correspondence with the critical simplices of V . For any two critical
simplices, the incidence between the corresponding cells in M is defined based on the
following incidence function: given σ, τ in M , κM pσ, τq “ 1 if and only if the number of165

separatrices from σ to τ is odd and κM pσ, τq “ 0 otherwise. Analogously to the simplicial
case, κM allows us to define a boundary map and, hence, the homology of the Morse
complex.

Theorem 4.3 in [14] proves, for one-parameter filtrations, that studying the persistent
homology of the Morse complex of V is equivalent to study the original simplicial com-170

plex. Corollary 3.2 in [10] proves the same result for multiparameter filtrations. From
a computational point of view, a key advantage is the size of M with respect to S: M
contains fewer cells than S, making the computation of the persistence module faster.

3. Related work

In this section, we review related work on the computation of persistent homology,175

and of multiparameter persistent homology.
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3.1. Computing persistent homology

In the one-parameter case, computing the persistence module with coefficients in a
field consists of reducing the boundary matrix via the standard algorithm [8] which has
a cubic time complexity in the worst case. For this reason, new approaches have been180

studied to improve efficiency. We have classified such approaches into three groups:
integrated optimizations, annotation-based algorithms, and preprocessing algorithms.

Integrated optimizations aim at improving the efficiency of the standard approach by
either reducing the number of steps required for matrix reduction, or by progressively
removing columns during the computation. Examples of approaches based on integrated185

optimizations are the Twist algorithm [15], the row algorithm [16], the approach based
on sparsity presented in [17], the one based on spectral sequences [18], and the chunk
algorithm [19].

Annotation-based techniques take advantage of an efficient data structure, namely the
annotation matrix, to compute the persistent co-homology of a complex. An annotation190

[20] is a map which assigns a binary vector to each simplex of a simplicial complex.
Each annotation provides the coordinate vectors that are used to efficiently identify
the homology classes. The notion of annotation was originally introduced in [20] for
computing localized homology. In [21, 22] the approach has been adapted and improved
for computation of persistent homology.195

Preprocessing optimizations aim at reducing the size of the input filtered complex
while preserving its persistent homology. In [23], homology-preserving techniques, such
as reductions, coreductions [24, 25, 26] and acyclic subspaces [27], are adapted to the
case of persistent homology. Approaches rooted in discrete Morse Theory [9] compute a
discrete gradient V compatible with the input filtration. The theoretical results in [14]200

guarantee that the Morse complex constructed from V has the same persistence module
as the input complex. Many algorithms have been developed for computing a discrete
gradient from a function sampled at the vertexes of a cell complex. The algorithm de-
scribed in [28] is the first one to introduce a divide-and-conquer approach for computing
a Forman gradient on real data. However, its main drawback is that of introducing many205

spurious critical simplices. Two approaches have been defined in [29, 30] for 2D and 3D
images respectively. Focusing on a parallel implementation, they provide a substantial
speedup in computing the discrete gradient still creating spurious critical simplices. In
[31], a dimension-agnostic algorithm is proposed that processes the lower star of each ver-
tex independently. It has been proved that up to the 3D case, the critical cells identified210

are in one-to-one correspondence with the topological changes in the sublevel sets, i.e.
no spurious critical simplices are created. An efficient implementation of [31], focused
on regular grids, is discussed in [32]. A similar approach has been developed for triangle
[33] and tetrahedral meshes [34]. The first dimension independent implementation for
simplicial complexes is presented in [35].215

3.2. Computing multiparameter persistent homology

The first issue in computing multiparameter persistent homology is having no com-
plete descriptors for the persistence module [13]. As a result, either the full persistence
module or invariants that deliver only partial information about the multiparameter220

persistent homology have to be computed. The first algorithm for the persistence mod-
ule retrieval is proposed in [36], where the three tasks of computing the k-boundaries,
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k-cycles and their quotients at each multigrade u are translated into submodule mem-
bership problems in computational commutative algebra. The algorithm introduces an
artifact dependency on the chosen basis, and has a time complexity of Op|S|4n3q, where225

|S| is the number of simplices in the complex and n is the number of independent pa-
rameters in the multifiltration. The algorithm in [37] acts on the multifiltration at the
chain level rather than at homology level. First, k-cycles and k-boundaries are expressed
in terms of the same basis. Then, the Smith Normal Form reduction [38, 39] is ap-
plied at each multigrade u in the multifiltration leading to a worst time complexity of230

Op|S|3µ̄nq, where µ̄ :“ maxi“0,...,n µi, with µi the number of multigrades in the multi-
filtration along the ith-axis. The algorithm has been implemented in the Topcat library
[40] and is distributed in the public domain.

A non-complete descriptor for multiparameter persistent homology is the rank invari-
ant, introduced in [13] for each pair of multigrades u ĺ v as the rank of the corresponding235

inclusion-induced map, that is the number of homology classes from multigrade u still
persistent at multigrade v. The rank invariant value over a single pair pu, vq can be
easily derived from the persistence module representation. However, computing the full
rank invariant means computing its value for each possible pair pu, vq of multigrades
satisfying u ĺ v which multiplies the complexity by 1

2µ
2, where µ is the cardinality of240

all multigrades considered in the multifiltration (typically very large).
The persistence space [41, 42] is equivalent to the rank invariant and it enhances

computational performances by avoiding to precompute the persistence module. The
persistence space can be computed based on the foliation method [43]. With such ap-
proach, the persistence space is constructed incrementally by slicing the space of the245

input multiparameter filtrations and by constructing a number of one-parameter filtra-
tions on which classic persistence homology is computed. The persistence pairs obtained
on each slice form the persistence space. The first approach to computing the persistence
space has been limited to the case of 0th-homology [43]. An approximate version of the
persistence space is proposed in [44] for two-parameter filtrations, also called bifiltra-250

tions: a selection of slices is performed to guarantee a fixed tolerance for the matching
distance [45] among persistence spaces. This method finds applications in shape compar-
ison in the PHOG library [46] where the authors use the approximate persistence space
to deal with photometric attributes of a 3D shape.

Limitedly to bifiltrations, a visualization tool for the persistence space is RIVET255

[47] available online at http://rivet.online. The approach uses bigraded Betti num-
bers [48, 49] to locate multigrades where homology classes born or die. This procedure
requires time Opµ3λq, where λ is the product of λxλy with λx and λy the number of x-
and y-coordinates of such multigrades. It allows to identify an arrangement of lines such
that, within a cell of the arrangement, all the filtrations have the same barcode template.260

A barcode template is constructed in Opµ3λ ` pµ ` log λqλ2q. The barcode template
encode the set of bars (i.e., persistence pairs) from which to deduce that of every other
filtration in the space of bifiltrations. The actual length for each bar is computed on the
fly, upon request, in linear time with respect to µ.

Most optimization methods developed for classic persistent homology have not yet265

found a counterpart in the multiparameter case. So far, the only approach that seems
still feasible is simplifying the input filtration into a new one with fewer cells and fewer
grades. Limitedly to the study of 0th-homology the algorithm proposed in [50] is the
first approach capable of reducing the size of an input complex S without affecting its
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persistence module.270

The approach proposed in [10] can be seen as a Morse-based method generalizing to
the multiparameter case the one proposed in [28]. The algorithm computes a discrete
gradient field having the same persistence module of the input complex. Like its one-
parameter counterpart [28], it suffers from introducing many spurious critical simplices.
In a successive paper [11] a new approach is introduced generalizing the idea of [31]275

of constructing the discrete gradient locally inside the lower star of simplices of S. The
resulting discrete gradient is proved to induce a Morse complex with the same persistence
module, and thus the same persistence space, as the original multifiltration. However, the
algorithm requires a global ordering of all the simplices of S and does not scale with the
size of the data making it not feasible for real applications. In Section 5, we will further280

discuss this issue compared with our approach that can be seen as a divide-and-conquer
generalization of [11].

4. Local computation of a discrete gradient over a multiparameter filtration

In this section, we present a new algorithm for computing a discrete gradient vector
field compatible with a multiparameter filtration. For ease of exposition, we describe285

the method by focusing on simplicial complexes, although it is valid for any cell complex
satisfying the intersection property such as cubical complexes.

In Section 4.1 we provide a high-level description of the algorithm workflow. A
detailed description of the auxiliary functions used is provided in Section 4.2, while in
Section 4.3 we discuss the algorithm complexity.290

4.1. Overview

The proposed algorithm receives a multiparameter filtration in input and produces
a compatible discrete gradient. In what follows, we describe the input multiparameter
filtration as a pair pS, fq, where S is a d-dimensional simplicial complex and f : S0 ÝÑ Rn

is a vector-valued function defined on the vertexes of S. f is extended to all simplices of295

S by fpσq “ maxvPσ fipvq, for each 0 ď i ď n, and induces the multifiltration that we
denote as Spfq, as described in Section 2.3.

Without loss of generality, we require the function f to be component-wise injective.
In applications, any function can be transformed into a component-wise injective one by
means of simulation of simplicity [51]. The output is a pair pV,Mq, where V is the set300

of paired simplices of S and M is the set of critical (unpaired) simplices. When proving
correctness, we will show that V is a discrete gradient compatible with the filtration, and
that M contains the cells of its Morse complex.

The main strategy of the algorithm is that of decomposing S according to f as to
compute pairings between simplices with the same multigrade, possibly in parallel.305

The algorithm consists of three main steps: vertex-based decomposition, multigrade
grouping, and pairing. A running example is depicted in Figure 3.

In the firs step we decompose S to obtain a partition of the simplices in S. In this step,
we only require that simplices belonging to the same multigrade also belong to the same310

group in the decomposition. This is performed by algorithm ComputeDiscreteGradient

(Algorithm 1) as follows:
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(a) (b) (c) (d)

Figure 3: (a) A multiparameter filtration pS, fq where S is a triangle mesh. (b) Simplices of S are color
coded accordingly to their values in the indexing schema I. (c) Within the index-based lower star of
LowIp3q, simplices are subdivided and paired based on their value of f . (d) The final discrete gradient
V .

• an indexing I : S0 ÝÑ R is computed for the vertexes of S (line 2). The indexing
is extended to the other simplices σ P S by setting Ipσq :“ maxvPσ Ipvq. The
indexing used must be well-extensible, i.e., I must satisfy, for all simplices σ, τ P S,
the following property:

fpσq ĺ fpτq ñ Ipσq ď Ipτq. (1)

• S is subdivided into lower stars according to I (line 4). We recall that the star
of a simplex σ, denoted by Starpσq, is defined as the set of its cofaces. Then, the
index-based lower star of a simplex σ, denoted as LowIpσq, is defined as the set of
its cofaces having a value of I lower or equal to σ. Formally,

LowIpσq :“ tτ P Starpσq | Ipτq ď Ipσqu.

In Figure 3(b) simplices belonging to the same index-based lower star are depicted
with the same color. The well-extensible indexing I and the index-based lower star LowI
satisfy two fundamental properties:315

• each simplex σ belongs to the index-based lower star of exactly one vertex (see
Lemma 1 in Section 5);

• if two simplices have the same value of f , then they belong to the index-based lower
star of the same vertex (see Lemma 2 in Section 5).

As a consequence, a well-extensible indexing and the index-based lower stars implicitly320

provide a partition for the domain S. Thanks to the former properties we can guarantee
that, by processing the vertexes independently, we are identifying all the valid pairings
(see Section 5 for a formal proof).

The second step requires grouping the simplices in the set LI “ LowIpvq, with v P S0,
having the same multigrade (line 5). The latter is performed by SplitIndexLowerStar,325

which organizes the simplices in a collection of sets, where each set Lu contains simplices
with the same multigrade u, i.e., Lu “ tσ P LowIpvq|fpσq “ uu, u P Rn. In Figure 3(c),
simplices belonging to the index based lower star LowIp3q are subdivided based on their
value of f .
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Algorithm 1 ComputeDiscreteGradient(S, f)

Input: S, a simplicial complex
Input: f : S0 ÝÑ Rn, a component-wise injective function
Output: V , list of simplices pairs
Output: M , list of critical simplices

1: define V and M as two empty lists
2: I Ð ComputeIndexingpS0, fq
3: for all v in S0 do
4: LI Ð ComputeIndexLowerStar pv, I, Sq
5: for all Lu in SplitIndexLowerStarpf, LIq do
6: pVu,Muq Ð HomotopyExpansionpS, I, Luq
7: add Vu to V
8: add Mu to M
9: return pV,Mq

In the third step (lines 6), each level set Lu is independently processed by Homotopy-330

Expansion and the gradient pairs are computed. Paired and critical simplices found in
the level set Lu will contribute to the final discrete gradient. Figure 3(d) shows the final
discrete gradient V computed by our approach on the multiparameter filtration depicted
in Figure 3(a). Since simplices are subdivided based on their multigrade, each simplex S
appears in exactly one level set and it will be classified, as either paired or critical, only335

once. This makes the approach easily parallelizable.

4.2. Detailed description

This section provides additional information about the auxiliary functions we use in
Algorithm 1 following their order of appearance in the algorithm description.

The first auxiliary function is ComputeIndexing which is used for computing a well-340

extensible indexing on the vertexes of S. There are many ways to obtain a well-extensible
indexing I, here we have selected to sort all the vertexes of S according to the values of
the first component of f . The total order obtained naturally generates an indexing which
is guaranteed to be well-extensible as, for each pair of simplices σ and τ , fpσq ĺ fpτq
implies f1pσq ĺ f1pτq. Thus, a vertex v P τ exists such that f1pvq ě f1pwq for every345

vertex w P σ. This implies Ipvq ě Ipwq, for every vertex w P σ and we conclude that
Ipσq ď Ipτq.

ComputeIndexLowerStar is used for computing the index-based lower star LowIpvq
of a vertex v with respect to indexing I. For each vertex v P S0 the function extracts the
set of simplices of LowIpvq incident to v. To do so, we assume that each k-simplex σ is350

represented by the list of its k ` 1 vertexes rv0, v1, . . . , vks stored in decreasing order of
I, i.e. Ipv0q ą Ipv1q ą ¨ ¨ ¨ ą Ipvkq. Thus it is enough to take those simplices whose first
vertex is v.

Each index-based lower star, LowIpvq is then subdivided into level sets by SplitIn-

dexLowerStar according to multigrades. This function creates an associative array, by355

cycling on the simplices of LowIpvq, that maps each multigrade u (represented as a vector
of floats) to the set of simplices sharing the same multigrade.
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Algorithm 2 HomotopyExpansion(S, I, Lu)

Input: S, a simplicial complex, I, a well-extensible indexing, Lu, a list of cells in S
forming a level set u w.r.t. f

Output: Vu list of discrete vectors, Mu list of critical simplices
1: define Vu and Mu two empty lists
2: define Ord0 and Ord1 two empty ordered sets
3: define declared an array of length |Lu| with Boolean values equal to false

4: for all τ in Lu do
5: if num undeclared facets(τ, Lu)“ 0 then
6: insert(τ ,Ord0,I)
7: else if num undeclared facets(τ, Lu)“ 1 then
8: insert(τ ,Ord1,I)
9: while Ord1‰ H or Ord0‰ H do

10: while Ord1‰ H do
11: τ Ð delete(Ord1)
12: if num undeclared facets(τ, Lu)“ 0 then
13: insert(τ ,Ord0,I)
14: else
15: ρÐ unpaired facet(τ, Lu)
16: append(pρ, τq,Vu)
17: declaredrρs Ðtrue , declaredrτ s Ðtrue

18: add cofacets(ρ,Lu,I,Ord1)
19: add cofacets(τ, Lu,I,Ord1)
20: if Ord0‰ H then
21: τ Ð delete(Ord0)
22: append(τ ,Mu)
23: declaredrτ s Ð true

24: add cofacets(τ, Lu,I,Ord1)
25: return pVu,Muq

Function HomotopyExpansion classifies simplices with the same multigrade. We
present its pseudocode in Algorithm 2. The algorithm extends the one in [31]. A k-
simplex σ and a pk`1q-simplex τ are considered pairable only when σ is the only unclas-360

sified facet of τ . The main objective of HomotopyExpansion is that of pairing as many
simplices as possible and to classify them as critical only when no pairable simplices are
available.

Two ordered sets Ord0 and Ord1 are used to keep track of those simplices that have
exactly zero unpaired facets and one unpaired facet, respectively. Intuitively, simplices365

in Ord0 are candidates to be classified as critical or as tails of arrows in a discrete
vector, since they have no face to be paired with. Simplices in Ord1 are the candidate
to be heads of arrows in a discrete vector. Within the two sets Ord0 and Ord1, a
simplex σ is represented by the sequence, in decreasing order, of the values of I on
its vertexes. The two sets are organized based on the lexicographic ordering of such370

sequences. Auxiliary function insert is used to compute the corresponding sequence
for any simplex σ and to insert σ in a set. Auxiliary function delete is used to extract
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the first simplex σ in the set, according to the lexycographic order. The two sets are
initialized by cycling on the simplices in the input set (lines 4 to 8 of Algorithm 2).
Auxiliary function num undeclared facets is used to count the number of unclassified375

facets for each simplex. Array declared keeps track of the simplices already classified
(i.e., either paired or declared critical). At the beginning, all entries of declared are set
to false.

Simplices are classified within the two nested while loops (lines 9 to 24). If Ord1

is not empty, we extract the first simplex τ and we verify if the number of unclassified380

facets of τ has not changed (line 12). Notice that the number of unpaired facets can
only decrease. If this number is now zero (i.e., its facet has been classified), we insert
τ into Ord0. Otherwise, we retrieve its unique unclassified facet σ (line 15), we use
function append to add (σ,τ) to the set of pairs Vu, and we update the array declared

accordingly. After classifying σ and τ , add cofacets adds all their unclassified cofacets385

to either Ord1 or Ord0, if they have the necessary number of unclassified facets (lines 18
and 19).

When no pairable simplex is available (i.e., Ord1 is empty) the first simplex σ in Ord0

is extracted and declared critical by adding σ to the set of critical simplices Mu (lines 21
to 23). All its cofacets are processed and added to Ord1 if it is the case. The algorithm390

stops when both lists are empty. In Proposition 4 in [31], authors show that we exit the
outer while loop when all cells have been classified.

4.3. Complexity

In this section, we discuss the computational complexity of ComputeDiscreteGradi-
ent and its auxiliary functions. The parameters involved in the analysis are expressed in395

terms of cardinality | ¨ | of sets. We indicate with Starpσq the star of a simplex σ P S, and
simply with Star any star with maximal cardinality in the simplicial complex S. Notice
that, in a d-dimensional simplicial complex, |Star | is not bounded by a constant and is
possibly as large as |S|. This is not the case for more regular cell complexes like, for
example, cubical complexes.400

To simplify the analysis and the exposition we make a few assumptions:

• for each simplex σ P S, we assume Starpσq to be computed and stored in the data
structure. If computed on the fly, Starpσq would require Op| Starpσq|q [52].

• Ord0, Ord1 are implemented as balanced binary search trees. Inserting, or removing
some element from such a tree has a logarithmic cost in its size.405

• For each k-simplex σ P S, fpσq can be retrieved in Opkq by retrieving the filtration
values of the vertexes of σ. We will overestimate k by considering the dimension d
of the simplicial complex S.

These assumptions are consistent with the implementation of ComputeDiscreteGra-
dient used in our experimental evaluation (see Section 5.2.1).410

4.3.1. Analysis of the auxiliary functions

Here, we present the time and storage costs of the auxiliary functions introduced in
Section 4.2.
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For creating the well-extensible indexing with ComputeIndexing we sort the vertexes
according to a single component of the input function. This requires Op|S0| log |S0|q time415

and Op|S0|q extra space for storing the new sorted list of vertexes.
The lower star of each vertex v is computed by ComputeIndexLowerStar. The lower

star of a vertex is extracted from the precomputed star Starpvq by selecting those sim-
plices having v as the first vertex. This requires Op| Starpvq|q operations.

Once a lower star is extracted, the level sets are created by means of SplitIndexLow-420

erStar. The filtration value of a simplex σ is computed, for each component, in linear
time in the number of vertexes of σ by fipσq “ maxvPσ fipvq. Searching for the set of
simplices associated with a specific level set takes at most Oplog |LowIpvq|q. Thus, the
overall cost of SplitIndexLowerStar is CLSpvq “ Op|LowIpvq|pd` log |LowIpvq|qq.

In the third step, HomotopyExpansion classifies the simplices in each level set Lu.425

For each simplex σ in Lu, num undeclared facets requires visiting its facets whose
number is limited from above by a constant and inserting each simplex in the set takes
Oplog |Lu|q. Then, preparing Ord1 and Ord0 requires Op|Lu| log |Lu|q.

Within the two while loops, each simplex enters a list at most once and it is also
classified once. Then, for each simplex σ:430

• retrieving its facets (num undeclared facets or unpaired facets) requires a con-
stant number of operations,

• retrieving its cofacets (add cofacets) takes at most Op|Lu|q as the number of
cofacets is not limited by any constant number,

• inserting the simplex in Lu takes Oplog |Lu|q.435

Overall the contribution of HomotopyExpansion is CHEpLuq “ Op|Lu|
2`2|Lu| logp|Lu|qq “

Op|Lu|
2q

4.3.2. Analysis of ComputeDiscreteGradient algorithm

By analyzing the complexity of the single auxiliary functions we obtain a worst-case
complexity of440

O

¨

˝|S0| log |S0| `
ÿ

vPS0

¨

˝|Starpvq| ` CLSpvq `
ÿ

LuĎLowIpvq

CHEpLuq

˛

‚

˛

‚

In the internal summation, Lu can be as large as the entire index-based lower star. Thus,

for any vertex v, we can estimate O
´

ř

LuĎLowIpvq
CHEpLuq

¯

“ Op|LowIpvq|
2q.

Each k-simplex appears in the star of its k`1 vertexes. Thus, we writeO
`
ř

vPS0
|Starpvq|

˘

“ Op|S|pd ` 1qq by overestimating the dimension k of each simplex with the dimension445

of the complex d.

Each simplex appears in exactly one index-based lower star. Thus, we can estimate
the worst-case complexity of SplitIndexLowerStar by O

`
ř

vPS0
CLSpvq

˘

“ Op|S|pd `
logpmaxvPS0

|LowIpvq|qq. For the same reason we can estimate the worst-case complexity450

for HomotopyExpansion by O
`
ř

vPS0
CHEpvq

˘

“ OpmaxvPS0 |LowIpvq|
2q. Moreover, we
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notice that maxvPS0 |LowIpvq| ď |Star |.

Based on these observations we can rewrite the overall worst-case complexity as

Op|S0| log |S0| ` |S|pd` | Star |2qq

In general, the cardinality of a vertex star is not bounded from above. There are cases455

where in practice its size becomes negligible with respect to the total number of simplices
in S, i.e., when working with low dimensional complexes such as triangle meshes or 2D
and 3D images. In those cases, we can consider d and |Star | to be constant factors which
lead to a worst case complexity of Op|S0| log |S0| ` |S|q.

5. Comparison with the Matching algorithm and proof of correctness460

The Matching algorithm introduced in [53], and fully proved to be correct in [11],
computes a discrete gradient on a multifiltration by using a global queue. In this Section,
we compare algorithm ComputeDiscreteGradient to algorithm Matching. In Subsec-
tion 5.1 we first describe algorithm Matching. In Subsection 5.2 we provide a formal
comparison of the two approaches and in Subsection 5.2.2, we prove their equivalence,465

i.e., given a multifiltration, ComputeDiscreteGradient and Matching compute the same
compatible discrete gradient.

5.1. Globally computing a discrete gradient for multiparameters

In this subsection, we describe the approach applied by algorithm Matching [53, 11]
to retrieve a discrete gradient. The Matching algorithm acts on a simplicial complex S
and a function f : S0 ÝÑ Rn required to be component-wise injective on vertexes and
extended to higher dimensional simplices as defined in Section 4. The pair pS, fq defines
a multifiltration of S obtained by sublevel sets. Additionally, the Matching algorithm
requires an indexing J on S, i.e., an injective map J : S ÝÑ R. The indexing has to
be compatible both with the coface partial order among simplices and with the value
ordering under f . Explicitly, J has to satisfy, the following property for every σ ‰ τ P S,

σ is a face of τ or fpσq ň fpτq ñ Jpσq ă Jpτq. (2)

The algorithm cycles on all simplices in S relying on a global queue. Simplices
are processed according to increasing values of the indexing J . This makes impossible470

implementing the approach in parallel.
An auxiliary Boolean vector of length |S|, called classified, is initialized with all

entries set to false. For each simplex σ, algorithm Matching recursively checks whether
σ is classified so that only non-classified simplices are processed. We denote by P the
set of all simplices σ P S, also called primary simplices, that are still unclassified when
Matching starts processing their lower star. A non-classified simplex σ is passed to an
auxiliary function extracting the lower star of σ with respect to f

Lowf pσq :“ tτ P Starpσq | fpτq ĺ fpσqu.

To do so, the auxiliary function visits Starpσq to select each simplex τ satisfying condition
fpτq ĺ fpσq. Afterwards, an auxiliary function equivalent to the one in the algorithm Ho-

motopyExpansion (pseudocode reported in Algorithm 2) is run with input pLowf pσq, Jq.
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Algorithm HomotopyExpansion returns a pair of lists pVLowf pσq,MLowf pσqq and all entries475

in the auxiliary vector classified corresponding to the simplices in the two lists are
set to true. The global output is given by the independent contributions of all pairs
pVLowf pσq,MLowf pσqq.

Theorem 9 in [11] proves that the union of all the discrete gradients, computed locally
to the lower star Lowf pσq of each simplex σ, forms a discrete gradient. Moreover, Propo-480

sition 8 in [11] proves that the same gradient is compatible with the input multifiltration
pS, fq. In particular, Proposition 15 in [11] directly implies that lower stars Lowf pσq for
primary simplices σ P P form a partition of S.

5.2. Comparison of algorithms Matching and ComputeDiscreteGradient485

In this section, we compare ComputeDiscreteGradient to Matching from three dif-
ferent standpoints: complexity, performance, and quality of output. We recall that P
indicates the primary simplices in Matching, i.e., those simplices S that were still unclas-
sified when Matching starts processing their lower star. Both ComputeDiscreteGradient

and Matching build a discrete gradient by running HomotopyExpansion on a partition490

of the input simplicial complex S:

• Matching finds the discrete gradient over each lower star Lowf pσq with σ a primary
simplex of P ,

• ComputeDiscreteGradient finds the discrete gradient independently over each
level set Lu in a index-based lower star LowIpvq with v P S0.495

The two algorithms differ in the number of stars they compute and visit. ComputeDis-

creteGradient computes a lower star for each vertex in the input complex. This means
that, in our case, the exact number of star visited by ComputeIndexLowerStar is |S0|.

On the countrary, Matching computes a lower star for each primary simplex in P .
In the best case, the primary simplices P are exactly the vertices of S, i.e., |P | “ |S0|.500

Then, the two algorithms compute the same number of lower stars. In the worst case,
the number of primary simplices |P | is equal to the total number of simplices |S| which
greatly affects the performances of Matching as shown in Subsection 5.2.1.

5.2.1. Performance comparison

We recall that the input of both algorithms is described as a pair pS, fq, where S is505

a simplicial complex and f : S0 ÝÑ Rn is a component-wise injective function. Here, we
focus on the case where S is a triangle mesh embedded in the Euclidean 3D space and f
assigns to each vertex its x and y coordinates (i.e., for v “ px, y, zq, fpvq “ px, yq). The
algorithm in [11] is defined to work in combination with a data structure that encodes all
the simplices of a simplicial complex S. This approach does not scale when the size and510

the dimension of the simplicial complex S grows. The only way to guarantee scalability is
that of encoding S with an indexed-based representation based on its top simplices [35].
For a fair comparison, both algorithms have been implemented by using the FG Multi
library [54] which provides a compact encoding for the triangle mesh as well as for the
discrete gradient.515
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Simplicial complex representation. A triangle mesh S is a simplicial complex of dimen-
sion two formed by vertexes, edges, and triangles. The FG Multi library implements an
incidence-based data structure for compactly encoding the relations among these sim-
plices. Vertexes and triangles are the only simplices which are explicitly encoded for a
total of |S0| ` |S2| entities. Each vertex encodes the list of triangles incident, while each520

triangle encodes a reference to its three vertexes. Notice that, for each triangle σ refer-
encing a vertex v, we also have that v references σ. Thus, since each triangle references
three vertexes, the triangle-vertex relation costs 3|S2| while the vertex-triangle relation
doubles this cost leading to a total of 7|S2| ` |S0|. The filtering function f is stored for
each vertex by encoding a vector of floating point values, one value for each component525

of f .

Discrete gradient representation. The discrete gradient V is encoded by adopting the
representation described in [33]. The latter focuses on encoding all the gradient pairs
locally to each triangle. The encoding uses the following rationale. Since each triangle σ
can be paired with at most three edges and each edge can be paired with two vertexes,530

locally for each triangle we have 9 possible pairs. If we consider also the possible pairs
between an edge and an adjacent triangle we get 12 possible gradient pairs and thus
212 “ 4096 possible combinations. However, a discrete gradient imposes certain restric-
tions, i.e. that each simplex can be involved in at most one pairing. As a consequence,
we have only 97 valid cases for a triangle. These cases can be encoded using only 1535

byte per triangle and, thus, encoding the gradient only requires |S2| bytes. Notice that
the latter approach has been generalized to tetrahedral meshes [34] and d-dimensional
simplicial complexes [35].

The datasets used in this comparison are originated by three triangle meshes. The540

experiments have been performed on a dual Intel Xeon E5-2630 v4 CPU at 2.20 GHz
with 64GB of RAM. For each mesh, we obtain two refined versions of the latter by
recursively applying Catmull-Clark algorithm [55] to it. The nine triangle meshes are
described in Table 1. Column Original indicates the number of simplices composing the
mesh. Column Critical indicates the number of unpaired (critical) simplices identified by545

both reduction approaches, while the resulting compression factor is reported in column
Original/Critical.

Simplices Compression factor
Dataset Parameters Original Critical Original/Critical

1.3M 0.035M 37.9
5.3M 0.11M 45.3Torus 2

21.5M 0.77M 27.7
2.9M 0.28M 10.2

11.7M 0.11M 10.2Sphere 2
47.1M 0.46M 10.1
3.8M 0.4M 9.5

15.2M 1.6M 9.4Gorilla 2
60.9M 6.4M 9.4

Table 1: Datasets used for the experiments. For each of them, we indicate the number of independent
parameters in the multifiltration (column Parameters), the number of simplices in the original dataset
(column Original), number of critical simplices retrieved by ComputeDiscreteGradient and Macthing

(column Critical) and the compression factor (column Original/Critical).
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Figure 4: Timings required by ComputeDiscreteGradient (in blue) and Matching (in orange).

Timings are shown in Figure 4. ComputeDiscreteGradient takes between 0.89 sec-
onds and 4.8 minutes depending on the dataset and it is generally 7 times faster than our
efficient implementation of Matching. Time performances show the practical efficiency550

of the local approach compared to the global one. As seen in Section 4.3, the expected
asymptotical complexity over a triangle mesh S is linear in the number of simplices for
both algorithms when the number of simplices within each star is negligible. In Figure 5,
we show the trends as the number of simplices increases. This confirms our argument
that the number of stars to be retrieved and visited has a direct consequence on the555

algorithm performances. In ComputeDiscreteGradient we need to process each vertex
star only once while Matching requires processing a star for each grade.

Other than time efficiency, our strategy also requires a limited use of memory. The
memory consumption is shown in Figure 6, where we are reporting the maximum peak of
memory used by the two algorithms. ComputeDiscreteGradient uses up to 10 gigabytes560

of memory versus more than 20 of Matching. The storage cost difference between the
two implementations grows linearly in the number of simplices in the datasets. The ad-
vantage is due to the different memory consumption at runtime. Specifically, Matching
stores a global queue over all the simplices in the dataset and needs to track all classified
simplices. Both these steps are performed locally, over each level set, by ComputeDis-565

creteGradient.

5.2.2. Equivalence of the outputs

We now show that the discrete gradient computed by ComputeDiscreteGradient

can be made coincide with that of Matching provided that the indexing I used in Com-

puteDiscreteGradient is well-extensible and the filtering function f is componentwise-570

injective on the vertices. These assumptions will be maintained throughout this section.
Here, we first state the results required to draw such conclusions, while the detailed
proofs can be found in Appendix.
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Figure 5: Trend in the timings for ComputeDiscreteGradient (in blue) and Matching (orange).

Figure 6: Maximum peaks of memory (in gigabytes) required by ComputeDiscreteGradient (in blue)
and Matching (in orange).

The proof has two parts. First, we show that the two algorithms apply Homotopy-

Expansion to the same partition of the input simplicial complex S. Then we prove575

that, given any valid order for the simplexes used in HomotopyExpansion by one of the
two algorithms, it is possible to construct a valid order for the other algorithm so that
the output of the two is the same. This provides, as a byproduct, the correctness of
ComputeDiscreteGradient.

We start proving that the partitioning strategies of ComputeDiscreteGradient and580
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Matching are the same. In ComputeDiscreteGradient we partition S according to the
level sets Lu of f in LowIpvq, for all vertices v and grades u. In Matching S is partitioned
according to Lowf pσq, with σ varying in the set of primary simplexes P , i.e. simplices
that do not belong to the lower star with respect to f of any other simplex.

We start showing that the partition provided by sets Lowf pσq, with σ in P , is a585

refinement of the one provided by the sets LowIpvq with v P S0.

Lemma 1. For every σ P S, and, hence, in particular for σ P P , there is exactly one
vertex v P S0 such that Lowf pσq Ď LowIpvq.

Next, we show that, for every vertex v, any level set Lu of the filtering function f
restricted to LowIpvq coincides with the lower star Lowf pσq of some primary simplex σ.590

Lemma 2. Let Lu be a non-empty level set of f in LowIpvq for some grade u P R and
some vertex v P S0. There exists a unique simplex σ P Lu such that Lowf pσq “ Lu.
Moreover, σ P P .

Lemmas 1 and 2 allow us to conclude that both ComputeDiscreteGradient and
Matching run HomotopyExpansion on the same subsets Lu “ Lowf pσq. Now, to conclude595

that they give the same output, we need to show that HomotopyExpansion does so by
processing the simplexes of these subsets in the same order.

Proposition 3. For every valid input pS, fq for ComputeDiscreteGradient, there exists
an indexing J : S ÝÑ R valid for Matching such that the output of MatchingpS, f, Jq
and ComputeDiscreteGradientpS, fq coincide.600

As a consequence of this result, from the correctness of Matching, we obtain the
correctness of ComputeDiscreteGradient.

Corollary 4. Algorithm ComputeDiscreteGradient with input pS, fq returns a discrete
gradient compatible with the multifiltration induced by f on S.

6. Computing multiparameter persistence homology605

In this section, we evaluate the impact of our algorithm as a preprocessing method
for the computation of the persistence module (Subsection 6.1) and of the persistence
space (Subsection 6.2). Before presenting our results, we describe how to extract, from
a discrete gradient V , the Morse complex that will be used as input of persistence com-
putations.610

Computing the Morse complex. We recall from Section 2.4 that a discrete gradient V
implicitly represents a Morse complex M consisting only of the critical simplices of V
with the incidence relations given by the separatrices originating and having destination
in a pair of critical simplices.

In order to compute such incidence relations, we process all the critical simplices615

of V as in [35]. For each critical simplex σ of dimension k, a breadth-first traversal is
performed as follows. From σ we extract its facets. For each pk´1q-simplex τ1 we extract
its paired k-simplex σ1, if any. We apply the same rationale to σ1 to continue the visit.
As soon as we encounter a pk ´ 1q-simplex τ which is unpaired (critical) we classify the
two simplices σ and τ as mutually incident.620
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In the worst case, computing the incidences for a single critical simplex of dimension
k requires visiting all k-simplices multiple times, in the order of Op|Sk|

2q, where |Sk|
is the number of k-simplices in S. Having a number of critical simplices of the same
order of |Sk| would bring the total worst-case complexity to be cubical in the number
of simplices. In practical cases, the extraction of the Morse complex is very efficient as625

each k-simplex belongs to a very limited set of gradient paths, possibly zero.

6.1. Computing the persistence module

The persistence module is computed by means of the open-source library Topcat [40].
Due to its strong limitations in terms of time and memory costs, we used simplified
datasets for our experiments. We use six triangle meshes of limited size, three repre-630

senting a torus and three representing a sphere. We use a bifiltration for each mesh
defined by the x and y coordinates of the vertexes. Table 2 presents a description of the
input dataset. The number of simplices (column Simplices) and number of multigrades
(column Grades) are reported for each simplicial complex (column Original) and each
Morse complex (column Morse). Notice that for a Morse complex M , column Critical635

Simplices indicates the number of critical simplices in the discrete gradient V which is is
also equivalent to the number of cells in the corresponding Morse complex M .

Original Morse Time
Persistence Module Critical Persistence Module

Dataset Simplices Grades Time Memory Simplices Grades Time Memory
38 8x8 0.3 0.24 4 5x5 0.18 0.1 0.0264

242 42x42 4.4 0.86 20 10x10 0.28 0.2 0.0244Sphere
2882 482x482 - - 278 92x89 24.3 1.5 0.0473

Torus
96 16x16 0.5 0.1 8 9x9 0.25 0.2 0.0255

4608 768x768 - - 128 65x66 7.96 2.4 0.0643
7200 1200x1200 - - 156 70x80 12.05 3.0 0.0815

Table 2: Timings (in seconds) and storage costs (in gigabytes) for the persistence module retrieval
over the original (columns Original) and the corresponding Morse complex (columns Morse). Columns
Simplices and Grades reports the number of simplices in the dataset and the number of level sets along
each parameter, respectively. Missing entries indicate where the Topcat library runs out of memory.
Column Time explicits the timings (in seconds) for obtaining the Morse complex using ComputeDis-

creteGradient.

The Topcat library uses the boundary matrices of the complex to compute the persis-
tence module. Since it was designed to accept only multifiltrations defined on simplicial
complexes, we have modified the library for working on multifiltrations defined over more640

general cell complexes, like the Morse complex.
We compute the persistence module, for each homology grade, of both the original

simplicial complex and the Morse complex generated by our algorithm, and we measure
time and storage consumption of the Topcat library. We report the results obtained
in Table 2, columns Time and Memory. These represent the timings (in seconds) and645

the memory (in Gigabytes) required for computing the persistence module. When the
Topcat library runs out of memory, no result is reported. Where a comparison is possible,
computing the persistence module on the Morse complex takes approximately half of the
time than computing it on the original simplicial complex.

The memory consumption is the main bottleneck of the Topcat library as it is mainly650

affected by the number of input cells and by the number of multigrades. Using the
Morse complex helps to deal with this problem by shrinking both numbers. In our
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experiments, all successful executions have used a limited amount of memory, significantly
below the machine limit of 64GB. This suggests a dramatic increase in memory usage
in the ones where the computations have failed. For instance, the failure of the test655

over the Sphere dataset with 2882 cells and 482x482 multifiltration multigrades suggests
that computing the persistence module on a Morse complex of the same size would
fail as well. We should stress the fact that the objective of our experiment is that of
evaluating the gain in performances when using our reduction approach and not that of
overcoming the limitations of Topcat. Column Morse Time reports the partial timings660

required for computing the Morse complex. These include the contribution of running
ComputeDiscreteGradient together with the retrieval of the boundary matrix. We point
out that the reduction timings, ranging from 0.0244 to 0.0815 seconds, are negligible with
respect to the time required for computing the persistence module.

6.2. Computing the persistence space665

In this subsection, we evaluate the impact of the reduction method on the computa-
tion of the persistence space [42].

The foliation method. The persistence space of an n-parameter filtration is a subset of
RnˆRn that can be computed via the foliation method introduced in [43]. This amounts
to considering all possible lines ` in Rn through two grades u ă v. Restricting the n-670

parameter filtration to the grades belonging to `, we obtain a one-parameter filtration,
called a slice. On each slice, any computational technique for one-parameter persistent
homology computation can be applied to obtain the corresponding persistence diagram
[56]. A persistence diagram is a representation, on the Cartesian plane, of a one-parameter
persistence module. Each point in the persistence diagram represents a discontinuity in675

the rank invariant created by either a new-born or a vanishing homology class. The
union of the persistence diagrams for all possible lines ` mapped back to Rn ˆ Rn gives
the persistence space. In practice, it is possible to compute only a sampling of the
persistence space by selecting a finite number of lines. The number of lines to consider
varies based on the application at hand. As a rule of thumb, the more slices we consider,680

the more accurate is the approximation of the resulting persistence space. Next, we
describe our implementation of the foliation method.

We applied the foliation method on bifiltrations induced by some function f : S Ñ R2.
The first step consists in selecting ω2 lines ` with a non-negative slope in R2. To do so, we
use the following procedure. Because each line ` with positive slope in R2 is determined685

by the angle λ of the line with the x axis, and a base point b on `, we have selected ω
values for both λ and b. Values of λ are uniformly taken from interval r0, π2 s. Points
b are uniformly taken from the segment whose endpoints are the projections of points
pc1, C2q and pC1, c2q, with Ci :“ maxxPS fipxq and ci :“ minxPS fipxq for i “ 1, 2, onto
the bisector of the second and fourth quadrant along the direction m “ pcospλq, sinpλqq.690

For each choice of λ and b, we thus determine the line ` passing through b with direction
m “ pcospλq, sinpλqq. By varying the values of λ and b, we obtained the desired ω2 possi-
ble lines. The second step requires creating a new one-parameter filtration on S for each
line `. If ` has parameters λ, b, for each simplex σ P S, the grade of σ in the new filtration

is given by Φ`pσq :“ mini“1,2mi ¨maxi“1,2
fipσq´bi
mi

. The last step consists of computing695

classic persistent homology for the obtained one-parameter filtration by sublevel sets of
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Φ` corresponding to each choice of λ and b.

After choosing how to sample slices, the foliation method still requires choosing the
number of slices. In what follows, we will present results providing insights on both700

choices, either by varying the number of slices (between 2 and 100), or by varying the
method for computing persistent homology (taken from the PHAT library [57]).

Here we present results for evaluating the impact of our reduction approach when
computing the persistence space by using a variable number of slices (between 2 and 100).
Datasets considered are from the Princeton Shape Benchmark [58]. Table 3 describes705

the datasets and the results obtained when computing the persistence space by using 100
slices and by using the standard algorithm implemented in PHAT [57]. For each dataset
reported in Table 3, the first row reports data regarding the original mesh, while the
second row describes the corresponding Morse complex computed by using our reduction
method. For each input complex, we show the number of simplices (column Simplices)710

and the average number of persistence pairs found per slice (column Pairs).
Timings are reported separately for the computation of the Morse complex (column

Morse time), for the extraction of slices (column Line Extraction) and for the actual
computation of the persistence space (column Foliation Time). The latter is formerly
subdivided into three partial timings accounting for the construction of the boundary715

matrix (column Building Pers. input), for the computation of persistent homology (col-
umn Computing Persistence), and for reindexing the persistence pairs according to the
multifiltration (column Reindexing Pers. output). Column Foliation Total shows the
sum of the partial timings.

Foliations Time
Morse Line Building Computing Reindexing Foliations

Dataset Simplices Pairs Time Extraction Pers. input Persistence Pers. output Total
9491 4744 9.04 1.91 1.45 12.42

Shark
1111 554

(81.4) 0.11 0.86
1.15 0.21 0.84 2.22

10861 5426
(8.8) 0.12 0.63

10.21 2.11 1.53 13.87
Turtle

1197 594 1.22 0.22 0.84 2.29
27826 13873 27.49 5.65 2.69 35.85

Gun
3144 1532

(10.2) 0.28 0.65
3.18 0.60 0.99 4.77

119081 59349
(79.5) 1.14 0.85

118.14 26.56 10.33 155.91
Piano

10955 5286 11.09 2.26 1.65 15.01

Table 3: Timings (in seconds) required for computing the persistence pairs on 100 uniformly sampled
slices. Datasets are reported by rows. For each triangle mesh, the first row is for the original dataset and
the second one for the Morse complex considered over the same 100 slices. Column Simplices reports
the number of simplices in the multifiltration. Column Pairs reports the average number of persistence
pairs found per slice. In parantheses, the number of pairs with positive persistence (equal for original
and reduced datasets).

We notice that, by reducing the number of simplices of approximately one order,720

we get a one-order reduction on all timings. Looking at column Line Extraction we
notice that the extraction of the lines are almost the same across all the triangle meshes.
This happens because in this case, we are always considering the same number of slices.
For the partial timings, the highest contribution is shown in column Building Pers.
Input. This is the part where the cells are sorted by increasing values under Φ` and725

reindexed according to these values. Both this phase and the following one (i.e., the
actual computation of persistent homology) are affected by the number of input simplices,
and the results for the Morse complex reflect the one-order reduction in the number of
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(a)

(b)

Figure 7: Time performances plotted with respect to a number of slices varying form 4 to 100 over the
same dataset. Datasets considered are triangle meshes: (a) Shark and (b) Turtle. In all the figures
performances are indicated in blue for the original dataset and in orange for the corresponding reduced
dataset. On the left we show timings required by the foliation method. On the right, we show timings
for computing persistence homology over a single slice.

simplices. Results are shown in column Reducing Pers. Output. The difference in the
results obtained with the original triangle mesh and the corresponding Morse complex730

suggests that our reduction step let us avoid computation on many spurious persistence
pairs. Column Foliation Total indicates timings for computing the persistence space
as a whole. The total timings required by a Morse complex range from a minimum
of 2.22 seconds (Shark triangle mesh) to a maximum of 15.01 seconds (Piano triangle
mesh), whereas, the original datasets require from 12.42 (Shark triangle mesh) to 155.91735

seconds (Piano triangle mesh).
In Figure 7 and Figure 8, we compare the time performances achieved by the foliation

method using a number of slices ranging from 4 to 100. The one-parameter persistence
over each slice is computed by the standard algorithm implemented in PHAT. For each
dataset, we show, on the left, the global timings for the foliation phase and, on the right,740

the partial timings required by the computation of persistent homology.
Blue lines indicate results obtained for the triangle meshes, green dotted lines present

results obtained with the Morse complexes accounting for both the reduction algorithm
and the foliation step. Orange lines indicate results obtained with the Morse complexes
exclusively for the foliation phase. As we can see, orange and green lines almost overlap745

indicating that the preprocessing step used for computing the Morse complex is almost
negligible with respect to the computation of the persistence space.
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(a)

(b)

Figure 8: Time performances plotted with respect to a number of slices varying form 4 to 100 over
the same dataset. Datasets considered are triangle meshes: (a) Gun and (b) Piano. In all the figures
performances are indicated in blue for the original dataset and in orange for the corresponding reduced
dataset. On the left we show timings required by the foliation method. On the right, we show timings
for computing persistence homology over a single slice.

We also notice the linear dependency of the process on the number of slices. For
Morse complexes (orange line), the slope coefficient is smaller than for the original sim-
plicial complex (blue line). This is more evident for global timings suggesting that a750

preprocessing reduction is preferable independently of the number of slices considered.
Notice that, only for the computation of persistent homology when using 4 slices, we
get the blue line just below the green dashed line. This is the only exception where the
preprocessing step could be avoided.

Our tests confirm that the complexity of the foliation method primarily depends on755

the number of slices considered. Our reduction approach impacts the performances by
simply reducing the number of cells to be processed. Moreover, our tests show that the
proposed preprocessing is effective also for a small number of slices.

7. Concluding remarks

We have proposed a new preprocessing algorithm for multiparameter persistent ho-760

mology suitable for applications to real-sized data sets. We have highlighted the local
characteristics of our approach as opposed to the global characteristics of the equivalent
existing approach in [11]. With real data, the use of the Morse complex allowed us to
successfully compute multiparameter persistent homology. We increased about 50 times
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the size of the input complex that can be treated, and up to about 250 times the size765

of the filtration that can be treated. Our local preprocessing has shown its advantages,
especially when computing the persistence space through the foliation method. We found
that, in all considered datasets, the Morse complex outperforms the corresponding orig-
inal filtration, regardless of the number of slices used in the foliation method. By using
the Morse complex for computing the persistence module we still have experienced effi-770

ciency problems, even with rather small datasets. This suggests that our preprocessing
is not powerful enough to make the persistence module computation feasible and that
optimizations of current algorithms require further improvements.

At the time of submitting the present paper, a new reduction algorithm has been pro-775

posed in preprint version [59] inspired by the chunk algorithm [19]. The latter works on
a matrix-based representation of the simplicial complex S called boundary matrix. Each
column of the boundary matrix represents a simplex σ in S by storing the facets of σ. The
method in [59] and the Morse-based approach discussed here have been experimentally
compared showing that the one in [59] is generally an order of magnitude faster than780

ours. On the other hand, the Morse-based approach have other valuable characteristics.
The Morse-based approach stores additional information with respect to [59] still

using a comparable amount of memory at runtime. Depending on the applicative domain
this information can be fundamental. Above all, with the Morse-based approach, we are
able to maintain a complete mapping between the original simplicial complex and the785

obtained Morse complex. That is, once we have computed multiparameter persistent
homology on the Morse complex, we are able to project back the results on S for studying,
for example, the distribution of the critical simplices on the original complex. This is
currently impossible with the reduction approach described in [59] since, once the matrix
is reduced, the connection with the original simplicial complex is lost. Maintaining790

such information would require storing a copy of the unreduced boundary matrix, then
occupying twice as much memory.

Also, the approach in [59] is based on a global representation of the facets of each
simplex of the simplicial complex. The Morse-based approach applies a local approach
by encoding the top simplices of S only. While this approach has its drawbacks in lower795

dimensions, as shown by the timings in [59], it has been proven that it provides better
scalability when the dimension of the simplicial complex increases. A new dimension-
independent encoding for a simplicial complex endowed with a discrete gradient V has
been proposed in [35]. The scalability of such data structure has been demonstrated by
comparing to state-of-the-art approaches which are all based on the encoding of all the800

simplices of S. Such data structure is equivalent, in 2D and 3D, to the one used in this
paper.

We think that the idea of a discrete gradient compatible with a multifiltration deserves
further investigations. Currently, we are expanding the set of visual features that can
be extracted from a discrete gradient for data analysis and visualization by studying the805

relationships between the critical simplices identified by our method and the multigraded
Betti numbers computed by RIVET [47]. This may help us constructing a bridge between
the discrete notions of critical simplices and the piecewise-linear notions of Pareto sets
[60] and Jacobi sets [61].
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Appendix

In this appendix, we report all the proofs of the results provided in Subsection 5.2.2.985

Proof of Lemma 1. Let σ P S. Because the sets LowIpvq, with v P S0, form a partition
of S, there is a unique vertex v of S such that σ belongs to LowIpvq. By definition of
lower star, v is a face of σ, and Ipσq ď Ipvq. Because I is extended from the vertices to
other simplexes by taking the maximum over all vertexes, it also holds that Ipvq ď Ipσq,
and hence Ipvq “ Ipσq.990

Let τ be a simplex in Lowf pσq. Again by definition of lower star and because f is
defined by max-extension as well, we similarly get that σ is a face of τ and fpτq “ fpσq.
Since I is well-extensible, this implies that Ipτq “ Ipσq, and hence Ipτq “ Ipvq. Because
v ă σ ă τ we can thus conclude that τ P LowIpvq. Therefore, Lowf pσq Ď LowIpvq.

Proof of Lemma 2. In order to prove uniqueness, assume by contradiction that there are995

two simplexes σ, σ1 P S such that Lowf pσq “ Lu “ Lowf pσ
1q. Hence, σ1 P Lowf pσq and

σ P Lowf pσ
1q, implying that σ1 is a coface of σ and σ is a coface of σ1. Thus, σ1 “ σ.

In order to prove existence, we take σ to be the maximal common face of all simplexes
of Lu. Since v P τ for every τ P Lu, σ is non-empty and belongs to LowIpvq. In particular,
σ belongs to Lu. Indeed, on one hand, for every τ in Lu, fpσq ĺ fpτq “ u, because f does1000

not decrease with the coface relation. On the other hand, since f is obtained by max-
extension from the vertices of a component-wise injective function, for every i “ 1, . . . , n
there is a unique vertex wi such that ui “ fipwiq. Hence, for all τ P Lu, it holds that
ui “ fipτq ě fipwiq “ ui, implying that wi is a vertex of τ for all τ P Lu. By definition of
σ, wi is also a vertex of σ. Therefore, fipσq ě fipwiq “ ui. Because this holds for every1005

i “ 1, . . . , n, we deduce that u ĺ fpσq, which together with fpσq ĺ u yields fpσq “ u.
In conclusion, σ belongs to Lu.

We now claim that Lowf pσq “ Lu. We easily see that Lu is contained in Lowf pσq
because, by definition of σ, all simplices τ P Lu are cofaces of σ, and by definition of level
set, fpσq “ fpτq “ u. Conversely, to prove that Lowf pσq Ď Lu, let τ be a simplex in1010

Lowf pσq. Lemma 1 ensures that τ P LowIpvq, so it is sufficient to prove that fpτq “ u.
We have already proved that fpσq “ u, hence the claim follows by using again the fact
that, for all τ P Lowf pσq, fpτq “ fpσq.

To conclude the proof, it remains to show that σ is a primary simplex for Matching.
Recall that a simplex is primary if and only if it is not contained in a lower star, with1015

respect to f , of some other simplex τ : σ P P if and only if there is no other simplex τ
such that σ P Lowf pτq. By contradiction, let us assume such simplex τ exists. Hence
Lowf pσq Ď Lowf pτq. By Lemma 1, σ and τ belong to the same index-based lower
star LowIpvq. Since σ P Lowf pτq, we get u “ fpσq “ fpτq. Thus, Lu “ Lowf pσq Ď
Lowf pτq Ď Lu, implying that Lowf pσq “ Lowf pτq, and hence σ “ τ , a contradiction.1020
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Proof of Proposition 3. To prove the claim, we show how to construct an indexing J on S
valid as an input of Matching such that each call of HomotopyExpansion with simplices
of Lowf pσq “ Lu taken in the order of J gives the same result as ComputeDiscreteGra-
dient.

For each σ P P , we indicate by Jσ the indexing on simplexes of Lowf pσq “ Lu1025

built in HomotopyExpansion(S, I, Luq when called by ComputeDiscreteGradient. By
construction, it is increasing with the coface relation, and consistent with the orderings
of the lists Ord0 and Ord1.

Let g : P ÝÑ R be any injective function compatible with f , i.e., fpσq ĺ fpτq implies
gpσq ď gpτq (obtained, for example, by topological sorting). For every simplex τ P S, we1030

can consider the map Q : S Ñ P such that Qpτq “ σ, with σ the unique primary simplex
σ P P such that τ P Lowf pσq. Thus, we can extend g from P to S by taking G “ g ˝Q.
By construction, G is still compatible with f .

Therefore, for any simplex τ P S, we get a pair of real numbers pGpτq, JQpτqpτqq. The
set of all such pairs can be lexicographically ordered, and we can finally take J : S ÝÑ R1035

to be an injective map giving a total order equivalent to such lexicographic order.
We need to show that J is a valid ordering for Matching, that is it satisfies condi-

tion (2). If σ ă τ , we have fpσq ĺ fpτq because f is defined by max-extension from
the vertices. By compatibility of G with f , this implies that Gpσq ď Gpτq. In the
case Gpσq ă Gpτq, by the equivalence of J with the lexicographic order on all the pairs1040

pGpτq, JQpτqpτqq with τ P S, we get Jpσq ă Jpτq. In the case Gpσq “ Gpτq, by injec-
tivity of g, it follows that Qpσq “ Qpτq. Because JQpσq is increasing with the coface
relation, we get Jpσq ă Jpτq. Hence, in any case, σ ă τ implies Jpσq ă Jpτq. Let
us now assume that fpσq ň fpτq. From fpσq “ f ˝ Qpσq and fpτq “ f ˝ Qpτq, it fol-
lows that f ˝ Qpσq ň f ˝ Qpτq. Necessarily, Qpσq ‰ Qpτq. Thus, by injectivity of g,1045

g ˝Qpσq ă g ˝Qpτq. Because G “ g ˝Q, we conclude that Jpσq ă Jpτq by equivalence of
J with the lexicographic order on the pairs considered above. Therefore, we have proved
that J satisfies condition (2) and is a valid ordering for Matching. In conclusion, by
Lemma 2, Matching and ComputeDiscreteGradient call HomotopyExpansion with the
same input and, provided that Matching uses the ordering J , they also process simplices1050

in the same order. Hence, Matching and ComputeDiscreteGradient produce the same
output.

Proof of Corollary 4. By Proposition 3, for any valid input pS, fq for ComputeDiscrete-
Gradient there is a valid input pS, f, Jq for Matching such that ComputeDiscrete-

GradientpS, fq is equal to MatchingpS, f, Jq. By Proposition 8 and Theorem 9 in [11],1055

MatchingpS, f, Jq returns a discrete gradient V that is compatible with the multifiltration
induced by the pair pS, fq. Therefore, so does ComputeDiscreteGradientpS, fq.
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