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Abstract

This paper presents a general multi-view feature extrac-
tion approach that we call Generalized Multiview Analysis
or GMA. GMA has all the desirable properties required for
cross-view classification and retrieval: it is supervised, it
allows generalization to unseen classes, it is multi-view and
kernelizable, it affords an efficient eigenvalue based solu-
tion and is applicable to any domain. GMA exploits the fact
that most popular supervised and unsupervised feature ex-
traction techniques are the solution of a special form of a
quadratic constrained quadratic program (QCQP), which
can be solved efficiently as a generalized eigenvalue prob-
lem. GMA solves a joint, relaxed QCQP over different fea-
ture spaces to obtain a single (non)linear subspace. Intu-
itively, GMA is a supervised extension of Canonical Cor-
relational Analysis (CCA), which is useful for cross-view
classification and retrieval. The proposed approach is gen-
eral and has the potential to replace CCA whenever clas-
sification or retrieval is the purpose and label information
is available. We outperform previous approaches for text-
image retrieval on Pascal and Wiki text-image data. We re-
port state-of-the-art results for pose and lighting invariant
face recognition on the MultiPIE face dataset, significantly
outperforming other approaches.

1. Introduction
Data often arrives in multiple views or styles. These

different views may represent the same underlying con-
tent. For example, user tags or textual descriptions and im-
age features (views) indicate the class of objects (content)
contained in the image; face images of a person in differ-
ent poses (views) and lighting conditions reveal the iden-
tity (content) and so on. In some applications (e.g., face
recognition, multilingual or cross-media retrieval), we are
interested in performing classification and retrieval where
the gallery and query data belongs to different views. This
is difficult because it is not a priori meaningful to directly
compare the instances across different views since they span
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Figure 1. A simple pictorial demonstration of various multi-view
approaches along with the proposed GMA and an ideal approach.
Shapes represent classes, the same color and shape indicates
paired samples in different views, dashed outline shapes (trian-
gles) are the unseen classes (not used in training). Ideally, we
would like different classes (seen and unseen) to be well separated
while all the same-class samples collapse to a point. Unsupervised
approaches like CCA, PLS and BLM try to unite paired samples
only. Supervised approaches, like SVM-2K and HMFDA unite
same-class samples and separate different classes but they cannot
generalize to unseen classes. Our proposed GMA approach unites
same class samples, separates different classes and generalizes to
unseen classes. (Figure best viewed in color)

different feature spaces. Formally, given a trained model
M, database Dv in view v and query qu in view u, cross-
view classification refers to obtaining the label of qu us-
ing a k-NN classification scheme from Dv (pose-invariant
face recognition) and cross-view retrieval refers to retriev-
ing samples from Dv that are closest to qu (text-image re-
trieval). Unseen class refers to the class that is not used in
obtainingM. The use of a k-NN scheme makes it possible
to classify qu even if it belongs to an unseen class.

One popular solution is to learn view-specific projec-
tion directions using paired samples from different views
to project samples from different views into a common la-
tent space followed by classification/retrieval. Paired sam-
ples refer to samples in different views that are known to
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come from the same object, e.g. image features and associ-
ated tags for an image, face images of a person in two dif-
ferent poses. Successful cross-view classification/retrieval
requires that samples from the same content are united and
those from different content are separated in the common
subspace, see Fig1.

Popular unsupervised approaches to learn such direc-
tions are Canonical Correlational Analysis (CCA) [19, 8],
Bilinear Model (BLM) [22] and Partial Least Squares (PLS)
[16, 19, 18]. Specifically, CCA has been the workhorse
for learning a common latent space which is evident from
its wide-spread use in vision [19, 17, 18], cross-lingual
retrieval[8], cross-media retrieval [12, 15], etc.... These ci-
tations are just the few we had space to include. Unfor-
tunately, the above mentioned approaches only care about
pair-wise closeness in the common subspace so they are
not well suited for classification/retrieval. Especially, when
within-class variance is large, these methods are bound to
perform poorly for classification/retrieval because classifi-
cation and retrieval both require that within-class samples
are united. Moreover, the costly label information that
might be available during training is unharnessed. Locality
preserving CCA (LPCCA) was introduced to capture the
non-linearity present in the data by forcing nearby points
in the original feature space to be close in the latent space
as well [21]. However, they did not use the label infor-
mation and we will see that it is a special instance of our
general model. Discriminative CCA (DCCA) uses multi-
dimensional labels as the second view, which is just single
view scenario with multidimensional labels [20]. CCA is
used to match sets of images by maximizing within-set cor-
relation and minimizing between set correlation, which is
again a single view scenario with set membership informa-
tion [13]. We are interested in scenarios in which the data
has two different views, along with label information.

A number of supervised approaches to multi-view anal-
ysis have also been proposed. Multi-view Fisher Discrimi-
nant Analysis (MFDA) learns classifiers in different views
by maximizing the agreement between the predicted labels
of these classifiers[4]. But, MFDA can only be used for
two-class problems. To cope with this, [3] extended MFDA
to a multi-class scenario using a Hierarchical clustering ap-
proach. In [6], the authors obtained a multi-view version
of SVM by constraining the one-dimensional outputs of in-
dividual SVM’s to be equal. These approaches however,
use multi-view data to learn classifiers in each view that
are better than the classifiers learned using single-view data
only. With some non-trivial adaptation they can be used for
cross-view classification and retrieval, but originally the au-
thors have used them as single-view classifiers trained with
multi-view data. The prime objective of this paper is cross-
view classification and retrieval. Most importantly, none
of MFDA, SVM-2K or HMFDA can classify samples from

Table 1. Properties of popular approaches for classification and
feature extraction. Note that only the proposed GMA approach
has all the required properties. S: Supervised, G: Generalizable,
MV: Multi-View, E: Efficient, K: Kernelizable, DI: Domain-
Independent (’X’ indicates presence of property).

Method Properties
S G MV E K DI

PCA [23] X X X X
LDA [1] X X X X X

MFA [25] X X X X X
LPP [10] X X X X X
BLM [22] X X X X X
CCA [19] X X X X X

PLS [19, 16] X X X X X
SVM-2K [6] X X X X
MFDA [4] X X X X

HMFDA [3] X X X X
LPCCA [21] X X X X X
DCCA [20] X X X X X

SetCCA [13] X X X X
GMA X X X X X X

unseen classes, which is required in many real-world ap-
plications such as face recognition, cross-view retrieval and
domain adaptation. For example, practical face recognition
often requires a classifier that can compare images of un-
seen subjects (not used in training) at testing time, while
cross-view retrieval also requires retrieval of unseen cate-
gories.

Finally, some domain-specific approaches use domain
information to learn discriminative cross-view classifiers.
Lighting invariant features are used in [14]. Synthetic vir-
tual images in new pose and lighting conditions are used to
train LDA for pose and lighting invariant face recognition
in [17]. Geometry assisted hashing is used to counter pose
and lighting change in [26]. Use of logistic regression with
topic modeling features to obtain semantically meaningful
features is used in [15] to extract text and image features
for cross-media retrieval. Unfortunately, it might not work
for unseen classes or when topic modeling is not effective
e.g. face recognition. These approaches are customized to
a particular task and such domain information may not be
available in general.

Based on the above discussion we conclude that an ideal
cross-view classification approach must be
• Supervised(S): Use label information for class based

discrimination.
• Generalizable (G): Able to analyze new classes that

are not used during training.
• Multi-view (MV): Applicable to cross-view classifi-

cation and retrieval, rather than just using multi-view



data for learning.
• Efficient (E): Have an efficiently computed optimal

solution.
• Kernelizable (K): Have a kernel extension to model

non-linearities.
• Domain-Independent(DI): Applicable to general

problems.
There are numerous feature extraction and classification
techniques proposed so far, but none of them satisfies all
the above mentioned requirements, see Table 1.

We approach the problem of cross-view classification by
learning a common discriminative subspace and propose
Generalized Multiview Analysis or GMA, with all the prop-
erties we have mentioned. We show that CCA, BLM and
PLS are specific instances of our generic framework. Addi-
tionally, GMA can be used to extend a broad class of fea-
ture extraction techniques (supervised and unsupervised),
including PCA [23], Linear Discriminant Analysis (LDA)
[1], Locality Preserving Projections (LPP) [10], Neighbor-
hood Preserving Embedding (NPE)[9] and Marginal Fisher
Analysis (MFA) [25] into their multiview counterparts. The
formulation involves solving a generalized eigenvalue prob-
lem, which leads to the globally optimal solution. For
example, an extension of Linear Discriminant Analysis
(LDA+GMA = GMLDA) will find a set of projection di-
rections in each view that try to separate different contents’
class means and unite different views of the same class in
the common subspace.

Our generic GMA approach produces state-of-the-art re-
sults, outperforming several generic and domain-specific
approaches for simultaneous pose and lighting invariant
face recognition on the MultiPIE face dataset. We also re-
port similar to state-of-the-art results on text-image retrieval
on Wiki text-image data [15]. The paper is organized as fol-
lows - Section 2 presents the proposed approach, Section 3
describes experiments, and Section 4 presents conclusion
and discussion.

2. Proposed Approach
Our approach is motivated by the fact that popular super-

vised and unsupervised feature extraction techniques can
be cast as a special form of a quadratically constrained
quadratic program (QCQP). Specifically, the optimal pro-
jection direction v̂ can be obtained as

v̂ = argmax
v 6=0

vTAv

s.t. vTBv = 1 or vTv = 1
(1)

Here, A is some symmetric square matrix and B is a square
symmetric Definite Matrix i.e. no eigenvalue of B is equal
to 0. Methods that fit this equation include PCA [23, 25],
LDA [1, 25], LPP [10, 25], CCA, and MFA [25]. So, we

first extend Eqn1 to a multi-view scenario and then use it
with different (A,B) combinations to obtain different com-
mon subspaces with desired properties. For ease of under-
standing, we derive the results for two views and later ex-
tend it to multiple views.

Throughout this paper, superscripts are used for indexing
and subscripts denote views. Vectors are denoted as straight
bold lowercase (x), variables/constants as lowercase italic
(a) and matrices as capital italic (A). Hence, a sample in
view p belonging to class i is denoted as xi

p and a matrix of
samples in view p as Xp.

2.1. Generalized Multiview Analysis

We now present a generalization of this framework to
a multi-view setting. We first extend Eqn1 to a multi-
view setting in Eqn2, combining two optimization problems
without yet coupling them. Then, in Eqn6 we constrain the
samples from the same content to project to similar loca-
tions in the latent space.

A joint optimization of two objective functions over two
different vector spaces can be written as

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2

s.t. vT
1 B1v1 = vT

2 B2v2 = 1
(2)

The positive term µ is to bring a balance between the two
objectives, because if maxvT

1 A1v1 � maxvT
2 A2v2, the

joint objective will be biased towards optimizing v1 and
vice-versa. Unfortunately, both the constraints are non-
linear and there is no closed form solution in the current
form. So, we couple the constraints with γ = tr(B1)

tr(B2)
to ob-

tain a relaxed version of the problem with a single constraint
as

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2

s.t. vT
1 B1v1 + γvT

2 B2v2 = 1
(3)

When v̂T
1 B1v̂1 = v̂T

2 B2v̂2, the constraints in Eqn2 and
Eqn3 are equivalent. When v̂T

1 B1v̂1 6= v̂T
2 B2v̂2, the con-

straint in Eqn3 is an approximation of the constraints in
Eqn2. We empirically observed that parameter γ did not
have much effect on overall performance.

Intuitively, the resulting problem in Eqn. 3 is solving the
relaxed version of the original optimization problem in two
different vector spaces (views). To facilitate understanding,
let’s consider a multi-view extension of LDA. In this case,
Ai = Sbi, Bi = Swi for i = 1, 2 where Sbi and Swi are
between and within class scatter matrices and v1 and v2

are the projection directions in view 1 and 2 respectively.
Eqn. 3 is jointly solving for LDA projection directions v̂1

and v̂2 to maximize between class separation and minimize
within class variation in each view.



Now we introduce a constraint to couple these projection
directions. For cross-view classification we require that the
projections (ai1 and ai2) of the exemplars (zi1 and zi2) of the
ith content in different views should be close to each other
in the projected latent space. ai1 and ai2 are defined as

ai1 = vT
1 z

i
1 and ai2 = vT

2 z
i
2 (4)

We chose to maximize covariance between the exemplars
from different views to obtain directions to achieve close-
ness between multi-view samples of the same class. This
leads to a closed form solution and better preserves the be-
tween class variation as argued in [18]

[v̂1, v̂2] = argmax
v1,v2

vT
1 Z1Z

T
2 v2 (5)

Here, Zi’s are the matrices constructed such that ith column
in both Z1 and Z2 contains exemplars corresponding to the
same content. The exemplars can be chosen to suit the prob-
lem and feature extraction techniques. For instance, LDA
represents a class as the mean of class samples, so class
mean can be used as the exemplar.

Without any constraints on v1 and v2 the objective in
Eqn5 can be increased indefinitely. But we couple this ob-
jective with the constrained objective of Eqn3 to get the final
constrained objective

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2 + 2αvT
1 Z1Z

T
2 v2

s.t. vT
1 B1v1 + γvT

2 B2v2 = 1

(6)

Projection directions v1 and v2 will tend to balance the
original feature extraction optimization with latent space
covariance between exemplars that represent the same con-
tent. The vector form of Eqn6 is[

v̂1

v̂2

]
= argmax

v1,v2

[
v1

v2

]T [
A1 αZ1Z

T
2

αZ2Z
T
1 µA2

] [
v1

v2

]
s.t.

[
vT
1 vT

2

] [ B1 0
0 γB2

] [
v1

v2

]
= 1

(7)

Equivalently,

v̂ = argmax
v

vT Ãv

s.t. vT B̃v = 1

⇒ Ãv̂ = λB̃v̂

(8)

Here, v̂T = [v̂T
1 v̂T

2 ] and matrices Ã and B̃ are the square
symmetric matrices in Eqn7.

The final objective function is a standard generalized
eigenvalue problem that can be solved using any eigen-
solver. It will produce real eigenvectors and eigenvalues be-
cause both Ã and B̃ are square symmetric matrices. When

data dimensions are greater than the number of classes, B̃
could be positive semi-definite and the problem becomes
ill-posed. We can add a regularizer to the B̃ or project the
original feature vectors to a lower dimensional subspace to
handle this.

2.2. Multiview Extensions

There are several unsupervised and supervised feature
extraction techniques with different properties in a single
view scenario such as PCA [23], LDA [1], LPP [10], NPE
[9], MFA [25] and their kernel versions. Three popular
unsupervised multi-view feature extraction techniques are
CCA [19, 8], BLM [22] and PLS [16, 19, 18]. We showed
in the last subsection that a feature extraction technique in
the form of a QCQP (Eqn1) can be extended to a multi-
view scenario using our framework. Plugging in different
(A,B) pairs for different feature extraction techniques in
our framework we can obtain multi-view extensions of PCA
[23], LDA [1], LPP [10], NPE [9] and MFA [25]. We also
show the relation between CCA, BLM and PLS and Gener-
alized Multiview PCA or GMPCA as specific instances of
our general framework. For further discussion, we useXi to
denote the data matrix with columns that are data samples
in view i with the mean subtracted.

2.2.1 CCA, BLM, PLS and GMPCA

PCA in the ith view is the following eigen-value problem

XiWiX
T
i vi = λvi (9)

Wi = Ii/Ni with Ni equal to number of samples and Ii is
the identity matrix in the ith view. With different Ai, Bi

and Zi’s in Eqn7 we get
• GMPCA Ai = XiWiX

T
i , Bi = I , Zi = Xi

• CCA Ai = 0, Bi = XiWiX
T
i and Zi = Xi.

• BLM Ai = XiWiX
T
i , Bi = I and Zi = Xi i.e. same

as GMPCA.
• PLS Ai = 0, Bi = I and Zi = Xi. The differ-

ence from our approach is that in PLS eigen-vectors
are found using asymmetric deflation of Xi’s [19].

So, we see that all four approaches are related to each other
under the proposed GMA framework.

2.2.2 Generalized Multiview LDA or GMLDA

LDA in the ith view is the following eigenvalue problem

XiWiX
T
i vi = λXiDiX

T
i vi (10)

Wi and Di are Ni ×Ni matrices with W kl
i = 1/N c

i if Xk
i

and X l
i belong to class c, 0 otherwise, N c

i is the number
of samples for class c in view i and Di = I − Wi [25,
10]. So, Ai = XiWiX

T
i , Bi = XiDiX

T
i in Eqn7. For

Zi we have different choices; we can align corresponding



samples giving Zi = Xi, or class means, giving Zi = Mi,
with Mi defined as the matrix with columns that are class
means. We choose class mean as exemplars because LDA
tries to collapse all the class samples to the class mean. So
if we align class means in different views we expect the
samples to be aligned. Under some situations the within-
class variation may not be a unimodal Gaussians. In such
cases, samples from the same class can be clustered, and the
class can be represented by the cluster centers as exemplars.

2.2.3 Generalized Multiview Marginal Fisher Analysis

LDA assumes a Gaussian class distribution, a condition that
is often violated in real-world problems. Marginal Fisher
Analysis, or MFA, is a technique that does not make this
assumption, and instead tries to separate different- and com-
press same-class samples in the feature space [25]. It leads
to following eigenvalue problem

Xi(Sbi −Wbi)X
T
i v = λXi(Swi −Wwi)X

T
i v (11)

here, Skk
(b/w)i =

∑
kl,k 6=lW

kl
(b/w)i. The within class com-

pression or intrinsic graph for the ith view is defined as

W kl
wi =

{
1 : k ∈ Rk1

i (l) or l ∈ Rk1
i (k)

0 : otherwise (12)

Here, Rk1
i (l) indicates the index set of the k1 nearest neigh-

bors of the sample xli in the same class. The between class
separation or penalty graph for ith view is defined as

W kl
bi =

{
1 : (k, l) ∈ P k2

i (cl) or (k, l) ∈ P k2
i (ck)

0 : otherwise
(13)

Here, P k2
i (l) is a set of data pairs that are

the k2 nearest pairs among the set {(k, l) :
k and l are not in the same class}. Hence, Ai =
Xi(Sbi − Wbi)X

T
i , Bi = Xi(Swi − Wwi)X

T
i and

Zi = Xi. Similarly, multi-view extensions of LPP [10](the
same as LPCCA [21]) and NPE [9] can be derived.

2.3. Kernel GMA

Kernel GMA involves mapping to a non-linear space and
then carrying out GMA in that mapped space to obtain pro-
jection directions νi for the ith view. So, we replaceXi with
Φi = [φ(x1i ), φ(x2i ) . . . φ(xNi

i )] and observe that νi = Φiτi.
The exemplars in kernel space are the columns of Ni × z
matrix Zi = ΦiGi, Ni = # samples in view i), z (same for
each view) is the number of exemplars in each view, and Gi

is an appropriately chosen Ni× z matrix. For example - Gi

is the Ni ×Ni identity matrix if all the samples are chosen
to be exemplars and Ni × C matrix with Gr,c

i = 1/N c
i if

the rth sample belongs to class c, C = # of classes and
N c

i = # of samples in class c. The resulting eigenvalue

problem Ãτ = λB̃τ will give N =
∑V

i=1Ni dimensional
eigenvectors τ , which can be broken down into V parts to
obtain the dual form of the eigenvectors for V views. These
dual vectors will be used to project test sample tji into the
common non-linear latent space as

tjcommon =

Ni∑
n=1

ϕ(tji .x
n
i ).τni = τTi φ(tji ) (14)

Here, φ(tji ) is an Ni × 1 vector of kernel evaluations of tji
with all the data samples in the ith view.

2.4. More than two views

For more than two views simple algebra tells that we
need to set Ã and B̃ as

Ã =


A1 λ12Z1Z

T
2 · · · λ1nZ1Z

T
n

λ12Z
T
1 Z2 µ2A2 · · · λ2nZ2Z

T
n

...
...

. . .
...

λ1nZ
T
n Z1 λ2nZ

T
n Z2 · · · µnAn

 (15)

B̃ =


B1 0 · · · 0
0 γ2B2 · · · 0
...

...
. . .

...
0 0 · · · γnBn

 (16)

3. Experiments
In this section we test the proposed GMA approach on

problems for cross-view classification with available class
labels, showing improvement over other approaches.

3.1. Pose and Lighting Invariant Face Recognition

This is a problem with simultaneous cross view (pose)
and within-class (lighting) variation. We use the MultiPIE
[7] face dataset, which has 337 subjects’ face images taken
across 15 different poses, 20 illuminations, 6 expressions
and 4 different sessions. We have done experiments us-
ing 5 poses ranging from frontal to profile (75◦) at an in-
terval of 15◦. We have considered 18 lighting conditions
for our experiments (illuminations 1 to 18). All the images
are cropped (40 by 40 pixels) and aligned using 4 hand an-
notated fiducial points (eyes, nose tip and mouth) and affine
transformations.

In the training phase, multiple images of a person (un-
der different lighting conditions) in two different poses p1
and p2 are used to learn pairs of pose-specific projection
directions v̂1 and v̂2, respectively. At testing time, gallery
and probe images are projected using learned pairs of pose-
specific projection directions i.e. a face image in pose p is
projected on v̂p. 1-NN matching is done in the feature space
using the normalized correlation score as a metric. We
use two different modes for our recognition experiments.



Mode1 matches the conditions in a number of prior exper-
iments and Mode2 highlights our ability to generalize to
unseen classes that were not used to obtain the latent space
projection directions. In all our experiments, the gallery
consists of a single image per individual, taken in the frontal
pose with a frontal light (illum 7); probe images come from
all poses and illuminations.
• Mode1 We use training images of 129 subjects from

session 01 (these 129 subjects were selected because
they appear in all 4 sessions which allows future eval-
uation across sessions 03 and 04) under 5 lightings (1,
4, 7, 12 and 17) and testing images of the same subjects
from session 02 under all 18 lightings.
• Mode2 Training images of 120 subjects from session

01 (different than the one chosen in Mode1) under 5
lightings (1, 4, 7, 12 and 17); testing images are the
same as Mode1 testing images.

We have used LDA and MFA with the proposed GMA
approach and called the resulting approach GMMFA and
GMLDA respectively. A naive way to obtain discrimi-
nant directions in two views is to learn a common sub-
space using CCA followed by LDA in the latent space
(CCA+LDA) or LDA in individual spaces followed by CCA
to get a common space (LDA+CCA). Surprisingly, neither
of these approaches has been used before and we found
that even these naive approaches outperform some compet-
itive approaches. LDA, PCA, CCA, BLM, CCA+LDA and
LDA+CCA are implemented by us. PLS, BLM and CCA
have been used before for pose invariant face recognition
to achieve state-of-the-art results on the CMU PIE dataset
using PLS (code1) [18]. However, we find that with si-
multaneous pose and lighting variations all three perform
poorly. Performance for Gabor [14], Local Feature Hash-
ing or LFH [26], PittPatt [26], Sparse coding [24] are taken
directly from the papers. Since, all the implemented ap-
proaches lead to large eigenvalue problems, we use PCA to
reduce the data dimension before feeding it to any of the
feature extraction techniques. We kept the top p principal
components that retained 95% of the variance. For GMA
based approaches we fix α = 10, µ = 1, γ = tr(B1)

tr(B2)
,

k1 = 50, k2 = 400 (for GMMFA), and all samples are
taken as exemplars for both GMMFA and GMLDA. Pa-
rameters for MFA (k1 and k2) were selected based on the
guidelines given in [25]. For simple LDA and PCA, dif-
ferent illumination images in gallery and probe poses are
used together to learn common projection directions. The
dimension of the feature space is selected by choosing the
top k eigenvectors that contain 98% of the total eigenvalues
produced by the eigenvalue problems involved in finding
projection directions. We tried similar approaches to auto-
matically determine the dimension for PLS based classifica-

1http://www.cs.umd.edu/˜djacobs/pubs_files/PLS_
Bases.m

tion but the results were very poor. So for PLS only, we did
testing for all possible dimensions and report the best ac-
curacy. While reporting the results from [14] we have con-
sidered results for the selected 18 illumination conditions
only. PittPatt is a commercial face recognition software and
its results were taken directly from [26]. LFH uses a hash-
ing technique with SIFT features for face recognition and
frontal, 45◦ and 90◦ in the gallery for pose robustness in
contrast to our approach in which we have used only frontal
pose in the gallery. Use of SIFT features provides some
tolerance to pose, and a multi-pose gallery makes match-
ing possible across different poses. The results for LFH and
PittPatt are reported using the same 129 subjects from ses-
sion 02 used in our testing set with gallery images in the
left illumination condition, whereas, we have used frontal
illumination as the gallery image. However, we found that
using any of the 18 illuminations as gallery with GMLDA
and GMMFA resulted in negligible differences in perfor-
mance compared to those reported in Table 2. In [24], the
authors have used a sparse representation for simultaneous
registration and recognition. They have reported results for
pose and lighting invariant face recognition for 15◦ probe
pose only, under all illuminations with a gallery of 249 sub-
jects and reported 77.5% accuracy whereas we have used a
gallery of 129 subject and report 99.7%.

The results from the experiments are shown in Table2. It
is clear that GMMFA and GMLDA outperformed other ap-
proaches except [14] for large pose differences but overall
performance of the proposed GMA based approach is better
than all the domain-specific as well as generic approaches.
Surprisingly, LDA performance is better than CCA, which
is not expected due to the large pose difference. This un-
expected observation indicates the importance of using la-
bel information in training. It also explains the improve-
ments offered by GMLDA, because GMLDA is a fusion of
CCA and LDA. Unfortunately, LDA cannot be used in cases
when the data dimensions are different in different views,
for example - image-text or text-link cases.

3.2. Text-Image Retrieval

Text-image retrieval is yet another cross-view problem
that requires a common representation. We show results
on two publicly available datasets - Pascal VOC 2007
[12, 11, 5] and Wiki Text-Image data [15]. Pascal data
consists of 5011/4952(training/testing) image-tag pairs col-
lected by the authors in [12, 11, 5] and it has 20 different
classes. We used the publicly available features 2 consisting
of histograms of bag-of-visual-words, GIST and color for
images and relative and absolute tag ranks for text with a
Chi-square kernel (see [12] for details). Some images are

2http://www.cs.utexas.edu/˜grauman/research/
datasets.html

http://www.cs.umd.edu/~djacobs/pubs_files/PLS_Bases.m
http://www.cs.umd.edu/~djacobs/pubs_files/PLS_Bases.m
http://www.cs.utexas.edu/~grauman/research/datasets.html
http://www.cs.utexas.edu/~grauman/research/datasets.html


Table 2. Performance for MultiPIE pose and lighting invariant face
recognition. The upper and lower blocks of the table show the results
in Mode1 and Mode2 respectively. Some approaches from other pub-
lished works have not reported results for all pose differences; the
absence is indicated by ’-’.

Method Probe pose Avg15◦ 30◦ 45◦ 60◦ 75◦

PCA 15.3 5.3 6.5 3.6 2.6 6.7
PLS [18] 39.3 40.5 41.6 41.1 38.7 40.2
BLM [18] 46.5 55.1 59.9 63.6 61.8 57.4
CCA [18] 92.1 89.7 88.0 86.1 83.0 83.5

LDAa 98.0 94.2 91.7 84.9 79.0 89.5
CCA+LDA 96.4 96.0 93.6 86.2 83.6 91.2
LDA+CCA 95.9 94.9 93.6 91.3 89.9 93.1

PittPatt [26] a 94 34.0 3.0 – – –
LFH [26]a 63 58 61 41 43 53.2

Sparse [24]a 77.5 – – – – –
GMLDA 99.7 99.2 98.6 94.9 95.4 97.6
GMMFA 99.7 99.0 98.5 95.0 95.5 97.5

PCA 14.0 4.9 6.1 3.3 2.4 6.2
PLS [18] 29.0 26.2 23.3 17.3 12.4 21.6
BLM [18] 53.9 44.6 34.3 22.5 20.8 35.3
CCA [18] 79.5 62.2 46.1 19.5 14.4 44.3

LDAa 88.5 68.9 56.2 21.7 21.0 51.3
CCA+LDA 79.5 58.0 44.6 21.0 20.1 44.6
LDA+CCA 74.9 54.7 37.8 13.4 11.0 38.4
Gabor [14]a 77.9 74.5 58.1 45.2 31.0 57.4

GMLDA 92.6 80.9 64.4 32.3 28.4 59.7
GMMFA 92.7 81.1 64.7 32.6 28.6 59.9

a Domain-dependent for cross-view classification

multi-labeled so we selected images with only one object
from the training and testing set, which resulted in 2808
training and 2841 testing data. The category of the object is
used as the content so we have a 20 class problem. A sec-
ond data set, Wiki Text-image, consists of 2173/693(train-
ing/testing) image-text pairs with 10 different classes. We
have used the same data as supplied by the authors3. It has a
10 dimensional latent Dirichlet allocation model [2] based
text features and 128 dimensional SIFT histogram image
features (see [15] for more details). Both data sets have
class labels that can be leveraged in our proposed GMA
framework to achieve within-class invariance. The task is
to retrieve images/text from a database for a given query
text/image. A correct retrieval is one that belongs to the
same class as the query. So we want more and more correct
matches in the top k documents for a better retrieval.

Semantic Correlation Matching (SCM) with a linear
kernel [15] has shown state-of-the-art performance for
Wiki data, so we have compared the proposed GMLDA

3http://www.svcl.ucsd.edu/projects/crossmodal/

Table 4. mAP scores on Pascal data.

Query Others Proposed
KPLS KCCA KGMMFA KGMLDA

Image 0.279 0.298 0.421 0.427
Text 0.232 0.269 0.328 0.339

Average 0.256 0.283 0.375 0.383

and GMMFA with CCA, PLS, BLM, SCM and Semantic
Matching (SM) [15]. SM corresponds to using Logistic
regression in the image and text feature space to extract
semantically similar feature to facilitate better matching.
SCM refers to the use of Logistic regression in the space
of CCA projected coefficients (a two-stage learning pro-
cess). Results for SM and SCM are directly taken from
the paper [15]. The authors in [12] have shown the ad-
vantage of using a Chi-square kernel over a linear map-
ping so we have used a Chi-square kernel for Pascal data
for all the methods resulting in KernelCCA (KCCA), Ker-
nelPLS (KPLS), KernelGMLDA (KGMLDA) and Kernel-
GMMFA (KGMMFA). For GMA based approaches we fix
α = 100, µ = 1, γ = tr(B1)

tr(B2)
, k1 = 500, k2 = 2200

(for GMMFA) and all the samples belonging to a class are
taken as exemplars for both GMMFA and GMLDA. We
have kept same number of dimensions for all the meth-
ods as mentioned in [15] and [12] i.e. 10 for Wiki and 20
for Pascal. Precision at 11 different recall levels {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} is used to evalu-
ate the performance. The Mean Average Precision (mAP)
scores= 1
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∑r=1
r=0 Precisionr for text and image query for

Wiki and Pascal data are listed in Table3 and Table4, re-
spectively. It is evident that GMLDA and GMMFA outper-
form CCA, PLS, BLM and SM on Wiki data. Surprisingly,
our generic single-stage approach’s performance is similar
to the domain specific two-stage SCM approach. We also
outperformed KCCA and KPLS on Pascal data. The im-
provement is more for Pascal data because there are more
classes (20 vs 10) and more testing samples (2841 vs 693)
as compared to Wiki data, which requires better union of
within-class samples for better performance.

4. Conclusion
We have proposed a novel generic framework for multi-

view feature extraction by extending several unsupervised
and supervised feature extraction techniques to their multi-
view counterpart. We call the proposed framework Gen-
eralized Multiview Analysis or GMA. It is a first step to-
wards unified multi-view feature extraction. The proposed
approach is general and kernelizable, simultaneously learns
multi-view projection directions and generalizes across un-
seen classes. We have shown that any feature extraction
technique in the form of a generalized eigenvalue problem
can be extended to its multi-view counterpart and we have

http://www.svcl.ucsd.edu/projects/crossmodal/


Table 3. mAP scores for image and text query on Wiki text-image data.

Query Others Proposed
PLS BLM CCA SM SCM GMMFA GMLDA

Image 0.207 0.237 0.182 0.225 0.277 0.264 0.272
Text 0.192 0.144 0.209 0.223 0.226 0.231 0.232

Average 0.199 0.191 0.196 0.224 0.252 0.248 0.253

used GMA to obtain multi-view counterparts of PCA, LDA,
LPP, NPE and MFA. We have also unified CCA, PLS, BLM
as specific instances of Generalized Multiview PCA. Using
LDA and MFA in our framework we have significantly out-
performed all generic and most of the domain specific ap-
proaches for pose and lighting invariant face recognition.
Using the same general framework we have also shown
state-of-the-art results on text-image retrieval on Wiki data
and outperformed generic approaches on Pascal data. GMA
has outperformed CCA for all tasks when label information
is available therefore, proving to be a superior alternative
for CCA under similar conditions.
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