
23

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes

for Tetrahedral Meshes

RICCARDO FELLEGARA, German Aerospace Center (DLR)

LEILA DE FLORIANI, University of Maryland at College Park

PAOLA MAGILLO, University of Genova

KENNETH WEISS, Lawrence Livermore National Laboratory

We address the problem of performing efficient spatial and topological queries on large tetrahedral meshes

with arbitrary topology and complex boundaries. Such meshes arise in several application domains, such as

3D Geographic Information Systems (GISs), scientific visualization, and finite element analysis. To this aim,

we propose Tetrahedral trees, a family of spatial indexes based on a nested space subdivision (an octree or a

kD-tree) and defined by several different subdivision criteria. We provide efficient algorithms for spatial and

topological queries on Tetrahedral trees and compare to state-of-the-art approaches. Our results indicate that

Tetrahedral trees are an improvement over R∗-trees for querying tetrahedral meshes; they are more compact,

faster in many queries, and stable at variations of construction thresholds. They also support spatial queries

on more general domains than topological data structures, which explicitly encode adjacency information

for efficient navigation but have difficulties with domains with a non-trivial geometric or topological shape.

CCS Concepts: • Information systems → Geographic information systems; • Computing method-

ologies → Mesh geometry models; • Theory of computation → Data structures and algorithms for

data management;

Additional Key Words and Phrases: Tetrahedral meshes, spatial indexes, octrees, kD-trees, spatial queries,

topological queries

ACM Reference format:

Riccardo Fellegara, Leila De Floriani, Paola Magillo, and Kenneth Weiss. 2020. Tetrahedral Trees: A Family

of Hierarchical Spatial Indexes for Tetrahedral Meshes. ACM Trans. Spatial Algorithms Syst. 6, 4, Article 23

(June 2020), 34 pages.

https://doi.org/10.1145/3385851

This work has been partially supported by the US National Science Foundation under grant number IIS-1910766 and by

the University of Maryland under the 2017-2018 BSOS Dean Research Initiative Program. It has also been performed under

the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-

07NA27344.

Authors’ addresses: R. Fellegara, German Aerospace Center (DLR), Institute for Software Technology, Software for Space

Systems and Interactive Visualizations, Lilienthalplatz 7, 38108 Braunschweig, Germany; email: riccardo.fellegara@dlr.de;

L. De Floriani, University of Maryland, Department of Geographical Sciences and UMIACS, 5109 Brendan Iribe Center for

Computer Science and Engineering, 8125 Paint Branch Drive, College Park, MD 20742; email: deflo@umiacs.umd.edu; P.

Magillo, University of Genova, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Via

Dodecaneso 35, 16146 Genova, Italy; email: paola.magillo@unige.it; K. Weiss, Lawrence Livermore National Laboratory,

Applications, Simulations, and Quality, PO Box 808, L-170, Livermore, CA 94551; email: kweiss@llnl.gov.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the

United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for government purposes only.

© 2020 Association for Computing Machinery.

2374-0353/2020/06-ART23 $15.00

https://doi.org/10.1145/3385851

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

https://doi.org/10.1145/3385851
https://doi.org/10.1145/3385851

23:2 R. Fellegara et al.

1 INTRODUCTION

Tetrahedral meshes are used to discretize space in a broad range of applications across numerous

scientific disciplines. They are used, for example, to model scalar and vector fields sampled at ir-

regularly distributed points in space [21, 78] or to model three-dimensional features in Geographic

Information Systems (3D GISs) [68, 69, 97]. They also underpin finite element and structural

analysis over domains with complex topology and arbitrary shapes [13, 40, 50, 57]. Even when

fields are sampled over regular grids, dataset simplification produces unstructured datasets that

need to be triangulated through tetrahedral meshes [1, 19, 41, 67]. The popularity of tetrahedral

meshes in these applications stems, in part, from their simple representation, their ability to adapt

to features at varying spatial and temporal scales, and the availability of efficient and robust mesh

generation algorithms even in the presence of complex geometric boundaries [18, 86, 87].

In simulation, visualization, and analysis applications, we often require local information about

features in the problem domain. For example, to probe a field at an arbitrary location [3, 39, 53], we

need to interpolate field values from nearby samples. Similar needs arise when integrating field

quantities over spatial regions of interest and when computing volumetric overlap between the

cells of two meshes; for example, to map field data between different spatial discretizations [42].

Such spatial queries are typically composed of a few primitive building blocks that can efficiently

locate the mesh cells covering the query region. In particular, point location queries find the mesh

cell containing a given point, while range queries, also referred to as box or window queries, find

all mesh cells that overlap an axis-aligned region of space. Spatial joins can be used to combine

spatial features from multiple meshes. These are also the main query types in spatial databases [63,

72, 85, 96] and can be used to define proximity and containment queries.

After performing a spatial query on a mesh, we are often interested in traversing the local mesh

in the vicinity of the query region. For example, in fluid simulations, tracer particles are seeded near

features of interest and flow along integral paths of vector fields or scalar field gradients [55, 82].

Similarly, visibility [27, 90] and watershed [56, 75] queries traverse the mesh towards a local hori-

zon or critical points. Other applications require local modifications to the mesh connectivity. For

example, when inserting new points into a Delaunay triangulation, one needs to locate and repair

the invalidated tetrahedra (i.e., those whose circumcircles contain the inserted point) [38, 73].

Despite the vast literature on spatial indexes and queries, few works exploit the rich connectivity

information available in tetrahedral meshes while also supporting spatial queries over arbitrary

spatial domains. While spatial indexes based on R-trees [45] and Bounding Volume Hierarchies

(BVHs) are perhaps the most widely used, e.g., in spatial databases [63] and collision detection [32],

they are optimized for collections of discrete objects rather than meshes. As such, mesh elements

(tetrahedra, vertices, etc.), which are mutually adjacent or incident, could be stored in distant tree

branches, making it difficult to use the results to traverse through the mesh. Alternatively, spatial

queries based on stochastic walks require only the mesh connectivity but are restricted to convex

domains [28, 59]. In this approach, which is popular in the computational geometry literature,

queries are initialized at a random mesh cell and traverse through the mesh towards the query

point. This approach is very easy to implement, since it does not require a spatial index, but can

fail when the domain is not simply connected.

Here, we propose Tetrahedral trees, a family of spatial indexes over tetrahedral meshes that

support efficient spatial queries and reconstruction of the local mesh connectivity on the query

results. Tetrahedral trees utilize a nested spatial index (an octree or a kD-tree) to recursively de-

compose the embedding space of the mesh and index the cells of the mesh in all leaf blocks of

the tree that they intersect. The decomposition can be easily tuned to limit the number of vertices

and/or tetrahedra encoded in a leaf block. Although each tetrahedron can be indexed in multiple

leaf blocks, our efficient leaf block encoding (adapted from the representation in Reference [35]),

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:3

which encodes contiguous ranges of cell indices, yields a very compact representation for Tetra-

hedral trees. The storage overhead for the spatial index is typically only 5%–10% higher than the

one for an indexed mesh representation that only encodes the boundary vertices for each tetra-

hedron. We note that the indexed representation does not support efficient spatial or topological

queries, while the data structure in Reference [35] does not support efficient spatial queries. Our

work builds on a preliminary short paper [25] in which we introduced some spatial indexes for

tetrahedral meshes and spatial (but not topological) queries on such meshes. As we demonstrate

in Sections 6 and 7, our compacted leaf block representation significantly reduces the spatial index

overhead while also improving query response times, since it acts as a clustering mechanism for

the locally indexed submeshes within a leaf block.

The major contributions of this article are:

• Scalable algorithms for executing spatial queries on tetrahedral meshes with additional sup-

port for navigating through the mesh connectivity on the query results.

• Improved encoding and compression of the information indexed within each leaf block

and effective tuning of bucketing thresholds that enable the indexing of larger tetrahedral

meshes on commodity hardware. We demonstrate the effectiveness of the Tetrahedral trees

representation on structured and unstructured tetrahedral meshes with up to 30M tetrahe-

dra.

• Extension of subdivision rules, originally defined for 2D uncorrelated data, to decompose

and organize structured and unstructured tetrahedral meshes. We demonstrate the impor-

tance of considering the cardinality of the star of a vertex in a tetrahedral mesh for setting

bucketing thresholds and evaluate the effectiveness of these rules on the resulting spatial

decomposition and index compression.

• An extensive evaluation of Tetrahedral trees through comparisons, in terms of memory and

query times, with representatives of the most commonly used data structures for spatially

querying tetrahedral meshes: an adjacency-based topological data structure (the IA data

structure [65]) and an R∗-tree [7]. We demonstrate that, across all datasets, Tetrahedral trees

are significantly smaller (typically by a factor of 2–5), can be easily tuned, and consistently

respond to queries faster than the state-of-the-art data structures.

The remainder of this article is organized as follows: In Sections 2 and 3, we provide background

notions on tetrahedral meshes and review related work on spatial indexes as well as topological

data structures. In Section 4, we introduce Tetrahedral trees and describe the criteria used to drive

their spatial decomposition and the data structures for representing them. We discuss the spatial

and topological queries supported by Tetrahedral trees in Section 5. In Section 6, we evaluate the

storage requirements and generation times of Tetrahedral trees, comparing with state-of-the-art

data structures. We then empirically evaluate the performance of Tetrahedral trees against the

state-of-the-art data structures in Section 7. We conclude in Section 8 by outlining directions for

future work.

2 BACKGROUND

In this section, we review some background notions about tetrahedral meshes. Let k be a non-

negative integer. A k-simplex σ is the convex hull of k + 1 independent points in Euclidean space.

These points are called the vertices of simplex σ and k is its dimension. A 0-simplex is a vertex,

a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. An h-face σ ′

of a k-simplex σ is an h-simplex (0 ≤ h ≤ k) generated by h + 1 vertices of σ . Dually, σ is said to

be a coface of σ ′. For instance, the triangles generated by three vertices of a tetrahedron σ are its

2-faces and σ is a coface of each of these triangles.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:4 R. Fellegara et al.

Fig. 1. Examples of topological relations. (a) Tetrahedron-Face boundary relation for tetrahedron t consists

of the four triangular faces { f1, f2, f3, f4}. (b) Vertex-Tetrahedron co-boundary relation for vertex v consists

(in this example) of its two incident tetrahedra {t1, t2}. (c) Tetrahedron-Tetrahedron adjacency relation for

tetrahedron t consists of its four adjacent tetrahedra {t1, t2, t3, t4}.

A tetrahedral mesh Σ is a collection of vertices, edges, triangles, and tetrahedra. In this article, we

are concerned with tetrahedral meshes that are conforming, pure, and have a manifold domain. In

a conforming mesh Σ, each face of a simplex in Σ also belongs to Σ and for each pair of simplices σ
and τ in Σ, σ and τ are either disjoint or they intersect along a common face. In a pure tetrahedral

mesh, all vertices, edges, and triangles in Σ are faces of a tetrahedron in Σ. Finally, a manifold

object is a subset of the Euclidean space for which the neighborhood of each internal point is

homeomorphic to an open ball, and the neighborhood of each boundary point to an open half ball.

The boundary of a simplex σ is the set of all faces of σ . Dually, the star of a simplex σ in a

tetrahedral mesh Σ is the set of its cofaces in Σ. For instance, the star of a vertex v is the set of

edges, triangles, and tetrahedra incident in v. Two simplices are said to be mutually incident if one

of them is a face of the other, while two h-simplices are j-adjacent, with 0 ≤ j < h, if they share a

j-face. Two vertices are called adjacent if they are the boundary vertices of an edge.

The connectivity among the simplices of a tetrahedral mesh is identified through so-called topo-

logical (or connectivity) relations, which are based on the notions of incidence and adjacency. Let us

consider a tetrahedral mesh Σ and a p-simplex σ in Σ, with 0≤ p ≤ 3 (i.e., a vertex, edge, triangle,

or tetrahedron). We have the following topological relations for σ [26]:

• boundary relation Rp,q , with 0 ≤ q < p, relates σ to its q-simplex faces within Σ.

• co-boundary relation Rp,q , with p < q ≤ 3, relates σ to its q-simplex cofaces within Σ.

• adjacency relation Rp,p relates σ to the p-simplices in Σ that are p-adjacent to σ .

An alternative notation for topological relations is to use the name of the involved p- (and

q-) dimensional simplices. Using this notation, the boundary relations for a tetrahedron σ are:

Tetrahedron-Face (TF (σ)), i.e., the set of triangles bounding σ (see Figure 1(a)), Tetrahedron-Edge

(TE(σ)), i.e., the set of edges on the boundary of σ , and Tetrahedron-Vertex (TV (σ)), i.e., the set of

vertices on the boundary of σ .

The co-boundary relations of a tetrahedron σ are empty, since tetrahedra are the simplices of

highest dimension in a tetrahedral mesh, and, thus, are not on the boundary of any other sim-

plex. For a vertex v in a tetrahedral mesh, we have the following co-boundary relations: Vertex-

Tetrahedron (VT (v)) (see Figure 1(b)), Vertex-Face (VF (v)), and Vertex-Edge (VE(v)), which consist

of the tetrahedra, triangles, and edges incident in v, respectively.

Adjacency relation Tetrahedron-Tetrahedron (TT (σ)) for a tetrahedron σ is the set of tetrahedra

sharing a triangle face with σ (see Figure 1(c)). The Vertex-Vertex (VV (v)) adjacency relation con-

sists of the set of vertices having an edge in common with a given vertex v. Topological relations

for faces (triangles) and edges are defined in a similar fashion.

Topological data structures explicitly encode a subset of all possible topological relations in a

tetrahedral mesh and are, thus, efficient in supporting navigation, but they are not well suited for

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:5

spatial queries, such as point location or range queries. Conversely, spatial indexes are specifically

designed to efficiently support spatial queries but are not typically aware of mesh connectivity.

3 RELATED WORK

In this section, we review data structures related to the new spatial indexes presented in this work.

3.1 Spatial Indexes

Spatial indexes differ in their decomposition of the embedding space of the data, often into a set

of parallelepipeds, which we refer to as blocks. In an object-based decomposition, blocks are con-

structed by considering bounding regions of the entities they index, while in a space-based de-

composition, blocks are obtained by partitioning the embedding space. Space-based hierarchical

spatial indexes recursively subdivide the embedding space into non-overlapping blocks according

to a fixed pattern, where the children of a block partition the space associated with their parent

block. For this reason, hierarchical non-overlapping space-based decompositions are also known

as nested decompositions. The original data are generally associated with leaf blocks, i.e., those

without children, while the internal blocks are used to drive spatial queries.

The main classification of hierarchical spatial indexes is into those using regular refinement

and those using bisection refinement [11]. Regular refinement of hyper-rectangular blocks gener-

ates quadtrees [5], in 2D, and octrees, in 3D, while the bisection refinement of axis-aligned hyper-

rectangles bisected by axis-aligned hyperplanes generates kD-trees. These decompositions have

been originally defined for indexing point data and subdivide the space into blocks of equal size

(generating PR quadtrees and PR kD-trees, where PR stands for Point Region [64]), or using the po-

sitions of the points to define subdivision planes (generating Point quadtrees and kD-trees [36]).

Octree-based decompositions for points are widely used for indexing and analyzing Light Detec-

tion and Ranging (LiDAR) acquisitions [31, 58, 74, 79]. While there is vast literature on spatial in-

dexes, we review only those relevant to the work presented in this article. Please see Reference [80]

for an extensive treatment of the subject.

The class of Polygonal Map (PM)-quadtrees [81] extends PR-quadtrees to represent polygo-

nal maps, viewed as collections of edges in 2D space. There are four variants, namely, the PM1-

quadtree, the PM2-quadtree, the PM3-quadtree, and the randomized PMR-quadtree. They all main-

tain a list of edges in the leaf blocks but differ in their subdivision rules. A PM3-quadtree has the

same structure as the PR-quadtree built on the vertices of the polygonal map, but, in addition,

it stores all the edges that intersect each leaf block. The other PM-quadtrees apply subdivision

based on the number and configuration of edges in a block. The subdivision rule for the PM1

and PM2-quadtrees is applied recursively during the insertion of an edge while that of the PMR-

quadtree [61] is only applied once per insertion. This gives rise to a probabilistic behavior where

the order in which the segments are inserted affects the shape of the resulting tree. As proven

in Reference [54], the number of blocks in a PMR-quadtree is proportional to the number of line

segments and is independent of the maximum depth of the tree.

The first attempt to extend a PM-quadtree to index triangle meshes is the PM2-Triangle quadtree

[24], which consists of a spatial index superimposed on a topological data structure (in this case

the IA data structure [65]). The former is used to execute spatial queries, while topological queries

are answered by working directly on the IA data structure. In a PM2-Triangle quadtree, each leaf

block contains at most one vertex, which dramatically limits the scalability of this representation.

To overcome this issue, an extension of a bucketed PM3-quadtree to triangle meshes has been

recently proposed in Reference [34]. This representation encodes minimal connectivity for a tri-

angle mesh combined with a spatial index. The representation is minimal in the sense that each

triangle encodes only the vertices in its boundary, thus enabling the efficient extraction of the full

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:6 R. Fellegara et al.

connectivity locally, while the spatial index enables the navigation of the mesh at a global scale

and allows for an efficient execution of spatial queries.

The PM-quadtree family has also been extended to encode polyhedral surfaces [15, 60, 80],

using octrees to index the boundary cells of these objects. The leaf blocks of these PM-octrees

either explicitly store the boundary elements present in the block [15] or the plane equations

of the indexed elements [60]. Space Partition (SP)-octrees [14] maintain information within their

internal blocks in addition to their leaf blocks. Thus, internal blocks provide an approximate object

description. The subdivision of the space stops when the object portion lying in the block can be

defined as the intersection of planes (i.e., it is locally convex or locally concave).

Object-based hierarchical spatial indexes are widely used in database management systems

(DBMS) such as Oracle Spatial [63] and PostGIS, a spatial extension for PostgreSQL [72], to en-

code collections of disconnected objects in space. The most representative of such spatial indexes

are R-trees [45] and their numerous variants that can be defined in terms of the DBMS’s underlying

B-tree representation [22]. R-trees hierarchically group nearby objects by their minimum bound-

ing rectangles, which can overlap. The R-tree [45] is a dynamic data structure, i.e., the indexed

objects are inserted one-by-one, but numerous variants have been defined with specific packing

techniques, i.e., inserting an a priori known static set of objects into the structure to optimize

the storage overhead and the retrieval performance. The dynamic family includes the Packed R-

tree [77] and the R+-tree [84], while the static family includes the P-tree [52], the R∗-tree [7], and

the Priority R-tree [4].

Spatial indexes have also been used in the scientific visualization literature to probe field

data [39, 53]. Langbein et al. [53] combine a kD-tree to index the vertices of a polyhedral mesh with

a topological data structure encoding the Cell-vertex and Vertex-cell relations of the mesh. During

a point location query, the kD-tree is used to locate a vertex near the query point. A polyhedron

incident to this vertex is then used to navigate through the mesh towards the query point. The

spatial index in the celltree data structure [39] is based on the bounding interval hierarchy scheme.

A celltree is a binary tree of axis-aligned boxes generated by bisection refinement, similar to a

kD-tree. However, unlike a kD-tree, the child blocks do not form an exact partition of their parent.

Rather, during refinement, the cells in a block are disjointly distributed into its two children and

each block maintains the bounding box of its indexed cells. Each cell is indexed in a single leaf

block, but answering a point location query requires visiting multiple branches of the celltree.

3.2 Topological Data Structures for Tetrahedral Meshes

There has been much research in designing efficient topological representations for triangle

meshes [26] and significantly less for tetrahedral meshes. The Indexed mesh data structure is the

most compact existing data structure for a tetrahedral mesh. It uses an array to store the coordi-

nates of the vertices and a separate array to encode the Tetrahedron-Vertex (TV) relation, i.e., the

indices of the four vertices of each tetrahedron. This data structure is sufficient for rendering and

interpolation within each tetrahedron but does not support an efficient navigation of the mesh

connectivity. The Indexed data structure with Adjacencies (IA data structure) [62, 65] extends the

indexed data structure by also encoding the Tetrahedron-Tetrahedron (TT) relation and a partial

Vertex-Tetrahedron (VT ∗) relation, i.e., one tetrahedron in the star of each vertex instead of the

entire set of incident tetrahedra. This enables the efficient extraction of all topological relations.

The Sorted Opposite Table (SOT) data structure [44] extends the Corner Table (CoT), defined in

Reference [76] for triangle meshes, to tetrahedral meshes and introduces a compact version of the

IA data structure. The SOT data structure explicitly encodes only the TT relation in an array and

implicitly encodes theVT relation by rearranging the order of the tetrahedra within the tetrahedra

array. The TV relation is implicitly represented as well, and it can be reconstructed at run-time

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:7

through a traversal of TT relation. Since modifications to the mesh require non-local reconstruc-

tions of the associated data structures, the SOT data structure is most suitable for static meshes.

The PR-star octree [93] is a hierarchical topological data structure for tetrahedral meshes that

has recently been extended to encode simplicial complexes in arbitrary dimensions [35]. Although

it uses a spatial index to encode the mesh, it does not support spatial queries. Specifically, the leaf

blocks of the tree encode only the tetrahedra incident in their indexed vertices and are used to

reconstruct the local mesh connectivity. It has been proven to be effective within applications,

such as local curvature estimations, mesh validation and simplification [93], and morphological

feature extractions [94].

Out-of-core approaches based on topological data structures have been proposed for the efficient

execution of spatial queries [47, 48, 66] on unstructured tetrahedral meshes. Papadomanolakis

et al. [66] present a representation optimized for point and range queries on tetrahedral meshes

in a database. The query processing technique defined for spatial queries, called Directed Local

Search (DLS), takes advantage of mesh connectivity and uses a B-tree (provided by the underlying

DBMS) for indexing the tables encoding Tetrahedron-Vertex (TV) and Tetrahedron-Tetrahedron (TT)

relations. This data structure is equivalent to the IA data structure and suffers from the same

limitations at answering spatial queries, i.e., it is guaranteed to succeed only when the domain of

the tetrahedral mesh is convex.

In References [47, 48] a relational DBMS supporting finite element analysis operations is de-

scribed, and a data structure similar to the indexed data structure is proposed, encoding the

vertices, the edges, and tetrahedra of a tetrahedral mesh, plus the Tetrahedron-Vertex (TV), the

Tetrahedron-Edge (TE), and Edge-Vertex (EV) relations (i.e., the vertices and edges in the boundary

of each tetrahedron, and the vertices in the boundary of each edge).

4 TETRAHEDRAL TREES

Tetrahedral trees are a family of spatial indexes for tetrahedral meshes based on the recursive

subdivision of an initial cubic domain containing the mesh through median planes into eight or

two blocks for octrees and kD-trees, respectively. The specific indexes differ in the criterion guiding

the subdivision and in the information stored in the leaf blocks. We use the generic name tree to

indicate both octrees and kD-trees.

We consider a block to be closed at the three square faces incident in its lower-left corner and

open at the remaining faces. More precisely, a block consists of all points (x ,y, z) such that x1 ≤
x < x2,y1 ≤ y < y2, and z1 ≤ z < z2, where (x1,y1, z1) is the lower-left corner and (x2,y2, z2) is the

upper-right corner of the block. Exceptionally, for blocks whose x2, y2, or z2 lies on the domain

boundary, the corresponding faces are considered closed. In all cases, an empty block is a leaf block

that does not intersect any tetrahedra from the mesh.

In Section 4.1, we define subdivision rules driving our spatial subdivisions, and in Section 4.2, we

describe the Tetrahedral trees resulting from these subdivisions and provide algorithms for gener-

ating them. In Section 4.3, we present the data structures we developed for encoding Tetrahedral

trees.

4.1 Subdivision Rules

We define three subdivision rules for generating Tetrahedral trees over tetrahedral meshes: one

based on the vertices and two on the tetrahedra of tetrahedral mesh Σ. These rules are bucketed

extensions of rules in the PR and PM families that have been shown to be more effective on points

and line segments compared with the original PR- and PM-quadtrees. Specifically, our vertex rule

is a bucketed extension of the Point-Region (PR) rule on 2D and 3D points in space, while the two

rules on tetrahedra are bucketed extensions of those underlying PM2-quadtrees and octrees and

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:8 R. Fellegara et al.

Fig. 2. (a) A situation in which a leaf contains more than kT = 4 tetrahedra (shown in 2D). All tetrahedra

are incident in the red vertex on the block boundary. (b) If we divide the block, we create another block in

the same situation, leading to an infinite subdivision.

PMR-quadtrees, respectively. As we demonstrate in Section 6, bucketing is an important aspect

of our rules, as it enables the indexing of much larger datasets, a clear limitation for all the rules

available in the literature. In our design phase, we also considered other options, such as a sub-

division rule based on the centroid of each tetrahedron where each tetrahedron is indexed by a

single leaf block. After an initial evaluation, we discarded these, since queries could no longer be

satisfied entirely by the geometry within a single leaf block.

Vertex-based subdivision rule. This subdivision rule considers a threshold, kV , on the number of

vertices indexed in a block b:

(i) a leaf block b may index up to kV vertices;

(ii) if a leaf block b indexes more than kV vertices, then it is recursively split until condition

(i) is met.

Tetrahedron-based subdivision rule. This subdivision rule considers a threshold value, kT , on the

number of tetrahedra that can intersect a leaf block b:

(i) a leaf block b may index up to kT tetrahedra, unless the next condition is verified;

(ii) a leaf block b may index more than kT tetrahedra if and only if all tetrahedra intersecting

b are incident in a common vertex v, which can be either inside or outside b;

(iii) otherwise, the block is recursively split until either condition (i) or (ii) is met.

Rule (ii) avoids splitting a block b when the same configuration would be repeated in one of the

children. Figure 2 illustrates this problem in 2D. If we split the leaf block in Figure 2(a), we get the

four blocks in Figure 2(b), where the bottom-left leaf block has the same configuration that started

the subdivision process.

Randomized tetrahedron-based subdivision rule. This subdivision rule is still based on a splitting

threshold value, kT , on the number of tetrahedra. A block b is subdivided if it intersects more than

kT tetrahedra, but, unlike in the other two subdivision rules, this is done only once per insertion.

It extends the principle underlying PMR-quadtrees [61], and it is guaranteed to result in a finite

number of subdivision steps.

4.2 The Tetrahedral Trees Family

Each member of the Tetrahedral tree family pairs an underlying tree topology (octree or kD-tree)

with one or more subdivision rules defined in the previous section, which also determines what is

stored in its leaf blocks. We consider eight members of the Tetrahedral tree family defined by two

tree topologies and four rule sets, as summarized in Table 1.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:9

Table 1. Leaf Block Thresholds Used to Build Each Type of Tetrahedral

Tree and Spatial Information Encoded within Each Leaf Block

index

threshold applies to encodes list of

vertices tetrahedra vertices tetrahedra

(kV) (kT) (bV) (bT)

P-Ttree � � �
PT-Ttree � � � �
T-Ttree � �
RT-Ttree � �

P-Ttree. A Point-based Tetrahedral tree uses the vertex-based subdivision rule. It is a direct ex-

tension of a bucketed PR-quadtree/octree or kD-tree [64], since the subdivision is based only on

the vertices of the tetrahedral mesh. Each leaf block b stores a reference to the vertices inside it and

to the tetrahedra intersecting it. Each vertex always belongs to a single leaf, while a tetrahedron

σ belongs to all leaf blocks that are intersected by σ . A leaf block in a P-Ttree may contain an

arbitrary number of tetrahedra and there may exist leaf blocks that do not contain vertices, but

only tetrahedra intersecting them.

Given a user-defined threshold kV , we generate a P-Ttree by inserting the vertices one at a

time, only visiting the internal blocks that geometrically contain each vertex v. When a leaf block

b is reached, v is added to b, and the overflow condition for b is checked. If b contains more than kV

vertices, it is recursively split until an overflow occurs in the resulting leaf blocks. After inserting

all vertices into the P-Ttree, the refinement is fixed. The tetrahedra of T are then inserted into the

leaf blocks that intersect them without triggering further refinements.

T-Ttree. A Tetrahedron-based Tetrahedral tree uses only the tetrahedron-based subdivision rule.

As such, it is a direct generalization of the PM2-quadtree/octree to tetrahedral meshes, adding also

a bucketing threshold on the number of tetrahedra per block. The subdivision of a block b is driven

by the tetrahedra intersecting b. Each leaf block b stores only the set of tetrahedra intersecting it.

The generation strategy for T-Ttrees is different from the one for P-Ttrees, as here we add

tetrahedra directly, without previously inserting their vertices. Then, given a tetrahedron σ , the

leaf blocks that intersect σ are identified, and σ is added to these blocks. For each of such block

b, if b contains a number of tetrahedra that is less or equal to the threshold value kT , σ is added

to b. Otherwise, it is checked if all tetrahedra intersecting b plus tetrahedron σ are incident in a

common vertex. If the condition above is satisfied σ is inserted in b, otherwise b is split and all

tetrahedra of b plus σ are recursively re-inserted in all child blocks intersecting them.

PT-Ttree. A Point-tetrahedron-based Tetrahedral tree uses both the vertex-based and the

tetrahedron-based subdivision rules. It generalizes PM2-quadtree/octree to tetrahedral meshes

adding bucketing thresholds on the number of vertices and of tetrahedra. The subdivision of a

block b is determined by the vertices inside b and by the tetrahedra intersecting b. Similarly to a

P-Ttree, each leaf block stores references to the vertices and tetrahedra intersecting it.

In the generation of a PT-Ttree, the vertices are first inserted as in the P-Ttree with vertex

threshold kV . Then, the tetrahedra are inserted as in T-Ttree with a tetrahedra threshold kT .

RT-Ttree. A Randomized-tetrahedron Tetrahedral tree applies the randomized tetrahedron-based

subdivision rule. As such, it extends the PMR-quadtree to tetrahedra introducing also a splitting

threshold guiding block subdivision. Unlike the previous three indexes, the final shape of the tree

depends on the insertion order of the tetrahedra. Similarly to a T-Ttree, each leaf block b stores

the set of tetrahedra intersecting b. Note that in an RT-Ttree the number of tetrahedra associated

with a leaf block can be greater than the splitting threshold kT . It has been proven in Reference

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:10 R. Fellegara et al.

[61] for a PMR quadtree built on the edges of a map that the number of edges intersected by a

leaf block cannot exceed the sum of the splitting threshold and of the depth of the leaf block. The

same result holds for an RT-Ttree, i.e., the number of tetrahedra in a leaf block of an RT-Ttree

can be at most equal to d + kT , where d is the depth of the leaf and kT is the splitting threshold.

For example, if we build an RT-Ttree in the 2D example of Figure 2, the block in Figure 2(a) is split

after inserting the fifth triangle, since kT = 4, resulting in the subdivision shown in Figure 2(b).

Note that the bottom left leaf block intersects kT + d = 4 + 1 triangles.

In the generation of an RT-Ttree, for each tetrahedron σ , the leaf blocks intersecting σ are

located. For each such leaf block b, if b contains a number of tetrahedra that is less than or equal

to threshold kT , then σ is added to b. Otherwise, b is split, and all tetrahedra, plus σ , are added to

every child block intersecting them.

4.3 Encoding Tetrahedral Trees

A Tetrahedral tree consists of three components:

• a tetrahedral mesh Σ,

• the tree structure of the containment hierarchy, and

• the information associated with the leaf blocks.

The cost for encoding the tetrahedral mesh is the same as for all Tetrahedral trees, while the cost

of the other two components is specific for each of them. The connectivity of the tetrahedral mesh

Σ is encoded in an indexed mesh data structure, which uses two arrays V and T, for the vertices and

tetrahedra, respectively. The vertex array encodes the spatial embedding of mesh Σ by storing the

three vertex coordinates for each vertex of Σ. The tetrahedron array encodes, for each tetrahedron

σ in Σ, the indexes of its four vertices in the vertex array.

The tree describing the nesting structure of the index is encoded using an explicit pointer-based

tree data structure, in which each block b of the tree is represented with a single data type. Our

encoding of the tree hierarchy is independent of the tree topology, i.e., it can be used on octree

and kD-tree decompositions without any modification. Each block b of a Tetrahedral tree contains

a pointer to its parent block and to an array of children. This latter is empty if b is a leaf block.

For all Tetrahedral trees, each leaf block b also contains an array bT of references to the tetrahedra

intersecting b. The leaf blocks in a P-Ttree and a PT-Ttree also contain an array bV of references

to the vertices indexed by b.

We encode these local leaf block vertex and tetrahedra arrays using the approach proposed in

Reference [35] for a topological data structure for simplicial complexes in arbitrary dimensions

based on vertex clustering. This approach compresses the index arrays using sequential range en-

coding (SRE), a variant of run-length encoding [49] that represents each run of consecutive indexes

with a pair of integers encoding the starting index of the run and a count of the number of ele-

ments in the run. With this encoding, we can easily intersperse individual indices (encoded using

a positive integer) and runs of indices (which begin with a negative integer) within the same array

(see Figure 3(a)). The effectiveness of this compression increases when paired with a procedure

that reorders the mesh vertices and elements to better exploit their locality (see Reference [35] for

additional details). In our case, we use the spatial locality induced by the tree decomposition to

reorder the mesh and leaf block arrays after we construct the index. That is, a run represents a

set of vertices or tetrahedra indexed by the same leaf block or within neighboring leaf blocks (i.e.,

those indexed by the same set of leaf blocks). Since each vertex is indexed in a single leaf block,

we can represent each local vertex array with a single run (i.e., using just two integers).

The novelty of our approach lies in applying the SRE compression method, originally defined

for a topological data structure to a spatial index and in exploiting properties of SRE to accelerate

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:11

Fig. 3. In a Sequential-Range Encoded (SRE) block, runs of contiguous tetrahedron indices are compressed

into a pair of integers encoding the starting index and length of the run. This block (shown in 2D) contains

163 tetrahedra with indices {32–34, 39, 46–62, 67–81, 83–94, 132–231, 252–266} using an array of length 13. (a)

Indices of tetrahedra within a block (dotted gray square) and corresponding compressed SRE representation

of the runs. (b) Bounding boxes of the runs can be used to accelerate spatial queries. Note that entries within

a run are not necessarily in the same connected component of the mesh.

query response times (see Section 5). As we demonstrate empirically in Section 6, SRE compression

retains its effectiveness for spatial indexes underlying Tetrahedral trees, where each tetrahedron

can be indexed by an arbitrary number of leaf blocks (rather than at most four as in Reference [35]).

5 QUERYING A TETRAHEDRAL TREE

In this section, we discuss how both spatial and topological queries are implemented within Tetra-

hedral trees. These are the building blocks for many higher-level algorithms on tetrahedral meshes.

5.1 Spatial Queries

The two most common spatial queries on a tetrahedral mesh Σ are:

Point location query. Given a query point p, find the tetrahedron σ in Σ containing p. In case

several tetrahedra contain p (i.e., p lies on a shared vertex, edge, or tri-

angular face), just one such tetrahedra is reported.

Range query. Given an axis aligned query box ρ, find the (possibly empty) set of all

tetrahedra in Σ that have a non-empty intersection with ρ.

In all variants of the Tetrahedral tree, our querying algorithms perform a top-down tree traver-

sal to locate the leaf block containing query point p, or the leaf blocks intersecting query box ρ.

Each target leaf block indexes a set of tetrahedra that we check against point p, or box ρ, to de-

cide whether it must be reported in the answer. Since these fine-grained geometric tests consume

the bulk of our query response time, we attempt to reduce the number of these tests by exploit-

ing the spatial locality of the index runs within our SRE index lists. Specifically, for each run of

consecutive tetrahedra in the index list, we first compute the bounding box of its vertices and

test this against the query geometry before applying the more expensive geometric tests on the

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:12 R. Fellegara et al.

Fig. 4. Run-aware point location and range queries on an SRE compressed block (shown in 2D with black

circular query points in (a) and (b) and rectangular query range in (c)). Geometry in runs whose bounding

boxes do not intersect the query point or box (hollow triangles) can be immediately discarded. The remaining

candidates (filled triangles) require further bounding box and query-dependent geometric tests to find the

desired triangles (dark red filled triangles).

ALGORITHM 1: point_location(b,p)

Input: b is a leaf block of the tree, and bT is the tetrahedra array indexed by b

Input: p is a query point

1: for each entry r in bT do

2: if r is a run then

3: extract the bounding box bbox of r
4: if bbox contains p then

5: for each tetrahedron σ in r do

6: if σ contains p then

7: return σ
8: else if r contains p then // r is a tetrahedron reference

9: return r

tetrahedra (see Figure 3(b)). As we demonstrate in Section 7, this optimization yields a significant

(query-dependent) speedup in execution times.

Algorithm 1 provides a pseudo-code description of our run-aware point location algorithm

within a leaf block b containing the query point. If the current entry is a run r of tetrahedra,

we compute its bounding box bbox (row 3) and test it against the query point p (row 4). If p inter-

sects bbox , then we test the individual tetrahedra belonging to the run (rows 5–7), otherwise, we

proceed with the next entry of the array. Figures 4(a) and (b) present examples of our run-aware

point location query. For simplicity, we use a 2D example, in which we consider a triangle instead

of a tetrahedral mesh. As we iterate through the index array, we compute the bounding box of

each run (see Figure 3(b)) and discard triangles in runs whose bounding box does not intersect the

query point (hollow triangles in Figures 4(a) and (b)). We then execute point-in-triangle tests only

on those triangles belonging to the runs whose bounding box contains p and on those that do not

belong to any run (filled triangles in Figures 4(a) and (b)).

Algorithm 2 provides pseudo-code description of our run-aware range query within a leaf block

b. Before testing any of the tetrahedra in b against the query box ρ, we check if b is completely

contained in ρ, thus executing just one box-in-box test (row 1). If so, we directly add all of its

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:13

ALGORITHM 2 range_qery(b,ρ,result)

Input: b is a leaf block in the hierarchy, with bT the tetrahedra array indexed by b

Input: ρ is a query box

Input: result is the result list containing the tetrahedra intersecting ρ
1: if b is completely contained in ρ then

// simply add the tetrahedra to the result

2: for each tetrahedron σ in bT do

3: add σ to result
4: else

5: for each entry r in bT do

6: if r is a run then

7: extract the bounding box bbox of r
8: if bbox is completely contained in ρ then

// expand the run by adding the tetrahedra to the result

9: for each tetrahedron σ in r do

10: add σ to result
11: else if bbox intersects ρ then // expand the run

12: for each tetrahedron σ in r do

13: if σ intersects ρ then

14: add σ to result
15: else if r intersects ρ then // r is a tetrahedron reference

16: add r to result

tetrahedra to the output without executing any tetrahedron-in-box tests. Otherwise, for each run

r , we test if r is completely contained in ρ (row 8) or if ρ and r ’s bounding box intersect (row 11). In

the first case, we directly add all the tetrahedra in the run to the output list without any additional

tests (rows 9–10). In the second case, we test each tetrahedron in the run (rows 12–14). If the

current element is not a run, we execute a tetrahedron-in-box test on it (rows 15–16). Figure 4(c)

shows an example range query on the block from Figure 3.

5.2 Topological Queries

In Tetrahedral trees, boundary relation Tetrahedron-Vertex (TV) is stored globally for each tetra-

hedron in the mesh as part of the underlying indexed mesh representation. Coboundary and ad-

jacency relations can be generated on the fly either for the whole domain or inside a region of

interest. We describe here, for brevity, only the algorithms for answering topological queries in a

region of interest, which are formulated as follows:

Range topological query. Given a query box ρ, compute the desired topological relations for

the (possibly empty) set of simplices from the mesh that intersect ρ.

The algorithm for identifying the portion of the index and thus the tetrahedra involved in the

query is very similar to the one for the range query (as described in Section 5.1). As examples, we

will focus on the range Vertex-Tetrahedron (VT) query and the range Tetrahedron-Tetrahedron (TT)

query. For efficiency, in both queries, we use the run-aware optimizations described in Section 5.1.

A range Vertex-Tetrahedron (VT) query returns, for each vertex in the specified range, the tetrahe-

dra incident in it. Algorithm 3 provides a pseudo-code description of the algorithm for performing

the query. The algorithm considers a leaf block b and extracts the vertices of the boundary of each

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:14 R. Fellegara et al.

ALGORITHM 3: extract_vt(b,ρ,VTlist)

Input: b is a leaf block in the hierarchy intersecting ρ, with bT the tetrahedra array of b

Input: ρ is a query box

Input: VTlist is the list of all VT(v), for v in ρ
1: for each tetrahedron σ in bT do

2: for each vertex v in TV(σ) do

3: if v in b and ρ contains v then

4: add σ to VT(v) in VTlist

tetrahedron σ in b (using Tetrahedron-Vertex (TV) relation). If a vertex v is indexed by b and is

contained in box ρ, the index of σ in T is added to the list of tetrahedra in the VT list of v.

A range Tetrahedron-Tetrahedron (TT) query returns, for each tetrahedron σ in the given range,

the tetrahedra sharing a face with σ . The algorithm iterates over the leaf blocks intersecting query

box ρ. For each such leaf block b, and for each tetrahedron σ in b that intersects ρ, it first extracts

the faces of σ from TV(σ) as triples of vertex indices. For each face f of σ , an entry is inserted

in a list L consisting of the three vertices of f plus the index of σ in the global tetrahedron array.

Lexicographically sorting list L pairs the tetrahedra that have a face in common. The TT relation

is then built by iterating over L: For every pair of consecutive entries in L having the same triple

of vertices, the two tetrahedra σ1 and σ2 in the two entries are marked as face-adjacent.

6 EVALUATION OF STORAGE COSTS AND GENERATION TIMES

In this section, we present an experimental evaluation of the storage cost and of the generation

time of the different Tetrahedral trees over a testbed of datasets constructed using different thresh-

old parameters kV and kT for the number of vertices and tetrahedra allowed in a leaf block of the

tree. Our evaluation considers limit cases for the thresholds (i.e., 1 or∞) as well as a statistic tavд

representing the average number of leaf blocks in which a tetrahedron is indexed. This is an im-

portant indicator of the quality of the spatial decomposition, as it highlights if the decomposition

is either too coarse (i.e., each tetrahedron appears in very few leaf blocks) or too fine (i.e., each

tetrahedron intersects a large number of leaf blocks). We also compare Tetrahedral trees against

representatives of the two most commonly used data structures for spatial queries: the IA topo-

logical data structure [65] and the R∗-tree [7]. To evaluate the storage and computational benefits

of the run-based leaf block encoding, we compare Tetrahedral trees with this encoding against an

uncompressed variant that does not compress the vertex and tetrahedron arrays in the leaf blocks.

This is equivalent to the data structure in Reference [25].

We have performed our experiments on six unstructured tetrahedral meshes ranging in size

from 4 to 30M tetrahedra (see Figure 5), originating from biomedical and engineering applications.

The bonsai, vismale, and foot datasets were derived from a regular grid using regular simplex

bisection [92], leading to adaptive semi-regular tetrahedral meshes. They were then made irregular

through a simplification process, based on half-edge collapse, that removed approximately 15% of

the vertices. The remaining meshes (rbl, f16, san fernando) are originally irregular meshes.

For every mesh, we have built 16 Tetrahedral trees (see Table 2). For each of the four subdivision

rules, we have generated two spatial indexes based on octrees, and two spatial indexes based on

kD-trees, by using two different values of the relevant thresholds, kV and/or kT depending on the

specific subdivision rules. The two thresholds have been selected to obtain similar values of tavд

(see tavд column in Table 2) for the octree and the kD-tree subdivision rules, thus allowing a direct

comparison between them. We have chosen the values in such a way that the tree built with the

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:15

Fig. 5. Tetrahedral meshes used in the experiments.

Table 2. Statistics about the Experimental Datasets and Tetrahedral Trees Built on Them

Data
Σ

kV kT

indexes

P-Ttree PT-Ttree T-Ttree

|V| |T| |b| tavд |b| tavд |b| tavд

r
b

l

730K 3.89M

octree
100 1000 32.6K 2.15 37.6K 2.25 34.9K 2.22

200 1200 16.8K 1.86 22.9K 1.99 22.9K 1.99

kD-tree
50 500 50.1K 2.15 57.5K 2.22 55.1K 2.20

100 700 26.2K 1.90 36.9K 2.04 36.7K 2.04

F
16 1.12M 6.35M

octree
200 1200 24.0K 2.02 38.6K 2.24 38.5K 2.24

400 1600 12.8K 1.79 28.3K 2.10 28.3K 2.10

kD-tree
100 600 35.2K 2.00 68.3K 2.29 68.3K 2.29

150 800 23.7K 1.86 48.7K 2.14 48.7K 2.14

sa
n

fe
r

m

2.46M 14.0M

octree
125 1200 78.3K 2.08 87.4K 2.14 63.9K 2.02

300 1800 34.9K 1.85 35.6K 1.85 35.6K 1.85

kD-tree
50 800 141K 2.11 142K 2.11 101K 2.00

125 1200 653K 1.84 68.1K 1.86 58.5K 1.81

b
o

n
sa

i

4.25M 24.4M

octree
55 550 252K 2.07 368K 2.23 360K 2.22

150 800 115K 1.86 142K 1.92 142K 1.92

kD-tree
50 300 263K 1.99 535K 2.29 535K 2.29

75 600 173K 1.85 211K 1.91 211K 1.91

v
is

m
a

le

4.65M 26.5M

octree
50 500 318K 2.14 418K 2.26 416K 2.25

200 800 124K 1.88 141K 1.92 141K 1.92

kD-tree
30 300 429K 2.17 553K 2.28 552K 2.28

75 600 187K 1.86 231K 1.92 231K 1.92

fo
o

t

5.02M 29.5M

octree
55 600 339K 2.11 426K 2.21 375K 2.15

115 1000 125K 1.86 128K 1.86 127K 1.86

kD-tree
35 350 388K 2.11 482K 2.18 480K 2.18

75 700 192K 1.84 195K 1.85 194K 1.84

|b | is the total number of blocks, while tavд represents the average number of leaf blocks in which a tetrahedron is indexed.

For the chosen parameters, RT-Ttrees and T-Ttrees are equivalent, and thus, we report only the statistics of T-Ttrees.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:16 R. Fellegara et al.

larger threshold contains roughly half as many blocks of the other tree. With the values we used

for kT , the storage requirements of RT-Ttrees and T-Ttrees are the same and, thus, Table 2 shows

only those of T-Ttrees. The hardware configuration used for these experiments is an Intel CPU

i7-3930K, at 3.2 Gigahertz, and with 64 gigabytes of RAM.

6.1 Experimental Evaluation of Tetrahedral Trees

We begin by comparing the storage requirements for the different Tetrahedral tree variants. In

Table 3, the columns labeled tree show the storage cost of the spatial index, while those labeled

tot also take into account the storage of the underlying tetrahedral mesh.

We first compare the SRE-compressed Tetrahedral trees against their corresponding uncom-

pressed Tetrahedral trees. Thanks to the spatial reorganization and SRE compression, the total size

of the tetrahedron arrays in the leaf blocks is an order of magnitude smaller than its uncompressed

counterparts. In comparison to uncompressed trees, Tetrahedral trees save, on average, 90% of the

storage for encoding the spatial index. This translates to a 30% savings in overall storage require-

ments. The remainder of this section will focus on the SRE-compressed Tetrahedral trees. We will

return to the uncompressed trees in our analysis of query performance in Section 7.

Comparing the storage overhead of the Tetrahedral trees spatial index (in column tree) against

that of the indexed mesh (in column Base Mesh) further highlights the benefits of our run-based

SRE encoding. Even though each tetrahedron is indexed by approximately two leaf blocks (see tavд

in Table 2), the overhead of the spatial index component of Tetrahedral trees remains quite low.

Specifically, Tetrahedral trees built using the smaller threshold values have only about 5%–10%

overhead, while those built with larger thresholds have about half of that, i.e., 3%–5% overhead.

Next, comparing the different tree topologies, we observe that, in general, octrees tend to be

more compact for higher thresholds, while kD-trees are more compact for smaller ones, with

differences ranging from around 5% to 35%. This trend is not only correlated to the bucketing

threshold and to the corresponding spatial decomposition, but also, and more interestingly, to the

effectiveness of the compression of sequential index runs.

Finally, comparing the different tree variants, P-Ttrees, PT-Ttrees, and T-Ttrees, we observe

that, for similar values of tavд , the octree-based P-Ttree is generally the most compact. For exam-

ple, P-Ttrees require half the storage on the bonsai and f16 datasets as the others. However, for

the san fernando dataset, T-Ttrees are more compact, requiring about 5% to 50% less storage.

In summary, we observe that the SRE compression allows an order of magnitude reduction

compared to uncompressed trees. On SRE-based trees, the use of either an octree or a kD-tree does

not influence the storage cost significantly. Even through P-Ttrees are often the most compact,

the differences in storage cost among the four indexes are quite small.

Considering generation times (see Table 4), we observe that creating the initial spatial decom-

position accounts for up to 90% of the overall generation times. There is little difference among

the various subdivision strategies (see column tree); P-T and RT-Ttrees are about 5% faster than

T-T and PT-Ttrees due to their simpler subdivision rule. Conversely, the compression stage for a

P-T index is the fastest, requiring 80% less time than T-T and RT-T indexes and 10% less time than

PT-T indexes. The compression is slower for T-T and RT-Ttrees, since they must reconstruct their

vertex indices (see Section 4.3). We next note that kD-trees generate the uncompressed spatial in-

dex about twice as fast as their octree counterparts, while compressing the spatial index requires

about the same time for the two decompositions.

Analysis of limit cases. We will now shift our focus to the limit cases for our spatial indexes

when the threshold values are set to a minimum value, i.e., kV = 1 and kT = 1. The dual extrema

values, when kV or kT are infinite (i.e., a value greater than the number of vertices or tetrahedra,

respectively), are not considered further, since this results in just a single block indexing the whole

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:17

Table 3. Storage Costs, Expressed in Megabytes (MBs), for Tetrahedral Trees,

IA Data Structure, and R∗-trees

Data
Base

mesh

Tetrahedral trees

IA R∗-tree

index

octree kD-tree

uncompr. SRE uncompr. SRE

tree tot tree tot tree tot tree tot conn. tot bF tree tot

r
b

l

76.0

P-Ttree
36.2 112 5.19 81.2 37.0 113 5.97 82.0

62.1 138

4 329 405
31.1 107 2.46 78.5 32.2 108 3.13 79.2

PT-Ttree
37.9 114 6.21 82.2 38.3 114 6.95 83.0

8 91.9 168
33.3 109 3.58 79.6 34.7 111 4.53 80.5

T-Ttree
34.1 110 5.49 81.5 34.6 111 6.13 82.1

16 46.7 123
30.2 106 3.32 79.3 31.5 107 4.10 80.1

f1
6

123

P-Ttree
54.3 177 5.68 128 54.3 177 5.74 128

101 224

8 137 259
48.3 171 3.31 126 50.3 173 4.05 127

PT-Ttree
60.4 183 8.70 131 62.9 185 10.4 133

16 70.7 193
56.4 179 6.64 129 58.2 181 7.75 130

T-Ttree
55.6 178 8.25 131 57.8 180 9.66 132

32 45.5 168
51.8 174 6.32 129 53.4 176 7.19 130

sa
n

fe
r

n

270

P-Ttree
124 394 12.3 282 128 398 16.3 286

223 492

8 318 588
109 379 5.81 275 111 380 7.68 277

PT-Ttree
127 397 13.6 283 129 398 16.4 286

16 186 456
110 380 5.93 276 112 381 8.04 278

T-Ttree
110 380 9.63 279 110 380 10.7 280

32 112 381
100 370 5.52 275 98 368 6.41 276

b
o

n
sa

i

470

P-Ttree
221 691 34.7 505 214 684 27.5 498

389 859

16 288 758
195 665 16.3 486 197 667 18.2 488

PT-Ttree
241 711 50.3 520 254 724 55.0 525

32 183 653
201 671 19.9 490 204 674 22.2 492

T-Ttree
219 689 45.3 515 231 701 48.9 519

64 136 606
183 654 18.2 488 185 655 19.8 490

v
is

m
a

le

511

P-Ttree
249 760 43.8 555 257 769 44.4 556

423 934

16 312 823
214 725 17.7 529 215 726 19.9 531

PT-Ttree
265 777 57.1 568 274 785 57.1 568

32 198 710
219 730 19.9 531 223 734 24.3 536

T-Ttree
242 754 52.1 563 250 761 50.7 562

64 147 659
199 711 18.3 530 203 714 21.6 533

fo
o

t

565

P-Ttree
272 838 47.3 613 274 839 40.2 605

470 1035

32 221 786
234 799 18.0 583 235 801 20.3 586

PT-Ttree
288 853 59.1 624 287 852 50.4 616

64 164 729
235 800 18.4 584 236 801 20.6 586

T-Ttree
255 821 48.2 613 262 827 44.8 610

128 138 703
214 779 16.8 582 214 780 18.3 584

Tetrahedral trees are based on the Thresholds Shown in Table 2.

Column Base mesh shows the tetrahedral mesh storage, column conn. shows the storage required to encode the con-

nectivity for IA, column tree shows the storage to encode the index for Tetrahedral trees and R∗-trees. uncompr. and

SRE columns show the storage for uncompressed and SRE-compressed Tetrahedral trees. For R∗-trees, we also show

the branching factor (bF column).

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:18 R. Fellegara et al.

Table 4. Generation Timings, Expressed in Seconds, for Tetrahedral Trees and for R∗-trees

Data
Tetrahedral trees

index
octree kD-tree R∗-tree

tree compr. tot tree compr. tot bF tree

r
b

l

P-Ttree
58.5 1.48 60.0 24.3 1.51 25.8

4 97.7
52.9 1.17 54.1 21.9 1.21 23.1

PT-Ttree
60.5 1.59 62.1 26.9 1.61 28.5

56.6 1.31 57.9 25.4 1.37 26.8
8 51.0

T-Ttree
61.1 2.67 63.8 26.8 2.65 29.5
55.0 2.33 57.4 24.6 2.37 27.0

RT-Ttree
55.5 3.22 58.7 24.4 2.66 27.1

16 63.4
52.0 2.38 54.4 22.5 2.38 24.8

f1
6

P-Ttree
141 7.42 149 57.2 7.27 64.5

8 94.6
133 5.81 139 54.6 6.24 60.8

PT-Ttree
150 8.87 159 69.2 9.32 78.6

146 7.95 153 64.8 8.31 73.1
16 115

T-Ttree
148 12.1 160 67.4 12.4 79.7
144 11.1 156 64.3 11.3 75.6

RT-Ttree
143 12.0 155 63.9 12.4 76.3

32 182
139 11.0 150 60.9 11.3 72.2

sa
n

fe
r

n

P-Ttree
187 5.00 192 77.2 5.30 82.5

8 177
173 4.09 177 70.5 4.17 74.7

PT-Ttree
193 5.17 198 77.7 5.41 83.1

178 4.11 182 79.8 4.31 84.1
16 206

T-Ttree
189 8.29 197 78.2 8.24 86.5
172 7.46 180 71.4 7.30 78.7

RT-Ttree
174 8.54 182 71.9 8.24 80.1

32 328
164 7.64 172 65.8 7.33 73.2

b
o

n
sa

i

P-Ttree
353 9.78 363 134 8.70 142

16 320
330 7.74 338 127 7.59 135

PT-Ttree
375 11.3 387 170 11.3 181

340 8.09 348 180 8.22 188
32 509

T-Ttree
370 17.5 387 158 17.6 176
335 14.3 349 138 14.1 152

RT-Ttree
348 18.3 366 145 17.7 163

64 813
321 14.7 335 129 14.1 143

v
is

m
a

le

P-Ttree
396 11.1 407 155 11.1 166

16 351
365 8.44 373 141 8.45 149

PT-Ttree
414 12.3 427 166 12.3 178

380 8.78 389 190 9.14 200
32 555

T-Ttree
409 19.4 428 172 19.3 192
368 15.5 384 153 15.6 168

RT-Ttree
394 20.4 414 159 19.4 179

64 898
361 16.0 377 142 15.6 157

fo
o

t

P-Ttree
440 11.9 452 171 11.2 183

32 624
403 8.91 412 158 8.86 167

PT-Ttree
457 13.3 471 189 12.2 201

407 8.95 416 158 8.99 167
64 990

T-Ttree
452 20.0 472 185 19.5 205
402 16.1 418 165 15.9 181

RT-Ttree
419 21.0 440 174 19.5 193

128 1,664
384 16.6 401 153 15.9 169

Tetrahedral trees are based on the Thresholds Shown in Table 2.

Column tree shows the time required for generating the Tetrahedral tree and R∗-tree spatial decompositions, while

compr. shows the time required for compressing the spatial decomposition for Tetrahedral trees. Column tot shows

the overall generation timings. For R∗-trees, we also show the branching factor (bF column).

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:19

domain. With SRE-encoding, this is essentially equivalent to having just the indexed mesh data

structure.

When kV = 1 and/or kT = 1, the decomposition is a dense subdivision of the embedding space,

and the tree storage requirements become very high, as each tetrahedron appears in a large number

of leaf blocks. These cases have a similar decomposition strategy as the PM-octrees that were

defined for polygonal meshes bounding a surface rather than tetrahedral meshes [15, 60]. For

P-Ttrees with kV = 1 on the rbl, f16, and san fernando datasets, the number of blocks are

approximately twice to three times the number of vertices, and tavд grows to approximately 10 for

octrees and 7 for kD-trees. Even using SRE-compression, the storage overhead for our leaf blocks

grows to around 50% and 75% of the storage cost of the indexed mesh.

We tried generating indexes with kT = 1 using RT-T, PT-T, and T-T subdivisions on our testbed

meshes, but the subdivision of embedding space became too fine, and we ran out of memory.

Thus, we have generated them on two smaller datasets, spx (2.9K vertices and 13K tetrahedra) and

fighter2 (257K vertices and 1.4M tetrahedra). Even on these two smaller datasets, with kT = 1,

an RT-T tree could not be generated, but we were able to generate PT-Ttrees and T-Ttrees. For

spx, the number of blocks is 5.5× the number of tetrahedra, while for fighter2, the number of

blocks is from 3.8 to 5× the number of tetrahedra. For spx, tavд is 28 on the octree and 21.5 on the

kD-tree, while for fighter2, tavд is 25 on the octree and 16 on the kD-tree.

This result implies that the approach with kT = 1, proposed for triangle meshes in Refer-

ence [24], is not viable in the 3D case. The motivation is that, while the average number of

triangles incident in a vertex in a triangle mesh is equal to 6, the average number of tetrahedra

incident in a vertex in a tetrahedral mesh is around 23 [6], causing a much finer refinement of the

embedding space.

Analyzing variations of tavд . We now consider how tavд varies with the values of kV and kT . To

this aim, we have generated indexes with kV and kT ranging from 2 to 100 using RT-T, PT-T, and

T-T subdivisions, on our two smaller datasets, spx and fighter2. For a PT-T subdivision, which

uses both kV and kT thresholds, we set kV = kT .

Our analysis makes use of the average and maximum number of tetrahedra in the star of a ver-

tex of our mesh Σ. We denote the latter as |VT | =max {|VT (v)| for each vertex v in Σ}. When kT

is greater than |VT |, PT-Ttrees and T-Ttrees generate the same spatial decomposition and, thus,

below this value, only the kV threshold, used by PT-Ttrees, is relevant for determining the final

tree shape, thereby generating deeper trees. RT-Ttrees present degenerate (unnecessary) decom-

positions for lower threshold values. As shown in Figure 6, the RT-T subdivision with thresholds

from 1 to 20 for spx dataset exhibits two main behaviors: It either goes out-of-memory (i.e., it leads

to a nearly infinite subdivision), or it generates a very deep subdivision (with values of tavд larger

than 100).

This result demonstrates that the RT-T subdivision is inefficient for kT values smaller than |VT |.
In this case, we subdivide the space without any benefit, as in configurations like the one shown

in Figure 2. We also observe from Figure 6 that, when kT is larger than |VT |, RT-Ttrees, PT-

Ttrees, and T-Ttrees subdivide the embedding space in the same way. Thus, the subdivision

seems to depend only on the threshold and not on the subdivision rule. These trends have also

been observed on other datasets, such as fighter2.

6.2 Comparison against R∗-trees and the IA Data Structure

We conclude this section with a comparison between Tetrahedral trees and representatives of the

two most widely used data structures for spatial queries: the IA data structure [65] and the R∗-
tree [7].

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:20 R. Fellegara et al.

Fig. 6. Average references per tetrahedron (tavд) vs. block threshold for octree-based (a), and kD-tree-based

(b) Tetrahedral tree representations of the spx dataset. The vertical lines highlight the average (dark gray)

and maximum (light gray) cardinality of the VT relation. For PT-Ttrees, we set kV = kT .

Recall that the IA data structure encodes the Tetrahedron-Vertex (TV) relation, as in the global

tetrahedron array of the Tetrahedral trees, as well as the Tetrahedron-Tetrahedron (TT) and partial

Vertex-Tetrahedron (VT) relations. As can be seen in the tree and conn. columns of Table 3, the

spatial index underlying a Tetrahedral tree requires about 95% less storage than the connectivity

information stored in the IA.

We have implemented a 3D R∗-tree indexing data structure for tetrahedral meshes, starting

from an open source 2D implementation [2]. For each dataset, we have built three R∗-tree indexes,

with different branching factors, starting from the optimal ones defined in Reference [7], and we

have calibrated these with respect to our tetrahedral meshes. In Table 3, we show the branching

factors (under bF column). Each internal block of the R∗-tree contains: (i) a pointer to its parent

block, (ii) an array of children blocks, and (iii) the minimum and maximum corner points of the

bounding box. Each leaf block stores just a pointer to an integer array for the indexed tetrahedra.

Each tetrahedron is indexed in a single leaf block.

Before comparing Tetrahedral trees and R∗-trees, we describe how we have selected the branch-

ing factors in R∗-trees, as they appear remarkably lower that the leaf blocks thresholds used in

Tetrahedral trees. In Reference [7], the authors state that the optimal branching factor obtained

in their experiments was 8, and thus, we have started our calibration from this value, choosing

powers of two for the other branchings and balancing storage costs against query performance

(which we discuss in Section 7). With smaller branching factors, the R∗-tree index requires from

150 to 440 MB, depending on the specific mesh (see column tree). For larger branching factors,

the storage required by the R∗-tree index decreases to between 45 and 150 MB. R∗-trees always

require more memory than Tetrahedral trees: from 85% more for larger branching factors, to 93%

more for smaller ones.

In spite of this trend, R∗-trees exhibit significantly higher computational overhead when exe-

cuting spatial queries (see Section 7). This is due to the larger number of leaf blocks (and their

indexed tetrahedra) that need to be checked to satisfy spatial queries, as higher branching factors

produce larger overlaps of the bounding boxes. Thus, for example, while performing point loca-

tions, R∗-trees have to visit several branches of the tree, while decompositions based on octrees

and kD-trees only need to visit a single subtree in each level of the index.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:21

The total storage requirements account, in the case of Tetrahedral trees and R∗-trees, for the

indexed mesh plus the spatial index, while, in case of the IA data structure, for the indexed mesh

plus the adjacencies, Tetrahedral trees are always more compact: on average 40% smaller than the

IA data structure and from 25% to 50% more compact than R∗-trees, depending on the branching

factor.

Comparing the generation times of Tetrahedral trees and R∗-trees (see Table 4), we note that

larger R∗-tree branching factors lead to larger differences in generation times. For small branching

factors, R∗-trees have generation timings similar to those of Tetrahedral octrees, and, thus, twice

the generation times for Tetrahedral kD-trees. This gap increases as the branching factor increases,

where for the larger branchings, R∗-trees use from 40% to 75% more time than Tetrahedral trees.

7 QUERY EVALUATION

In this section, we analyze our experimental performance results for spatial and topological queries

on Tetrahedral trees using the meshes and thresholds described in Section 6 along with the run-

aware algorithmic optimizations described in Sections 5.1 and 5.2. For our experimental compari-

son, we have also developed an implementation of these queries on the IA data structure [51] and

on the R∗-tree [7], and we also compare against uncompressed tetrahedral trees.

Queries on the IA data structure. To execute spatial queries on the indexed mesh data structure,

the best we can do is to sequentially tests all the tetrahedra in Σ, leading to a complexity that

is linear in the number of tetrahedra in the mesh. Several strategies have been proposed in the

literature to optimize spatial queries when we have additional connectivity information [23, 28, 29,

59]. We have implemented the stochastic walk approach for point location on the IA data structure,

as this strategy has been shown to have the best performances [28]. This approach randomly picks

a starting tetrahedron σand then walks through adjacencies from σ to a target point. This target

point is the input point p, in the case of a point location, or a point on the boundary of the range,

in the case of a range query.

For point location queries, we return the tetrahedron σ ′, if it can be found, or an empty output.

In the case of a range query, once we find the first tetrahedron σ ′ that contains the target point, we

start a traversal through mesh adjacencies to get all the intersecting tetrahedra. We have adapted

the range query algorithm to execute range Vertex-Tetrahedron (VT) queries. Given a vertex v, to ex-

tract the local VT relation, we start from the tetrahedron σ encoded in the partialVT ∗ relation of v.

We then identify all the tetrahedra incident in v by using the Tetrahedron-Tetrahedron (TT) relation.

Note that the stochastic walk assumes a convex domain. If a concave area or a hole is found

during the execution of a query, the stochastic walk algorithm may not return a complete answer

to the query, i.e., it may return a subset of the tetrahedra satisfying the query. For example, while

Tetrahedral trees and R∗-trees have no trouble responding to the point query in Figure 4(b), query

algorithms on an IA would have to revert to linear search to successfully respond to this query. To

keep track of this behavior, we compute a statistic, which we call the hit ratio, as the percentage of

fully answered queries. A hit ratio of 100% means that all queries have been answered correctly.

To improve the efficiency of our IA data structure implementation, we have also added a dynamic

bit vector, using the Boost C++ library [83], which greatly reduces the number of geometric tests

executed in a single query. The cost of this speed-up is a run-time storage overhead of one bit for

each tested tetrahedron. As a further optimization, we initialize the stochastic walk by randomly

picking 100 tetrahedra and then starting the walk from the one nearest to the target point or range.

Queries on the R∗-tree. Spatial queries for an R∗-tree begin with a top-down tree traversal to

locate the leaf blocks containing the query point or intersecting the query range. For each such

leaf block b, we apply the appropriate geometric tests on all tetrahedra indexed by b. As each

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:22 R. Fellegara et al.

Fig. 7. Point location results for the R∗-tree (based on the middle branching factor), the IA data structure,

and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has hit ratios

of 50% and 74% for rbl and f16 datasets (marked with ⊗), respectively.

tetrahedron is indexed in only one leaf block, R∗-trees avoids duplicate geometric tests on the

same tetrahedron, but blocks in multiple branches of the tree must be tested, since R∗-tree blocks

can overlap.

The overlapping blocks within an R∗-tree’s structure also tend to reduce the efficiency of range

topological queries, since spatially close tetrahedra can be arbitrarily far apart in the R∗-tree’s

index space. Thus, to respond to range topological queries, we must first execute a range query

and then post-process the results to extract the desired topological relations. This can be acceptable

for smaller ranges, but for larger ranges, the indexing structure no longer helps to reduce the query

times, leading to time and storage requirements entirely similar to a brute-force strategy on the

entire mesh. In contrast, the range topological queries for Tetrahedral trees incrementally build

up the topological relations as each leaf block is being processed.

Experimental setup. In our performance analysis of the spatial and topological queries, we

first compare the relative efficiency among the various Tetrahedral trees. We then compare the

best representative among Tetrahedral trees, the IA data structure, and R∗-trees. The charts in

Figures 7, 8, and 9 compare the spatial query performance among the IA data structure, the

R∗-tree, and the uncompressed and SRE-encoded Tetrahedral trees. For these comparisons, we

plot the R∗-trees with the middle branching factor (see Table 2), as these provide the best trade-off

between storage and execution times. Similarly, for the Tetrahedral trees, we plot the PT-T

Tetrahedral kD-trees constructed using the smaller kv and kt thresholds, as they have the best

overall query performances among the 16 Tetrahedral trees. Similarly, Figures 10 and 11 compare

performances on the topological queries for the IA data structure and the same R∗-trees and

Tetrahedral trees. We provide the full query performance results for all Tetrahedral trees and

R∗-trees in Appendix A and summarize these results in our analysis.

7.1 Spatial Queries

For point location queries, we used a set of 1K randomly generated query points inside the bound-

ing box of the mesh. Similarly, for range queries and range topological queries, we used two sets of

1K randomly generated query ranges inside the bounding box of the mesh: a set of smaller ranges

containing on average from 15K to 45K tetrahedra and a set of larger ranges containing from 300K

to 700K tetrahedra.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:23

Fig. 8. Smaller range query results for the R∗-tree (based on the middle branching factor), the IA data struc-

ture, and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has hit

ratios of 43% and 72% for rbl and f16 datasets (marked with ⊗), respectively.

Fig. 9. Larger range query results for the R∗-tree (based on the middle branching factor), the IA data struc-

ture, and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has hit

ratios of 51% and 92% for rbl and f16 datasets (marked with ⊗).

Point location. This query is extremely fast, as can be seen in Figure 7 (and Tables A.I, A.III,

and A.IV). Thanks to the run-aware optimization (described in Section 5.1), Tetrahedral trees

perform 40%–80% fewer geometric tests than their uncompressed counterparts, leading to

30%–70% faster response times.

Compared to the IA data structure, Tetrahedral trees perform about 50%–90% fewer geometric

tests on our semi-regular datasets, leading to query times that are 60%–90% faster. For the other

datasets, the IA data structure gives only partial results, with hit ratios from 50% to 74%. If we

estimate the full ratio, i.e., by normalizing the geometric tests and execution times on the IA data

structure by multiplying them by the inverse of the hit ratio, we observe that Tetrahedral trees

always perform better than the IA data structure on these irregular datasets with both thresholds.

Point location query times for R∗-trees tend to decrease with the branching factor, i.e., fewer

tetrahedra in leaf blocks lead to faster executions. However, R∗-trees with smaller branching fac-

tors require more storage (as discussed in Section 6.2). We observe that Tetrahedral trees per-

form better than the best R∗-tree, requiring, on average, 60% less time and executing 70% fewer

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:24 R. Fellegara et al.

Fig. 10. Range Vertex-Tetrahedron (VT) query results for the R∗-tree (based on the middle branching factor),

the IA data structure, and the SRE-compressed PT-T Tetrahedral kD-tree. The IA data structure cannot fully

answer the query on some datasets (marked with ⊗).

Fig. 11. Range Tetrahedron-Tetrahedron (TT) query results for the R∗-tree (based on the middle branching

factor) and SRE-compressed PT-T Tetrahedral kD-tree.

geometric tests. Execution times of Tetrahedral trees are also more stable across the input meshes,

as they vary from 0.01 to 0.05 second, while execution times of the R∗-tree with the smallest branch-

ing factor (see Table A.III) range from 0.01 to 0.90 second, depending on the mesh.

Range queries. For this query, we use a dynamic bit vector for Tetrahedral trees to track the tetra-

hedra that have already been tested. As with queries on the IA data structure, this adds a run-time

storage overhead of one bit for each tested tetrahedron. As shown in Figures 8 and 9 (and in Appen-

dix Tables A.I and A.IV), we observe that Tetrahedral trees always execute fewer geometric tests

and are faster than uncompressed trees, with approximately a 10%–20% time saving. Therefore,

in the following, we will focus just on the SRE-compressed Tetrahedral trees. We did not observe

any trends across datasets, subdivision criteria, or box sizes to suggest a preference for octrees or

kD-trees. However, trees built with smaller thresholds perform fewer tests than those generated

with larger ones and, in general, PT-Ttrees and T-Ttrees perform better than P-Ttrees on these

queries.

In our larger range queries (see Figure 9 and Table A.I), Tetrahedral trees always perform better

than the IA data structure, achieving about a 55% improvement for san fernando and about 70%

for the other datasets. Tetrahedral trees generally perform better than the IA data structure on

smaller range queries as well, requiring from 30%–50% less time. However, they are a bit slower

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:25

(about 5%–35%) on the san fernando dataset, where the run-aware filtering appears to be less

effective in filtering out candidate tetrahedra from more expensive tetrahedra-in-range tests. For

the non-convex datasets, the IA data structure had hit ratios from 43% to 92%. By estimating the

full ratio, we observe that Tetrahedral trees are always faster, requiring from 10%–50% of the time.

Comparing the performance of Tetrahedral trees against R∗-trees (see Figures 8 and 9 and

Tables A.I and A.III), we found that Tetrahedral trees are faster and execute fewer tetrahedron-

in-range tests than R∗-trees for range queries, with the exception of the san fernando dataset

on small ranges, as discussed above. In all other cases, Tetrahedral trees require on average from

15%–80% less time and execute 20%–80% fewer geometric tests than R∗-trees. The performances

of R∗-trees with other branching factors (shown in Table A.III) indicate a larger performance loss

with respect to Tetrahedral trees as the branching factor increases.

7.2 Topological Queries

In this subsection, we analyze performance results from executing range-based topological queries

over SRE-compressed Tetrahedral trees, the IA data structure, and R∗-trees.

Range Vertex-Tetrahedron (VT) queries. We use the same ranges as in the range queries and only

report timings, since the statistics (i.e., the number of tetrahedron-in-range executed) are the same

as for range queries. P-Ttrees and PT-Ttrees are more suitable than RT-Ttrees and T-Ttrees for

these queries, since they are vertex-based, while P-Ttrees and PT-Ttrees explicitly encode the set

of vertices contained in the leaf blocks, RT-Ttrees and T-Ttrees need to reconstruct this during

the query, i.e., by executing geometric point-in-leaf tests. This can be seen in Table A.II, where

Tetrahedral trees based on RT-T and T-T subdivisions are 35%–60% slower compared to their P-T

and PT-T counterparts. Thus, we compare only the performances of the Tetrahedral trees based

on P-T and PT-T subdivisions against the IA data structure and R∗-trees.

As it is evident from Figure 10, Tetrahedral trees always completely answer the query and do so

faster than the IA data structure, requiring 70%–80% of the time. They are also faster than R∗-trees,

with a 35%–70% time savings on smaller ranges and 60%–80% on larger ones.

Range Tetrahedron-Tetrahedron (TT) queries. For this query, we only compare Tetrahedral trees

against R∗-trees, since the IA data structure explicitly encodes the Tetrahedron-Tetrahedron adja-

cency relation. Recall that range adjacency queries in R∗-trees must first execute a range query and

then compute the adjacency relations in a separate pass through the data. This requires a higher

storage overhead (i.e., an additional list containing the result of the spatial query) compared to

querying a Tetrahedral tree, but query performances do not appear to be significantly affected by

variations in the R∗-tree branching factor. We can see from Figure 11 and Tables A.II and A.III that

answering the range TT query on Tetrahedral trees requires up to 60% less time than on R∗-trees,

with a wider gap for the larger ranges.

8 CONCLUDING REMARKS

We have defined a family of spatial indexes, the Tetrahedral trees, that index a tetrahedral mesh

using an octree or kD-tree subject to four different refinement strategies. Leveraging ideas from

Reference [35], we have applied spatial coherence to reorder and compress the indexed data, thus

obtaining a compact encoding for Tetrahedral trees. We have developed efficient algorithms for

both topological and spatial queries to take advantage of this compact encoding. The source code

for our reference implementation is available at Reference [33].

We have compared the various Tetrahedral trees based on memory usage, generation times,

and performances in spatial and topological queries. Compared to the three uncompressed spatial

indexes defined in Reference [25], the compressed Tetrahedral trees encoding provides an order

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:26 R. Fellegara et al.

of magnitude storage saving while also improving query response times. Conversely, the storage

differences among the various Tetrahedral trees, using this compact encoding, are relatively small.

In general, using an octree or a kD-tree subdivision does not significantly influence the overall

query response times; while we have observed that smaller subdivision thresholds lead to slightly

faster query execution times. Larger or smaller thresholds do not affect significantly the storage

cost of the resulting Tetrahedra trees.

The PT-Ttree exhibits, in general, the best query performances with a moderate memory over-

head. We also found that T-T and RT-Ttrees can be slower during the execution of our topological

queries, since they have to extract the range of the vertices at run-time. Even though T-T and RT-

Ttrees have similar storage requirements and query performances, the RT-T subdivision is limited

by its tetrahedra insertion order, which leads to unnecessarily deeper trees in some cases. Our ex-

periments highlight that this behavior happens when the thresholdkT on the number of tetrahedra

per leaf block is below the maximum of the numbers of tetrahedra incident at the vertices. This

suggests that the RT-T subdivision can be effective for 2D meshes, as described in Reference [80],

but not for tetrahedral meshes in 3D.

We have also compared Tetrahedral trees with representative data structures used for spatial

and topological queries in practice: the IA data structure [65] and the R∗-tree [7]. Tetrahedral trees

outperform the IA data structure and R∗-trees on spatial and range topological queries, since they

utilize the rich connectivity information in the tetrahedral mesh while also supporting domains

with complicated geometry and topology. In particular, the IA data structure provides a complete

answer to spatial queries only on convex simply connected meshes. R∗-trees require more space

and are highly dependent on the branching factor of the internal nodes. Smaller branching factors

enable a better discretization of the space and an increased efficiency in query execution but exhibit

a larger storage overhead.

In our current implementation of Tetrahedral trees, we require a tetrahedral mesh to be pro-

vided as input. While simulation tools produce a 3D mesh directly, in many other applications

a 3D point cloud is given, and a 3D triangulation algorithm needs to be applied to this input to

produce a tetrahedral mesh. A future development of the work presented here is to design and

implement an algorithm for building a Delaunay triangulation from a 3D point cloud that oper-

ates directly on Tetrahedral trees. The initial spatial decomposition will be generated based on

the point cloud and a Delaunay mesh computed by triangulating the points in each leaf block in-

dependently and in parallel; for example, using OpenMP [16, 17, 73]. The local Delaunay meshes

could be combined to obtain a global Delaunay one by extending the DeWall algorithm [20] to our

hierarchical decomposition.

We also plan to extend Tetrahedral trees to deal with arbitrary 3D simplicial complexes, i.e., with

a non-manifold domain and with dangling edges and triangles. One application we are targeting

is the identification and reconstruction of individual (physical) trees from huge point clouds origi-

nated by airborne or terrestrial Light Detection and Ranging (LiDAR) acquisitions. In this context,

the structure of the point cloud is inferred by computing an alpha shape simplicial complex [30],

which is further processed by using, for instance, topology-based analysis techniques [95]. We

plan to devise a distributed strategy for computing an alpha shape on Tetrahedral trees and a

distributed version of the topological analysis algorithm for identifying individual trees.

By using the extension of Tetrahedral trees for 3D simplicial complexes, further applications to

geological models [88, 89] could be tackled, which are characterized by non-manifold geometries.

This is an active research field [8–10, 12, 37, 43, 46, 70, 71, 91], but the efficient generation of these

models is still an open problem, since existing methods do not scale to very large meshes.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:27

A APPENDIX

Table A.I. Comparison of Total Timings (in Seconds) and Average Geometric Tests for Point

Locations and Range Queries on Tetrahedral Trees

data

range queries

point location smaller larger

time tests time tests time tests

ok kD ok kD ok kD ok kD ok kD ok kD

r
b

l

P-T
0.038 0.025 0.17K 0.11K 7.06 6.27 26.6K 22.9K 27.2 24.6 83.5K 70.4K

0.054 0.043 0.26K 0.20K 7.98 7.53 31.5K 29.4K 29.3 28.1 98.0K 91.6K

PT-T
0.035 0.023 0.16K 0.09K 6.86 6.02 25.3K 21.5K 26.8 24.1 79.5K 66.3K

0.046 0.031 0.22K 0.14K 7.53 6.76 29.1K 25.4K 28.3 26.1 91.1K 79.1K

T-T
0.036 0.023 0.16K 0.09K 6.98 6.14 25.8K 21.7K 27.3 24.5 81.1K 67.2K

0.046 0.031 0.22K 0.14K 7.57 6.82 29.1K 25.4K 28.5 26.3 91.1K 79.2K

F
16

P-T
0.056 0.046 0.25K 0.20K 6.81 6.66 27.0K 26.3K 43.9 44.8 163K 167K

0.092 0.063 0.44K 0.29K 8.23 7.48 33.7K 30.2K 51.9 49.4 203K 190K

PT-T
0.039 0.029 0.16K 0.11K 6.03 5.55 23.1K 20.9K 39.7 38.9 140K 134K

0.050 0.036 0.22K 0.15K 6.47 6.05 25.3K 23.3K 41.9 41.4 153K 149K

T-T
0.039 0.029 0.17K 0.11K 6.05 5.59 23.1K 20.9K 39.9 39.1 140K 134K

0.050 0.036 0.22K 0.15K 6.48 6.10 25.3K 23.3K 42.2 41.6 153K 149K

sa
m

fe
r

m

P-T
0.024 0.018 0.11K 0.08K 6.36 5.33 25.5K 20.9K 59.0 51.9 228K 193K

0.029 0.036 0.14K 0.18K 6.82 6.90 27.9K 28.4K 63.2 64.4 251K 257K

PT-T
0.021 0.018 0.09K 0.08K 6.11 5.32 24.2K 20.8K 56.9 51.9 217K 193K

0.029 0.032 0.13K 0.16K 6.82 6.74 27.9K 27.6K 63.2 63.3 250K 252K

T-T
0.022 0.023 0.10K 0.11K 6.13 5.82 24.4K 23.0K 58.0 55.9 221K 212K

0.029 0.034 0.13K 0.17K 6.85 6.81 27.9K 27.8K 63.4 65.2 250K 259K

b
o

n
sa

i

P-T
0.010 0.018 0.03K 0.07K 5.10 5.46 19.7K 21.3K 50.6 54.4 175K 194K

0.014 0.024 0.05K 0.11K 6.00 6.02 24.0K 24.1K 56.7 59.1 209K 219K

PT-T
0.009 0.011 0.03K 0.04K 4.87 4.66 18.4K 17.2K 48.7 48.5 163K 157K

0.012 0.019 0.04K 0.08K 5.52 5.68 21.8K 22.4K 53.2 56.1 191K 204K

T-T
0.009 0.011 0.03K 0.04K 4.93 4.71 18.5K 17.2K 49.4 48.8 164K 157K

0.012 0.020 0.04K 0.08K 5.55 5.72 21.8K 22.4K 53.5 56.6 191K 204K

v
is

m
a

le

P-T
0.006 0.009 0.02K 0.03K 4.58 4.57 17.3K 17.2K 51.3 51.8 169K 172K

0.010 0.016 0.03K 0.06K 5.55 5.56 22.2K 22.2K 58.3 59.3 212K 216K

PT-T
0.006 0.008 0.02K 0.03K 4.31 4.33 15.9K 15.9K 48.9 50.1 154K 160K

0.008 0.013 0.02K 0.05K 5.18 5.19 20.5K 20.3K 55.8 56.7 200K 201K

T-T
0.006 0.008 0.02K 0.03K 4.35 4.36 15.9K 15.9K 49.5 50.6 154K 160K

0.008 0.013 0.02K 0.05K 5.20 5.21 20.5K 20.3K 56.1 56.8 200K 201K

fo
o

t

P-T
0.010 0.015 0.04K 0.06K 5.63 5.67 21.5K 21.7K 61.0 61.1 206K 208K

0.015 0.023 0.05K 0.10K 6.47 6.64 25.9K 26.6K 67.3 68.5 246K 251K

PT-T
0.010 0.013 0.03K 0.05K 5.35 5.44 20.0K 20.5K 58.6 59.7 190K 197K

0.014 0.022 0.05K 0.10K 6.43 6.60 25.7K 26.4K 67.0 68.2 244K 249K

T-T
0.010 0.013 0.04K 0.05K 5.52 5.49 20.7K 20.5K 60.3 60.2 197K 197K

0.014 0.022 0.05K 0.10K 6.48 6.63 25.7K 26.4K 67.5 68.8 245K 250K

The t ime columns show the execution timings for 1K queries, while the tests columns show the average geometric

tests executed in a single query. The ok columns show the results for the Tetrahedral octrees, while the kD columns

show the results for the Tetrahedral kD-trees. In bold are the timings and geometric tests shown in the charts.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:28 R. Fellegara et al.

Table A.II. Comparison of Timings (in Seconds) for Executing the Range Vertex-Tetrahedron

(VT) and Range Tetrahedron-Tetrahedron (TT) Queries

data
range VT range TT

smaller larger smaller larger
ok kD ok kD ok kD ok kD

r
b

l

P-T
7.97 7.60 78.0 75.9 46.2 44.6 439 430

7.58 7.41 73.6 73.4 45.8 44.8 427 421

PT-T
8.18 7.61 79.5 76.0 46.6 44.6 445 434

7.73 7.55 75.2 75.4 45.6 44.5 430 425

T-T
12.2 11.9 112 110 47.8 46.2 444 436

11.1 11.2 102 105 46.4 45.9 431 430

F
16

P-T
4.06 4.05 65.8 66.2 25.7 25.3 406 403

4.12 4.05 63.6 64.4 27.2 26.1 409 405

PT-T
4.12 4.07 68.2 68.0 25.3 24.6 409 406

4.08 4.04 66.5 67.2 25.6 24.8 405 404

T-T
6.56 6.48 100 102 26.5 25.9 411 410

6.34 6.30 95.3 97.0 26.5 25.6 406 406

sa
n

fe
r

n

P-T
2.94 2.69 62.9 61.2 20.1 18.7 429 420

3.00 2.70 61.5 58.5 20.5 20.1 426 427

PT-T
2.94 2.68 63.8 61.2 20.0 18.7 429 419

3.00 2.70 61.1 58.5 20.5 20.0 427 426

T-T
4.70 4.34 94.7 89.0 21.1 19.9 433 425

4.48 4.21 87.6 84.1 20.9 20.4 429 433

b
o

n
sa

i

P-T
4.10 3.87 101 95.7 25.1 24.9 578 581

4.28 4.05 99.3 95.4 26.4 24.9 577 579

PT-T
4.16 3.60 107 105 25.6 25.5 594 596

4.22 3.88 98.5 94.8 25.1 24.5 571 578

T-T
6.10 5.44 156 149 28.0 26.6 618 634

5.80 5.55 138 135 27.6 26.0 581 600

v
is

m
a

le

P-T 4.18 3.58 120 116 25.8 24.2 674 668

4.44 4.09 116 110 27.3 25.0 659 663

PT-T
4.27 3.63 125 119 25.9 25.0 688 677

4.45 3.90 115 111 26.1 25.3 655 665

T-T
6.25 5.42 183 170 28.8 26.7 712 722

5.81 5.52 158 156 27.2 26.2 667 686

fo
o

t

P-T
4.94 4.09 136 127 31.3 30.9 780 778

4.89 4.70 128 122 30.6 30.0 757 757

PT-T
4.94 4.12 140 129 31.3 31.0 793 779

4.89 4.66 126 123 30.6 30.0 758 757

T-T
7.23 6.11 198 180 34.4 32.0 813 824

6.58 6.28 165 158 30.6 29.9 751 754

The columns show the execution timings for 1K queries. These queries use the same query boxes as for the

spatial range queries. The ok columns show the results for the Tetrahedral octrees, while the kD columns show

the results for the Tetrahedral kD-trees. In bold are the timings and geometric tests shown in the charts.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:29

Table A.III. Comparison of Total Timings (in Seconds) and of Average Geometric Tests

(per query) for All the Spatial and Topological Queries Executed on Our R∗-tree

Implementation Using Three Different Branch Factor

data bF

point range query range VT range TT

location smaller larger small large small large

time tests time tests time tests time time time time

r
b

l 4 0.03 0.02K 18.6 42.8K 174 409K 24.2 255 65.9 786

8 0.03 0.08K 12.1 43.9K 118 412K 17.5 200 63.4 629

16 0.09 0.32K 10.8 45.3K 105 416K 16.3 188 59.7 560

f1
6

8 0.21 0.49K 11.0 24.8K 153 363K 13.6 308 42.6 1060

16 0.87 2.70K 10.9 28.8K 141 381K 12.9 302 41.3 981

32 5.20 16.6K 11.1 31.8K 138 395K 12.4 296 42.4 1004

sa
n

fe
r 8 0.01 0.05K 3.89 16.0K 110 375K 4.73 176 19.8 687

16 0.04 0.17K 3.74 16.6K 99 380K 4.41 165 19.5 640

32 0.21 1.12K 4.04 18.6K 102 395K 4.37 161 20.1 627

b
o

n
sa

i 16 0.04 0.20K 5.22 23.1K 133 534K 6.69 257 30.5 904

32 0.20 1.10K 5.42 24.8K 136 548K 6.41 248 30.6 936

64 0.67 3.90K 5.71 27.1K 128 566K 6.44 248 30.9 908

v
is

m
a 16 0.03 0.15K 5.56 23.0K 151 606K 7.44 303 32.9 977

32 0.14 0.74K 5.72 24.6K 151 619K 7.04 289 32.9 1017

64 0.58 3.41K 5.85 26.7K 143 638K 6.93 292 33.2 970

fo
o

t 32 0.18 0.98K 6.73 29.2K 174 712K 8.33 317 39.9 1186

64 0.65 3.77K 6.78 31.6K 159 731K 8.17 311 39.9 1137

128 2.73 16.1K 7.50 35.3K 163 759K 8.23 309 40.7 1129

The t ime columns show the execution timings for 1K queries, while the tests columns show the average

geometric tests executed in a single query. In bold are the timings and geometric tests shown in the charts.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

23:30 R. Fellegara et al.

Table A.IV. Comparison of Total Timings (in Seconds) and Average Geometric Tests for Point

Locations and Range Queries on Uncompressed Tetrahedral Trees Based on the Naive

Uncompressed Encoding, Described in Reference [25]

data

range queries

point location smaller larger

time tests time tests time tests

ok kD ok kD ok kD ok kD ok kD ok kD

r
b

l

P-T
0.056 0.040 0.31K 0.21K 7.96 7.23 31.1K 27.7K 30.9 28.2 101K 87.9K

0.081 0.068 0.46K 0.38K 9.08 8.66 37.1K 35.0K 34.0 32.6 121K 113K

PT-T
0.051 0.035 0.28K 0.19K 7.73 6.96 29.8K 26.2K 30.4 27.5 96.4K 83.6K

0.069 0.050 0.39K 0.27K 8.58 7.85 34.2K 30.8K 32.6 30.3 112K 100K

RT-T
0.053 0.036 0.29K 0.19K 7.93 7.09 30.5K 26.7K 31.2 28.1 100K 85.5K

0.069 0.050 0.39K 0.27K 8.60 7.92 34.2K 30.8K 32.8 30.6 112K 100K

F
16

P-T
0.124 0.110 0.45K 0.40K 11.2 11.2 30.8K 30.4K 68.9 71.3 185K 193K

0.205 0.150 0.77K 0.55K 13.5 12.5 38.4K 34.7K 81.1 78.2 229K 217K

PT-T
0.083 0.064 0.29K 0.22K 9.93 9.27 26.4K 24.2K 61.9 61.2 160K 156K

0.109 0.083 0.39K 0.29K 10.7 10.1 28.9K 27.0K 65.9 65.6 174K 172K

RT-T
0.083 0.064 0.29K 0.22K 10.0 9.34 26.4K 24.2K 62.5 61.7 160K 156K

0.109 0.083 0.39K 0.29K 10.8 10.2 28.9K 27.0K 66.4 66.0 174K 172K

sa
n

fe
r

n

P-T
0.072 0.045 0.44K 0.27K 7.57 6.34 31.5K 25.8K 65.6 57.1 261K 220K

0.086 0.083 0.53K 0.51K 8.01 7.94 33.8K 33.5K 69.3 69.0 282K 282K

PT-T
0.060 0.044 0.37K 0.26K 7.23 6.33 29.9K 25.7K 63.3 57.2 249K 219K

0.085 0.075 0.53K 0.46K 8.01 7.77 33.7K 32.6K 69.4 67.9 281K 276K

RT-T
0.061 0.054 0.37K 0.32K 7.30 6.79 30.1K 27.8K 64.3 60.7 253K 237K

0.085 0.076 0.53K 0.47K 8.04 7.82 33.7K 32.8K 69.4 69.7 281K 283K

b
o

n
sa

i

P-T
0.030 0.035 0.16K 0.20K 5.82 6.35 23.3K 26.0K 55.9 60.1 203K 227K

0.049 0.050 0.28K 0.29K 6.76 6.99 28.0K 29.1K 62.4 65.0 239K 254K

PT-T
0.028 0.020 0.15K 0.11K 5.56 5.38 22.0K 21.1K 53.9 53.0 190K 186K

0.040 0.039 0.22K 0.22K 6.25 6.58 25.5K 27.2K 58.5 62.0 219K 237K

RT-T
0.028 0.020 0.15K 0.11K 5.64 5.42 22.1K 21.1K 54.6 53.4 191K 186K

0.040 0.039 0.22K 0.22K 6.28 6.62 25.5K 27.2K 58.7 62.3 219K 237K

v
is

m
a

le

P-T
0.019 0.018 0.10K 0.09K 5.30 5.24 20.9K 20.9K 57.0 57.2 198K 204K

0.049 0.034 0.28K 0.19K 6.34 6.41 26.1K 26.6K 64.3 65.9 242K 252K

PT-T
0.016 0.015 0.08K 0.08K 4.99 4.95 19.4K 19.4K 54.5 55.0 182K 190K

0.023 0.026 0.12K 0.14K 5.91 5.96 24.2K 24.5K 61.6 62.4 229K 235K

RT-T
0.016 0.015 0.08K 0.08K 5.03 4.99 19.4K 19.4K 54.9 55.4 182K 190K

0.023 0.026 0.12K 0.14K 5.94 6.00 24.2K 24.5K 61.9 62.7 229K 235K

fo
o

t

P-T
0.028 0.030 0.15K 0.17K 6.55 6.44 26.3K 26.1K 67.9 66.4 243K 244K

0.051 0.053 0.29K 0.31K 7.42 7.57 30.8K 31.7K 74.0 74.7 282K 289K

PT-T
0.026 0.026 0.14K 0.14K 6.24 6.21 24.7K 24.9K 65.4 64.8 227K 232K

0.047 0.051 0.27K 0.29K 7.37 7.51 30.6K 31.4K 73.7 74.3 280K 287K

RT-T
0.027 0.026 0.15K 0.14K 6.45 6.26 25.5K 24.9K 66.9 65.2 235K 233K

0.047 0.052 0.27K 0.30K 7.41 7.54 30.6K 31.4K 74.0 74.6 281K 288K

The t ime columns show the execution timings for 1K queries, while the tests columns show the average geometric

tests executed in a single query. The ok columns show the results for Uncompressed octrees, while the kD columns show

the results for Uncompressed kD-trees. In bold are the timings and geometric tests shown in the charts.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:31

ACKNOWLEDGMENTS

This work has been developed while Riccardo Fellegara was with University of Maryland at College

Park, MD. We wish to thank the reviewers for their valuable feedback. Datasets are courtesy of the

Volvis repository (bonsai, f16, and foot), the Volume Library (vismale), the CMU Unstructured

Mesh Suite (san fernando), Jason Sheperd (rbl), Claudio Silva (fighter2), and Peter Williams

(spx).

REFERENCES

[1] P. Alliez and C. Gotsman. 2005. Recent advances in compression of 3D meshes. In Advances in Multiresolution for

Geometric Modelling. Springer, 3–26.

[2] S. Alsubaiee, A. Behm, and C. Li. 2010. Supporting location-based approximate-keyword queries. In Proceedings of

the SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’10). ACM, New York,

NY, 61–70. DOI:https://doi.org/10.1145/1869790.1869802

[3] N. Andrysco and X. Tricoche. 2010. Matrix trees. Comput. Graph. Forum, Vol. 29. Wiley Online Library, 963–972.

[4] L. Arge, M. De Berg, H. J. Haverkort, and K. Yi. 2004. The Priority R-tree: A practically efficient and worst-case optimal

R-tree. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 347–358.

[5] R. E. Bank, A. H. Sherman, and A. Weiser. 1983. Refinement algorithms and data structures for regular local mesh

refinement. In Scientific Computing, IMACS Transactions on Scientific Computation, R. Stepleman, M. Carver, R. Peskin,

W. F. Ames, and R. Vichnevetsky (Eds.). Vol. 1. North-Holland, Amsterdam, 3–17.

[6] M. W. Beall and M. S. Shephard. 1997. A general topology-based mesh data structure. Int. J. Numer. Methods Eng. 40,

9 (1997), 1573–1596. DOI:https://doi.org/10.1002/(SICI)1097-0207(19970515)40:9〈1573::AID-NME128〉3.0.CO;2-9

[7] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. 1990. The R∗-tree: An efficient and robust access method for

points and rectangles. In Proceedings of the ACM SIGMOD Conference. ACM Press, 322–331.

[8] B. Benes and R. Forsbach. 2001. Layered data representation for visual simulation of terrain erosion. In Proceedings

of the Spring Conference on Computer Graphics. IEEE, 80–86.

[9] B. Benes and R. Forsbach. 2002. Visual simulation of hydraulic erosion. J. WSCG 10 (2002), 79–94.

[10] B. Benes, V. Tesinsky, J. Hornys, and S. K. Bhatia. 2006. Hydraulic erosion. Comput. Anim. Virt. Worlds 17, 2 (2006),

99–108.

[11] J. L. Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975),

509–517.

[12] S. Brandel, S. Schneider, M. Perrin, N. Guiard, J.-F. Rainaud, P. Lienhard, and Y. Bertrand. 2005. Automatic building

of structured geological models. J. Comput. Inf. Sci. Eng. 5, 2 (2005), 138–148.

[13] J. C. Caendish, D. A. Field, and W. H. Frey. 1985. An approach to automatic three-dimensional finite element mesh

generation. Int. J. Numer. Methods Eng. 21, 2 (1985), 329–347.

[14] P. Cano and J. C. Torres. 2002. Representation of polyhedral objects using SP-octrees. J. WSCG 10, 1 (2002), 95–101.

[15] I. Carlbom, I. Chakravarty, and D. Vanderschel. 1985. A hierarchical data structure for representing the spatial de-

composition of 3D objects. IEEE Comput. Graph. Applic. 5, 4 (1985), 24–31.

[16] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. 2001. Parallel Programming in OpenMP.

Morgan Kaufmann Publishers Inc., San Francisco, CA.

[17] B. Chapman, G. Jost, and R. V. D. Pas. 2008. Using OpenMP: Portable Shared Memory Parallel Programming. Vol. 10.

353 pages. DOI:https://doi.org/10.1234/12345678. The MIT Press.

[18] A. O. Cifuentes and A. Kalbag. 1992. A performance study of tetrahedral and hexahedral elements in 3D finite element

structural analysis. Finite Elem. Anal. Des. 12, 3–4 (1992), 313–318. DOI:https://doi.org/10.1016/0168-874X(92)90040-J

[19] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. 2004. Selective refinement queries for volume

visualization of unstructured tetrahedral meshes. IEEE Trans. Vis. Comput. Graph. 10, 1 (Jan.–Feb. 2004), 29–45.

[20] P. Cignoni, C. Montani, and R. Scopigno. 1998. DeWall: A fast divide and conquer Delaunay triangulation algorithm

in Ed . Comput.-Aid. Des. 30, 5 (1998), 333–341.

[21] P. Cignoni, C. Montani, and R. Scopigno. 1998. Tetrahedra Based Volume Visualization. Springer Berlin, 3–18.

DOI:https://doi.org/10.1007/978-3-662-03567-2_1

[22] D. Comer. 1979. Ubiquitous B-tree. ACM Comput. Surv. 11, 2 (June 1979), 121–137. DOI:https://doi.org/10.1145/356770.

356776

[23] J. L. De Carufel, C. Dillabaugh, and A. Maheshwari. 2011. Point location in well-shaped meshes using jump-and-walk.

In Proceedings of the Canadian Conference on Computational Geometry (CCCG’11). 147–152.

[24] L. De Floriani, M. Facinoli, P. Magillo, and D. Dimitri. 2008. A hierarchical spatial index for triangulated surfaces. In

Proceedings of the 3rd International Conference on Computer Graphics Theory and Applications (GRAPP’08). 86–91.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

https://doi.org/10.1145/1869790.1869802
https://doi.org/10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.CO;2-9
https://doi.org/10.1234/12345678
https://doi.org/10.1016/0168-874X(92)90040-J
https://doi.org/10.1007/978-3-662-03567-2_1
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776

23:32 R. Fellegara et al.

[25] L. De Floriani, R. Fellegara, and P. Magillo. 2010. Spatial indexing on tetrahedral meshes. In Proceedings of the 18th

SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 506–509.

[26] L. De Floriani and A. Hui. 2005. Data structures for simplicial complexes: An analysis and a comparison. In Proceedings

of the 3rd Eurographics Symposium on Geometry Processing. Eurographics Association, 119–es.

[27] L. De Floriani and P. Magillo. 2003. Algorithms for visibility computation on terrains: A survey. Environ. Plan. B 30,

5 (2003), 709–728.

[28] O. Devillers, S. Pion, and M. Teillaud. 2001. Walking in a triangulation. In Proceedings of the 17th Annual Symposium

on Computational Geometry. ACM, 106–114.

[29] C. Dillabaugh. 2010. I/O efficient path traversal in well-shaped tetrahedral meshes. In Proceedings of the 22nd Annual

Canadian Conference on Computational Geometry (CCCG’10).

[30] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. 1983. On the shape of a set of points in the plane. IEEE Trans. Inf.

Theor. 29, 4 (July 1983), 551–559. DOI:https://doi.org/10.1109/TIT.1983.1056714

[31] J. Elseberg, D. Borrmann, and A. Nüchter. 2013. One billion points in the cloud—an octree for efficient processing of

3D laser scans. ISPRS J. Photogram. Rem. Sens. 76 (2013), 76–88.

[32] C. Ericson. 2004. Real-time Collision Detection. CRC Press, Inc., Boca Raton, FL.

[33] R. Fellegara. 2019. Tetrahedral trees: A framework for the representation and analysis of tetrahedral meshes. Retrieved

from https://github.com/UMDGeoVis/Tetrahedral_trees.

[34] R. Fellegara, F. Iuricich, and De Floriani. 2017. Efficient representation and analysis of triangulated terrains. In Pro-

ceedings the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM.

[35] R. Fellegara, K. Weiss, and L. De Floriani. 2017. The Stellar tree: A compact representation for simplicial complexes

and beyond. ArXiv e-prints (2017). DOI:https://doi.org/abs/1707.02211

[36] R. A. Finkel and J. L. Bentley. 1974. Quad trees a data structure for retrieval on composite keys. Acta Inf. 4, 1 (1974),

1–9.

[37] M. Floater, Y. Halbwachs, O. Hjelle, and M. Reimers. 1998. OMEGA: A CAD-based approach to geological modelling.

In Proceedings of the Modelling Conference, Vol. 1. 68.

[38] P. J. Frey and P. L. George. 2008. Mesh Generation: Application to Finite Elements (2nd ed.). Wiley. DOI:https://doi.org/

10.1002/9780470611166

[39] C. Garth and K. I. Joy. 2010. Fast, memory-efficient cell location in unstructured grids for visualization. IEEE Trans.

Vis. Comput. Graph. 16, 6 (2010), 1541–1550.

[40] C. Geuzaine and J.-F. Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing

facilities. Int. J. Numer. Methods Eng. 79, 11 (2009), 1309–1331.

[41] C. Gotsman, S. Gumhold, and L. Kobbelt. 2002. Simplification and compression of 3D meshes. In Tutorials on Mul-

tiresolution in Geometric Modelling. Springer, 319–361.

[42] J. Grandy. 1999. Conservative remapping and region overlays by intersecting arbitrary polyhedra. J. Comput. Phys.

148, 2 (1999), 433–466. DOI:https://doi.org/10.1006/jcph.1998.6125

[43] R. H. Groshong Jr. 1999. 3D Structural Geology: A Practical Guide to Surface and Subsurface Map Interpretation.

Springer-Verlag Berlin.

[44] T. Gurung and J. Rossignac. 2009. SOT: A compact representation for tetrahedral meshes. In Proceedings of

the SIAM/ACM Geometric and Physical Modeling Conference (SPM’09). 79–88. DOI:https://doi.org/10.1145/1629255.

1629266

[45] A. Guttman. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD

Conference. ACM, 47–57.

[46] Y. Halbwachs and Ø. Hjelle. 2000. Generalized maps in geological modeling: Object-oriented design of topological

kernels. In Advances in Software Tools for Scientific Computing. Springer, 339–356.

[47] G. Heber and J. Gray. 2007. Supporting finite element analysis with a relational database backend, Part I: There is life

beyond files. Arxiv preprint cs/0701159 (2007).

[48] G. Heber and J. Gray. 2007. Supporting finite element analysis with a relational database backend, Part II: Database

design and access. Arxiv preprint cs/0701160 (2007).

[49] G. Held and T. Marshall. 1991. Data Compression; Techniques and Applications: Hardware and Software Considerations.

John Wiley & Sons, Inc.

[50] K. Ho-Le. 1988. Finite element mesh generation methods: A review and classification. Computer-Aided Design 20, 1

(1988), 27–38. DOI:https://doi.org/10.1016/0010-4485(88)90138-8

[51] F. Iuricich, R. Fellegara, and L. De Floriani. 2015. TetraMesh library. Retrieved from https://github.com/UMDGeoVis/

TetraMesh.

[52] I. Kamel and C. Faloutsos. 1993. On packing R-trees. In Proceedings of the 2nd International Conference on Information

and Knowledge Management. ACM, 490–499.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

https://doi.org/10.1109/TIT.1983.1056714
https://github.com/UMDGeoVis/Tetrahedral_trees
https://doi.org/abs/1707.02211
https://doi.org/10.1002/9780470611166
https://doi.org/10.1002/9780470611166
https://doi.org/10.1006/jcph.1998.6125
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1016/0010-4485(88)90138-8
https://github.com/UMDGeoVis/TetraMesh
https://github.com/UMDGeoVis/TetraMesh

Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 23:33

[53] M. Langbein, G. Scheuermann, and X. Tricoche. 2003. An efficient point location method for visualization in large

unstructured grids. In Proceedings of the Vision Modeling and Visualization Conference. 27–35.

[54] M. Lindenbaum, H. Samet, and G. R. Hjaltason. 2005. A probabilistic analysis of trie-based sorting of large collections

of line segments in spatial databases. SIAM J. Comput. 35, 1 (Sept. 2005), 22–58.

[55] A. Melling. 1997. Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8, 12 (1997), 1406–

1416. DOI:https://doi.org/10.1088/0957-0233/8/12/005

[56] M. M. Mesmoudi, L. De Floriani, and P. Magillo. 2009. Morphology analysis of 3D scalar fields based on Morse theory

and discrete distortion. In Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems. ACM, 187–196. DOI:https://doi.org/10.1145/1653771.1653799

[57] MFEM 2010. MFEM: Modular Finite Element Methods library. DOI:https://doi.org/10.11578/dc.20171025.1248mfem.

org

[58] A. S. M. Mosa, B. Schön, M. Bertolotto, and D. F. Laefer. 2012. Evaluating the benefits of octree-based indexing for

LiDAR data. ISPRS J. Photogram. Rem. Sens. 78, 9 (2012), 927–934.

[59] E. P. Mucke, I. Saias, and B. Zhu. 1999. Fast randomized point location without preprocessing in two-and three-

dimensional Delaunay triangulations. Comput. Geom. 12, 1 (1999), 63–83.

[60] I. Navazo. 1989. Extended octree representation of general solids with plane faces: Model structure and algorithms.

Comput. Graph. 13, 1 (1989), 5–16.

[61] R. C. Nelson and H. Samet. 1986. A consistent hierarchical representation for vector data. ACM SIGGRAPH Comput.

Graph. 20, 4 (1986), 197–206.

[62] G. M. Nielson. 1997. Tools for triangulations and tetrahedralizations and constructing functions defined over them.

In Scientific Visualization: Overviews, Methodologies and Techniques, G. M. Nielson, H. Hagen, and H. Müller (Eds.).

IEEE Computer Society, Silver Spring, MD, Chapter 20, 429–525.

[63] Oracle Spatial. 2019. Indexing of spatial data. Retrieved from https://docs.oracle.com/en/database/oracle/oracle-

database/19/spatl/spatial-concepts.html.

[64] J. A. Orenstein. 1982. Multidimensional tries used for associative searching. Inf. Proc. Lett. 14, 4 (1982), 150–157.

[65] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. 1993. Dimension-independent modeling with simplicial com-

plexes. ACM Trans. Graph. 12, 1 (1993), 56–102.

[66] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron, and G. Heber. 2006. Efficient query processing

on unstructured tetrahedral meshes. In Proceedings of the ACM SIGMOD Conference. ACM, 551–562.

[67] J. Peng, C.-S. Kim, and C.-C. J. Kuo. 2005. Technologies for 3D mesh compression: A survey. J. Vis. Commun. Image

Rep. 16, 6 (2005), 688–733.

[68] F. Penninga and P. van Oosterom. 2008. A simplicial complex-based DBMS approach to 3D topographic data mod-

elling. Int. J. Geog. Inf. Sci. 22, 7 (2008), 751–779.

[69] F. Penninga, P. van Oosterom, and B. M. Kazar. 2006. A TEN-based DBMS approach for 3D topographic data modelling.

In Proceedings of the 12th International Symposium on Spatial Data Handling, A. Riedl, W. Kainz, and G. Elmes (Eds.).

Springer, 581–598.

[70] M. Perrin, B. Zhu, J.-F. Rainaud, and S. Schneider. 2005. Knowledge-driven applications for geological modeling. J.

Petrol. Sci. Eng. 47, 1–2 (2005), 89–104.

[71] J. Plate, M. Tirtasana, R. Carmona, and B. Fröhlich. 2002. Octreemizer: A hierarchical approach for interactive roaming

through very large volumes. In Proceedings of the Conference on Visualization (VisSym’02). 53–60.

[72] PostGIS. 2019. PostGIS 2.5 user manual. Retrieved from https://postgis.net/docs/manual-2.5/using_postgis_

dbmanagement.html#idm2246.

[73] J. F. Remacle. 2017. A two-level multithreaded Delaunay kernel. Comput.-Aid. Des. 85 (2017), 2–9. DOI:https://doi.

org/10.1016/j.cad.2016.07.018

[74] P. N. M. Rizki, J. Park, S. Oh, and H. Lee. 2015. STR-octree indexing method for processing LiDAR data. In Proceedings

of the IEEE SENSORS Conference. IEEE, 1–4.

[75] J. Roerdink and A. Meijster. 2000. The watershed transform: Definitions, algorithms, and parallelization strategies.

Fundam. Inform. 41 (2000), 187–228.

[76] J. Rossignac, A. Safonova, and A. Szymczak. 2001. 3D compression made simple: Edge-breaker on a corner table. In

Proceedings of the International Shape Modeling Conference. IEEE Computer Society.

[77] N. Roussopoulos and D. Leifker. 1985. Direct spatial search on pictorial databases using packed R-trees. In ACM

SIGMOD Rec., Vol. 14. ACM, 17–31.

[78] T. Roxborough and G. Nielson. 2000. Tetrahedron-based, least-squares, progressive volume models with application

to freehand ultrasound data. In Proceedings of the IEEE Visualization Conference. IEEE Computer Society, 93–100.

DOI:https://doi.org/10.1109/VISUAL.2000.885681

[79] R. B. Rusu and S. Cousins. 2011. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Con-

ference on Robotics and Automation. 1–4. DOI:https://doi.org/10.1109/ICRA.2011.5980567

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

https://doi.org/10.1088/0957-0233/8/12/005
https://doi.org/10.1145/1653771.1653799
https://doi.org/10.11578/dc.20171025.1248mfem.org
https://doi.org/10.11578/dc.20171025.1248mfem.org
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/spatial-concepts.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/spatial-concepts.html
https://postgis.net/docs/manual-2.5/using_postgis_dbmanagement.html#idm2246
https://postgis.net/docs/manual-2.5/using_postgis_dbmanagement.html#idm2246
https://doi.org/10.1016/j.cad.2016.07.018
https://doi.org/10.1016/j.cad.2016.07.018
https://doi.org/10.1109/VISUAL.2000.885681
https://doi.org/10.1109/ICRA.2011.5980567

23:34 R. Fellegara et al.

[80] H. Samet. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann.

[81] H. Samet and R. E. Webber. 1985. Storing a collection of polygons using quadtrees. ACM Trans. Graph. 4, 3 (1985),

182–222.

[82] F. Sauer, J. Xie, and K.-L. Ma. 2017. A combined Eulerian-Lagrangian data representation for large-scale applications.

IEEE Trans. Vis. Comput. Graph. 23, 10 (Oct. 2017), 2248–2261. DOI:https://doi.org/10.1109/TVCG.2016.2620975

[83] B. Schaling. 2014. The Boost C++ Libraries, (2nd Edition). XML Press.

[84] T. Sellis, N. Roussopoulos, and C. Faloutsos. 1987. The R+-tree: A dynamic index for multi-dimensional objects. In

Proceeding of the 13th International Conference on Very Large Data Bases (VLDB’87). 507–518.

[85] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu, and C.-T. Lu. 1999. Spatial databases-accomplishments and

research needs. IEEE Trans. Knowl. Data Eng. 11, 1 (Jan. 1999), 45–55. DOI:https://doi.org/10.1109/69.755614

[86] H. Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41, 2 (Feb. 2015),

11:1–11:36. DOI:https://doi.org/10.1145/2629697

[87] S.-H. Teng and C. W. Wong. 2000. Unstructured mesh generation: Theory, practice, and perspectives. Int. J. Comput.

Geom. Applic. 10, 03 (2000), 227–266. DOI:https://doi.org/10.1142/S0218195900000152

[88] A. K. Turner. 2006. Challenges and trends for geological modelling and visualisation. Bull. Eng. Geol. Environ. 65, 2

(2006), 109–127.

[89] A. K. Turner and C. W. Gable. 2007. A review of geological modeling. Three-Dimensional Geologic Mapping for Ground-

water Applications (2007), 81–85.

[90] H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven. 2012. High accuracy and visibility-consistent dense multiview stereo.

IEEE Trans. Pattern Anal. Mach. Intell. 34, 5 (2012), 889–901. DOI:https://doi.org/10.1109/TPAMI.2011.172

[91] L. Wang, Y. Yu, K. Zhou, and B. Guo. 2011. Multiscale vector volumes. ACM Trans. Graph. 30, 6 (2011), 167.

[92] K. Weiss and L. De Floriani. 2011. Simplex and diamond hierarchies: Models and applications. Comput. Graph. Forum

30, 8 (2011), 2127–2155. DOI:https://doi.org/10.1111/j.1467-8659.2011.01853.x

[93] K. Weiss, R. Fellegara, L. De Floriani, and M. Velloso. 2011. The PR-star octree: A spatio-topological data structure

for tetrahedral meshes. In Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems. ACM, 92–101.

[94] K. Weiss, F. Iuricich, R. Fellegara, and L. De Floriani. 2013. A primal/dual representation for discrete Morse complexes

on tetrahedral meshes. Comput. Graph. Forum, Vol. 32. Wiley Online Library, 361–370.

[95] X. Xu, L. De Floriani, and F. Iuricich. 2018. Individual tree mapping from LiDAR point clouds based on topological

tools. In Proceedings of the Fall Meeting of the American Geophysical Union. 10–14.

[96] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. 2012. Towards parallel spatial query processing for big spatial

data. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium. 2085–2094. DOI:https:

//doi.org/10.1109/IPDPSW.2012.245

[97] S. Zlatanova, A. Abdul Rahman, and W. Shi. 2004. Topological models and frameworks for 3D spatial objects. Comput.

Geosci. 30 (2004), 419–428.

Received May 2019; revised December 2019; accepted February 2020

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 4, Article 23. Publication date: June 2020.

https://doi.org/10.1109/TVCG.2016.2620975
https://doi.org/10.1109/69.755614
https://doi.org/10.1145/2629697
https://doi.org/10.1142/S0218195900000152
https://doi.org/10.1109/TPAMI.2011.172
https://doi.org/10.1111/j.1467-8659.2011.01853.x
https://doi.org/10.1109/IPDPSW.2012.245
https://doi.org/10.1109/IPDPSW.2012.245

