
Submodular Dictionary Learning for Sparse Coding

Zhuolin Jiang†, Guangxiao Zhang†§, Larry S. Davis†

†Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742
§Global Land Cover Facility, University of Maryland, College Park, MD, 20742

{zhuolin, gxzhang, lsd}@umiacs.umd.edu

Abstract

A greedy-based approach to learn a compact and dis-

criminative dictionary for sparse representation is pre-

sented. We propose an objective function consisting of two

components: entropy rate of a random walk on a graph

and a discriminative term. Dictionary learning is achieved

by finding a graph topology which maximizes the objec-

tive function. By exploiting the monotonicity and submod-

ularity properties of the objective function and the matroid

constraint, we present a highly efficient greedy-based op-

timization algorithm. It is more than an order of magni-

tude faster than several recently proposed dictionary learn-

ing approaches. Moreover, the greedy algorithm gives a

near-optimal solution with a (1/2)-approximation bound.

Our approach yields dictionaries having the property that

feature points from the same class have very similar sparse

codes. Experimental results demonstrate that our approach

outperforms several recently proposed dictionary learning

techniques for face, action and object category recognition.

1. Introduction

Sparse coding represents an input signal y as a linear

combination of a few items from a dictionary, D. Learn-

ing the dictionary is critical for good performance. The

SRC algorithm [30], for example, employs the entire set of

training samples as the dictionary and achieves impressive

performance on face recognition. For many applications,

however, rather than using the entire set of training data

as dictionary, it is computationally advantageous to learn

a compact dictionary from training data.

Many algorithms [30, 1, 35, 12, 5] have been developed

for learning such dictionaries. The dictionary in [30] is

manually selected from the training samples. [1] proposes

the K-SVD algorithm using orthogonal matching pursuit for

sparse coding and learns an over-complete dictionary in a

reconstructive manner. The method of optimal directions

(MOD) [5] shares the same sparse coding step but has a dif-

ferent dictionary update process. These learning approaches

have led to excellent results in image denoising and inpaint-

ing [22, 1]. However, the dictionaries obtained by using

the reconstructive formulation, while optimized for recon-

struction, may not necessarily be best for classification. The

reconstructive formulation can be augmented with discrim-

inative terms [12, 35, 32, 21, 25], that encourage learning

dictionaries relevant to classification.

Generally, most dictionary learning algorithms [12, 35,

32, 21, 25, 27] iteratively alternate a sparse coding step (for

computing the sparse codes over the dictionary obtained at

the previous iteration), with a dictionary update step given

the sparse codes from the previous sparse coding step. They

access the entire training set at each iteration in order to op-

timize the objective function. These algorithms converge

slowly when the reconstruction error is required to be small.

Moreover, they may get trapped in local minimum. Al-

though some algorithms [16, 22, 29] for efficient dictionary

learning have been proposed recently, effectively solving

the optimization problem for dictionary learning is still a

significant computational challenge.

Submodularity can be considered as a discrete analog

of convexity. The diminishing return property of submod-

ularity has been employed in applications such as sensor

placement [10], superpixel segmentation [19] and cluster-

ing [36, 23]. In this paper, we present a supervised al-

gorithm for efficiently learning a compact and discrimina-

tive dictionary for sparse representation. We define a novel

monotonic and submodular objective function, which con-

sists of two terms: the entropy rate of a random walk on

a graph and a discriminative term. The entropy rate term

favors compact and homogeneous clusters, so each cluster

center can well represent the cluster elements. The discrim-

inative term encourages the clusters to be class pure and

leads to a smaller number of clusters. Hence, each clus-

ter center preserves category information and makes the

computed sparse codes discriminative when using a dictio-

nary consisting of all the cluster centers. As shown in Fig-

ures 1(b) and 2(b), the dictionaries learned by our approach

encourage the sparse codes for signals from the same class

to be similar. The main contributions of this paper are:

• We model the problem of discriminative dictionary

learning as a graph topology selection problem, which

is solved by maximizing a monotonically increasing

and submodular objective function.

• We present a highly efficient greedy optimization ap-

proach by using the submodularity and monotonic in-

creasing properties of the objective function under a

matroid constraint, that scales to large datasets.

• We prove that the objective function is monotonically

increasing and submodular, and the cycle-free con-

straint and the connected component constraint in the

graph partitioning induce a matroid. The proofs are

given in the supplementary material.

• Our approach achieves state of the art performance

on various public face, action and object recognition

benchmarks.

1.1. Related Work

Discriminative dictionary learning algorithms have been

the focus of recent research. Some algorithms learn mul-

tiple dictionaries or category-dependent dictionaries [20,

33]. [20] constructs one dictionary per class and classifi-

cation is based on the corresponding reconstruction errors.

Some algorithms learn a dictionary by merging or select-

ing dictionary items from a large set of dictionary item can-

didates [18, 14, 26, 13]. [18, 14] learn a dictionary through

merging two items by maximizing the mutual information

of class distributions. [13] constructs a dictionary for signal

reconstruction from a set of dictionary item candidates. The

objective function in [13] satisfies approximate submodu-

larity under a certain incoherence assumption on the candi-

date elements. For these approaches, a large dictionary is

required at the beginning to guarantee discriminative power

of the constructed compact dictionary.

Some algorithms add discriminative terms into the objec-

tive function of dictionary learning [27, 35, 12, 32, 21, 25].

The discriminative terms include Fisher discrimination cri-

terion [27], linear predictive classification error [35, 25], op-

timal sparse coding error [12], softmax discriminative cost

function [21] and hinge loss function [32].

In addition, submodularity has been exploited for clus-

tering [36, 23]. [23] uses single linkage and minimum de-

scription length criteria to find an approximately optimal

clustering. [36] analyzes greedy splitting for submodular

clustering. Both of them solve a submodular function min-

imization problem in polynomial time to learn dictionaries.

Compared to these approaches, our approach maximizes

a monotonically increasing and submodular objective func-

tion to learn a single compact and discriminative dictionary.

The solution to the objective function is efficiently achieved

by simply employing a greedy algorithm. Our approach

adaptively allocates different numbers of dictionary items

to each class so it has good representational power to rep-

resent signals with large intra-class difference, in contrast

to those approaches such as [12] which uniformly allocate

dictionary items to each class. Moreover, unlike algorithms

such as [1, 35, 12], our approach does not require a good

initial solution, and the computed solution is guaranteed to

be a (1/2)-approximation to the optimal solution [24].

2. Sparse Coding and Dictionary Learning

Let Y be a set of N input signals from a n-dimensional

feature space, i.e. Y = [y1...yN] ∈ Rn×N . Assuming a

dictionary D of size K is given, the sparse representations

Z = [z1...zN] ∈ RK×N for Y are obtained by solving:

Z = argmin
Z

‖Y − DZ‖2
2 s.t. ∀i, ‖zi‖0 ≤ s (1)

where ‖Y − DZ‖2
2 denotes the reconstruction error and

‖zi‖0 ≤ s is the sparsity constraint (that each signal has s
or fewer items in its decomposition). Orthogonal matching

pursuit algorithm can be used to solve (1).

The performance of sparse representation depends criti-

cally on D. SRC [30] constructs D by using all the training

samples; this can result in a very large dictionary, which

makes subsequent sparse coding expensive. Thus, methods

for learning a small-size dictionary for sparse coding have

been proposed. For example, the K-SVD algorithm [1] is

well-known for efficiently learning an over-complete dic-

tionary from a set of training signals; it solves:

< D, Z >= argmin
D,Z

‖Y −DZ‖2
2 s.t. ∀i, ‖zi‖0 ≤ s (2)

where D = [d1...dK] ∈ Rn×K is the learned dictionary,

and Z are the sparse representations of Y .

However, K-SVD only focuses on minimizing the recon-

struction error and does not consider the dictionary’s util-

ity for discrimination. The discrimination power should be

considered when constructing dictionaries for classification

tasks. Some discriminative approaches [25, 35, 12, 21, 32],

which add extra discriminative terms into the cost function

for classification task, have been investigated.

However, these approaches appear to require large dic-

tionaries to achieve good performance, leading to high com-

putation cost especially when additional terms are added

into the objective function. The computation requirements

are further aggravated when good classification results are

based on multiple pairwise classifiers such as [21, 32].

We will show that good classification results can be

obtained using only a compact, single unified dictionary,

which is trained in a highly efficient way. The sparse repre-

sentation for classification assumes that a new test sample

can be well represented by the training samples from the

same class [30]. If the class distributions for each dictio-

nary item are highly peaked in one class, then this implicitly

generates a label for each dictionary item. This leads to a

discriminative sparse representation over the learned dictio-

nary; additionally, the learned dictionary has good represen-

tational power because the dictionary items are the cluster

centers (i.e., spanning all the subspaces of object classes).

3. Submodular Dictionary Learning

We consider dictionary learning as a graph partitioning

problem, where data points and their pairwise relationships

are mapped into a graph. To partition a graph into K clus-

ters, we search for a graph topology that has K connected

components and maximizes the objective function.

3.1. Preliminaries

Submodularity: [24] Let E be a finite set. A set func-

tion F : 2E → R is submodular if F (A∪ {a1})−F (A) ≥

0 100 200 300 400 500
−2000

0

2000

4000

6000

8000

10000

12000

14000

Class 35→

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500
0

5

10

15

20

25

30

35

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

3

3.5

Class 41→

(b) SDL (ours)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) baseline

0 100 200 300 400 500
0

0.5

1

1.5

(d) K-SVD [1]

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(e) D-KSVD [35]

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

(f) LC-KSVD [12]

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) SRC [30]

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

(h) LLC [29]

Figure 1. Examples of sparse codes using dictionaries learned by different approaches on the Extended YaleB and Caltech101 datasets.

Each waveform indicates the sum of absolute sparse codes for different testing samples from the same class. The first and second row

correspond to class 35 in Extended YaleB (32 testing frames) and class 41 in Caltech101 (55 testing frames) respectively. (a) are sample

images from these classes. Each color from the color bar in (b) represents one dominating class of the class distributions for dictionary

items. Different from [12] which uniformly constructs dictionary items for each class, our approach adaptively allocates different numbers

of dictionary items to each class. The black dashed lines demonstrate that the curves are highly peaked in one class. The figure is best

viewed in color and 600% zoom in.

0 5 10 15 20 25 30 35 40

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Class 6→

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0 5 10 15 20 25 30 35 40

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Class 6→

(b) SDL (ours)

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) baseline

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) K-means

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) Liu-Shah [18]

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f) ME [10]

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(g) MMI [26]

Figure 2. Examples of sparse codes using dictionaries learned by different approaches for two action sequences from the Keck gesture

dataset. Each waveform indicates the average of absolute sparse codes for each action sequence. The first and second row correspond

to gesture 6 from person 2 and person 3 respectively. (a) are sample images from these sequences. Each color from the color bar in (b)

represents one dominating class of the class distributions for dictionary items. The black dashed lines demonstrate that the curves are

highly peaked in one class. The figure is best viewed in color and 600% zoom in.

F (A ∪ {a1, a2}) − F (A ∪ {a2}), for all A ⊆ E and

a1, a2 ∈ E\A. This property is referred to as diminish-

ing returns, stating that adding an element to a smaller set

helps more than adding it to a larger set.

Matroid: [3] Let E be a finite set and I a collection of

subsets of E. A matroid is an ordered pair M = (E, I)
satisfying three conditions: (a) ∅ ∈ I; (b) If A ⊆ B and

B ∈ I, then A ∈ I; (c) If A ∈ I, B ∈ I and |A| < |B|,
then there is an element x ∈ B − A such that A ∪ x ∈ I.

3.2. Graph Construction

We map a dataset Y into an undirected k-nearest-

neighbor graph G = (V, E), where vertex set V denotes

the data points, and edge set E models the pairwise relation-

ships between data points. Let vi be the i-th vertex and ei,j

be an edge that connects vi and vj . The similarity between

vertices is given by a weight function w : E → R+ ∪ {0}.

The edge weighs are symmetric for an undirected graph,

i.e. wi,j = wj,i. We set wi,j = 0 if there is no edge join-

ing vi and vj . We use a Gaussian kernel to convert pairwise

distances to similarities: wi,j = exp(−βd2(vi, vj)), where

d(vi, vj) is the distance between vi and vj . The normal-

ization factor β is set to β = (2〈d2(vi, vj)〉)−1, where 〈·〉

denotes expectation over all pairwise distances, as in [28].

Our aim is to select a subset A of E (A ⊆ E) result-

ing in graph G = (V, A) consisting of K connected com-

ponents. In addition, each vertex vi of G has a self-loop

ei,i. These self-loops are necessary for the proposed ran-

dom walk model, although they do not affect graph parti-

tioning. When an edge ei,j is not included in A, its weight

wi,j is redistributed to the self-loops of vi and vj . The edge

weights wi,i and wj,j of the self-loops are then given by:

wi,i = wi,i + wi,j , wj,j = wj,j + wi,j . This keeps the

total incident weight for each vertex constant, so that the

distribution µ in (3), below, for the graph is stationary.

3.3. Entropy Rate of A Random Walk

We use the entropy rate of the random walk to ob-

tain compact and homogeneous clusters so that the con-

structed dictionary has good representative power. The en-

tropy rate measures the uncertainty of a stochastic process

X = {Xt|t ∈ T } where T is an index set. It can be de-

fined as: H(X) = limt→∞H(Xt|Xt−1...X1), which is

the conditional entropy of the last random variable given

the past. For a stationary 1st-order Markov chain, the en-

tropy rate is given by: H(X) =limt→∞H(Xt|Xt−1) =

limt→∞H(X2|X1) = H(X2|X1).
A random walk X = {Xt|t ∈ T, Xt ∈ V } is a sequence

of vertices of the graph. We use the random walk model

from [4] with a transition probability from vi to vj : Pi,j =
wi,j/wi, where wi =

∑

j:ei,j∈E wi,j is the total incident

weight of vi, and the stationary distribution is:

µ = (µ1, µ2, ..., µ|V |)
t = (

w1

wall

,
w2

wall

, ...,
w|V |

wall

)t (3)

where wall =
∑|V |

i=1 wi is the sum of the total weights of

all vertices. The entropy rate of the random walk in [4] is

defined as: H(X) = H(X2|X1) =
∑

i µiH(X2|X1 =
vi) = −

∑

i µi

∑

j Pi,j log Pi,j . It is a sum of the entropies

of the transition probabilities weighted by µi.

The proposed graph construction leaves µ in (3) un-

changed. The set functions for the transition probabilities

Pi,j : 2E → R with respect to A are defined as:

Pi,j(A) =

1 −

∑

j:ei,j∈A wi,j

wi
if i = j,

wi,j

wi
if i 6= j, ei,j ∈ A,

0 if i 6= j, ei,j /∈ A.

(4)

Consequently, we can define a set function for the en-

tropy rate of the random walk on G = (V, A) as:

H(A) = −
∑

i

µi

∑

j

Pi,j(A) log(Pi,j(A)). (5)

Intuitively, given µi, maximizing the entropy rate in (5)

encourages the edges from each vi to have similar weights,

i.e., similar transition probabilities to its connected vertices.

Similarly, given the entropies of transition probabilities,

maximizing the entropy rate in (5) encourages the edges

from vi which have large weight (small distance) to be se-

lected. Hence the entropy rate of the random walk on the

graph can generate compact and homogeneous clusters, as

shown in Figure 3. It results in dictionary items that repre-

sent the input signals well.

The entropy rate of a random walk H : 2E → R on the

proposed constructed graph is a monotonically increasing

and submodular function. Monotonicity is obvious because

the addition of any edge to A increases the uncertainty of a

jump in a random walk. Submodularity is related to the ob-

servations that the increase of the uncertainty from selecting

an edge ei,j is less in a later stage because it will be shared

with more edges connected to vi or vj [19]. The proof is

given in the supplementary material based on [19].

3.4. Discriminative Function

We construct a discriminative function that encourages

the sparse representations of signals over learned dictionary

(i.e. cluster centers), from the same class to be similar.

Let m denote the number of object categories. N =
[N1...NN] ∈ Rm×N is a count matrix for the number of

elements from each object class assigned to each cluster 1.

Let Ni = [N i
1...N

i
m]t, where N i

m is the number of objects

from the m-th class that were assigned to the i-th cluster.

1each input signal can be considered as an individual cluster here.

4 4

4 4

(a) Entropy Rate = 0.03

2 2

22

(b) Entropy Rate = 0.43

3
5

8

4

(c) Entropy Rate = 0.22

5 5

5 5

(d) Entropy Rate = 0.24

Figure 3. The importance of the entropy rate for constructing a

dictionary with good representative power. The number next to

the edges is a distance between vertices. Each vertex has a self

loop which is not shown. Each figure outputs six clusters shown

as connected components. The red dots are cluster centers. We

do not show the red dots for those clusters which only contain

one element. By computing the entropy rate, we observe that the

more compact clusters in (b) are preferred compared to (a), while

the more symmetric cluster, that is, homogeneous cluster in (d) is

preferred compared to (c). It demonstrates that the cluster centers,

i.e. dictionary items, in (b)(d) have good representative power.

(a) Disc. Fun. = −2.00 (b) Disc. Fun. = −1.33 (c) Disc. Fun. = −1.00

Figure 4. The importance of the discriminative term for construct-

ing a dictionary with discriminative capabilities. The colors of

empty circles denote different categories of data points. The con-

nected components show different clusters. The red dots in the

figure are cluster centers. The green and black points in (b) are

grouped into the same word and consequently cannot be distin-

guished. The green points in (a) are separated into two words and

as a result the sparse representations for other green points might

not be similar. The more ‘class pure’ clustering in (c) has a higher

objective value than (b). The fewer number of clusters in (c) has

a higher objective value than (a). Sparse codes obtained by the

cluster centers in (c) are best for classification. Hence the dis-

criminative term suggests the higher discriminative power for the

cluster centers in (c).

Let NA denote the number of connected components

or subgraphs. The graph partitioning for A is SA =
{S1...SNA

}. The class purity for cluster Si is computed

as: P(Si) = 1
Ci

maxy N i
y , where y denotes the class label,

y ∈ {1...m}, and Ci =
∑

y N i
y is the total count for objects

of all classes assigned to cluster i. Thus the overall purity

for SA is:P(SA) =
∑NA

i=1
Ci

C
P(Si) =

∑NA

i=1
1
C

maxy N i
y ,

where C =
∑

i Ci. The discriminative term is defined as:

Q(A) ≡ P(SA) − NA =

NA
∑

i=1

1

C
max

y
N i

y − NA. (6)

The purity term P(SA) encourages clusters with pure

class labels, while NA favors a smaller number of clusters.

The class pure cluster encourages similar feature points to

be represented by the same cluster centers (i.e., dictionary

items). Hence, it should result in high discrimination power

for the dictionary items. From Figure 4, the more class

pure cluster is preferred for a fixed number of clusters,

while a fewer number of clusters is preferred for a fixed

purity. Similar to the entropy rate, the discriminative term

Q : 2E → R, is also a monotonically increasing and sub-

modular function.

The final objective function combines the entropy rate

and the discriminative term for dictionary learning, i.e.,

F(A) ≡ H(A)+λQ(A). The solution is achieved by max-

imizing the objective function with A selected as:

max
A

H(A) + λQ(A) s.t. A ⊆ E and NA ≥ K, (7)

where λ controls the relative contribution between entropy

rate and the discriminative term. NA ≥ K is a constraint

on the number of connected components. This constraint

enforces exactly K connected components because the ob-

jective function is monotonically increasing. λ is given by

λ = γλ′ =
(

maxei,j
H(ei,j)−H(∅)

maxei,j
Q(ei,j)−Q(∅)

)

λ′, where λ′ is a pre-

defined parameter and γ is the ratio of maximal entropy

rate increase and the maximal discriminative term increase

when adding a single edge to the graph.

The objective function in (7) is submodular and mono-

tonically increasing, because it is a linear combination of

monotonic and submodular functions [24]. This makes the

clusters more compact and class pure. Their cluster centers

represent the input signals well and preserve object cate-

gory information. Hence when using these cluster centers

as dictionary items, our approach encourages the computed

sparse codes for signals from the same class to be similar,

as shown in Figures 1(b) and 2(b).

Algorithm 1 Submodular Dictionary Learning (SDL)

Input: G = (V, E), w, K, λ andN
Output: D
Initialization: A← ∅, D ← ∅
for NA > K do

ẽ = argmax
A∪{e}∈I

F(A ∪ {e}) − F(A)

A← A ∪ {ẽ}
end for

for each subgraph Si in G = (V, A) do

D ← D ∪ { 1

|Si|

∑

j:vj∈Si
vj}

end for

3.5. Optimization

Direct maximization of a submodular function is a NP-

hard problem. However, one simple approximate solution

can be obtained by a greedy algorithm from [24]. The al-

gorithm starts from a empty set A = ∅ and iteratively adds

edges to A. It always chooses the edge which provides the

largest gain forF at each iteration. The iterations stop when

the desired number of connected components is obtained.

Note that the edges that induce cycles in the graph have

no effect on the graph partition. In order to speed up the op-

timization, a cycle-free constraint is used here so that those

edges are not included in A. This greatly reduces the eval-

uations in the greedy search and leads to a smaller solution

space. The cycle-free constraint and the connected compo-

nent constraint in the graph partitioning, i.e. NA ≥ K in-

duce a matroid M = (E, I). I is the collection of subsets

A ⊆ E which satisfies: A includes no cycles and the graph

partition from A has more than K connected components.

Maximization of a submodular function with a matroid

constraint gives a 1/2-approximation bound on the opti-

mality of the solution [24]. Hence the greedy algorithm

can obtain a performance-guaranteed solution. Algorithm

1 presents the pseudocode of our algorithm.

3.6. Algorithm Complexity

The complexity of a naive implementation of Algorithm

1 is O(|V |2), because it iterates O(|V |) times to select

edges, and evaluates the whole edge list to select the edge

which has the largest gain at each iteration. Actually we can

further exploit the submodularity property of the objective

function to speed up the optimization.

We first evaluate the gain in the objective function for

each edge and construct a max heap structure. The edge

with the largest gain is selected as the top element from the

heap at each iteration. The addition of any edge into A im-

pacts the gains of the remaining edges. Here, instead of re-

computing the gains for every remaining edge in the heap,

we perform lazy evaluation which only updates the gain of

the top element. The key idea is to realize that the gain for

each edge can never increase because of the diminishing re-

turn property. In many cases, the recomputation of gain for

the top element is not much smaller, hence the top element

will stay the top element even after the update.

The worst case is that we need to update the gain for

each edge and then re-establish the heap property after the

addition of any edge into A. That is, we need to rebuild

the heap, which takes O(|V | log |V |) time, hence the worse

case is O(|V |2 log |V |) [3]. In fact, only a few updates are

ever performed in the heap at each iteration, hence the com-

plexity of our algorithm is effectively O(|V | log |V |) 2.

4. Classification Approach

4.1. Face and Object Recognition

Our dictionary learning algorithm forces the signals from

the same class to have very similar sparse representations,

which results in good classification performance even using

a simple linear classifier. For face and object recognition in

static images, we employ the multivariate ridge regression

2The complexity here does not include the complexity of constructing

the k-nearest-neighbor graph G, which is an input to our algorithm.

model with the quadratic loss and L2 norm regularization:

W = argmin
W

||H − WZ||2 + α||W ||22, (8)

where W ∈ Rm×K denotes the linear classifier parameters

and H = [h1...hN] ∈ Rm×N are the class label matrix of

input signals Y . hi = [0, 0...1...0, 0]t ∈ Rm is a label vec-

tor corresponding to an input signal yi, where the non-zero

position indicates the class of yi. (8) yields the solutions:

W = (ZZt + αI)−1ZHt.

For a test image yi, we first compute its sparse represen-

tation zi using (1). Then we simply use W in (8) obtained

from training data to estimate a class label vector: l = Wzi,

where l ∈ Rm. The label of yi is the index i where li is the

largest element of l.

4.2. Action Classification

For the classification of action sequences, we first com-

pute the sparse representations for each frame, then employ

dynamic time warping (DTW) to align and measure the dis-

tance between two sequences in the sparse representation

domain; next a K-NN classifier is used for recognition.

5. Experiments

We evaluate our approach on the Extended YaleB

database [8], Caltech101 [6] and Keck gesture dataset [17].

We compare our results with K-SVD [1], D-KSVD [35],

LC-KSVD [12], SRC [30], and LLC [29] for learning a

dictionary directly from the training data on the Extended

YaleB and Caltech101 dataset, while we compare our re-

sults with K-means, Liu-Shah [18], MMI [26] and ME [10]

for learning a dictionary from a large set of dictionary item

candidates on the Keck gesture dataset. The baseline ap-

proach is to replace our discriminative function with a bal-

ance function described in [19], which aims to balance the

size of each cluster. We refer to it and our approach as ‘base-

line’ and ‘SDL’, respectively, in the following.

5.1. Dictionary Learning from the Training Data

5.1.1 Extended YaleB Database

The Extended YaleB database contains 2, 414 frontal face

images of 38 persons [8]. There are 64 images with a size

of 192 × 168 pixels for each person. This dataset is chal-

lenging due to varying illuminations and expressions. We

randomly select half of the images as training and the other

half for testing. Following the setting in [35], each face is

represented as a 504 sized random-face feature vector.

We evaluate our approach in terms of the classification

accuracy using dictionary sizes 380 to 684, and compare

it with baseline, K-SVD [1], D-KSVD [35], SRC 3 [30],

LLC [29] and the recently proposed LC-KSVD [12]. The

sparsity s is set to 30. Figure 5(a) shows that our approach

outperforms the state of the art approaches in terms of clas-

sification accuracy with different dictionary sizes. The clas-

3We randomly choose the average of dictionary size per person from

each person and report the best performance achieved.

Table 1. Computation time (s) for dictionary training using

random-face features on the Extended YaleB database.
Dict. size 418 456 494 532 570 608 646 684

SDL 0.9 1.0 0.9 0.9 0.9 1.0 0.9 0.9

K-SVD [1] 52.6 56.1 59.8 64.9 67.9 72.2 76.2 78.0

D-KSVD [35] 53.1 56.9 60.5 65.8 68.1 74.9 77.6 79.2

LC-KSVD [12] 67.2 72.6 78.3 86.5 90.7 97.8 104.4 112.3

380 418 456 494 532 570 608 646 684

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Dictionary Size

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

SDL

baseline

KSVD

DKSVD

LCKSVD

SRC

LLC

(a) Extended YaleB, k = 1, λ′ = 1

306 510 714 918 1122 1326 1530
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Dictionary Size

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

SDL

baseline

KSVD

DKSVD

LCKSVD

SRC

LLC

(b) Caltech101, k = 10, λ′ = 1

Figure 5. Classification accuracy performances using different ap-

proaches with different dictionary sizes. (a) Performance on the

Extended YaleB; (b) Performance on the Caltech101.

sification accuracy is 95.9% when SRC directly uses all

the training data as the dictionary (The result of our ap-

proach is 96.4%, which only shows that the linear classi-

fier in (8) used in SDL is slightly better than reconstruction

error based classifier used in SRC).

In Figure 6(a), we plot the performance curves for a

range of λ′ for a fixed k = 1 (recall k is the number of

nearest neighbors used to construct the original graph). We

observe that our approach is insensitive to the selection of

λ′. Hence we use λ′ = 1.0 throughout the experiments.

Figure 6(b) shows the performance curves for a range of k
for λ′ = 1.0. We observe that a smaller value of k results in

better performances. This also leads to more efficient dic-

tionary learning since the size of the heap is proportional to

the size of the edge set of G.

We also compare the computation time of training a dic-

tionary with K-SVD, D-KSVD and LC-KSVD. The param-

eter k is set to 1 since we get good performance in Fig-

ure 6(b). In Table 1, our approach is at least 50 times faster

than the state of art dictionary learning approaches.

5.1.2 Caltech101 Dataset

The Caltech101 dataset [6] contains 9144 images from 102
classes (i.e. 101 object classes and a ‘background’ class).

The samples from each class have significant shape dif-

ferences. Following [12], we extract spatial pyramid fea-

tures [15] for each image and then reduce them to 3000
dimensions by PCA. The sparse codes are computed from

spatial pyramid features. Following the common experi-

mental protocol, we train on randomly selected 5, 10, 15,

20, 25 and 30 samples per category and test on the rest. We

repeat the experiments 10 times and the final results are re-

ported as the average and standard deviation of each run.

We evaluate our approach and compare the results with

state-of-art approaches [30, 1, 35, 12, 34, 15, 9, 2, 11, 25,

7, 31, 29]. The sparsity s is set to 30. The comparative

380 418 456 494 532 570 608 646 684
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

Dictionary Size

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

λ’=0.008

λ’=0.02

λ’=0.05

λ’=0.1

λ’=1.0

(a) Varying λ′ for k = 1

380 418 456 494 532 570 608 646 684
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Dictionary Size

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

k=1

k=2

k=5

k=15

k=30

(b) Varying k for λ′ = 1

Figure 6. Effects of parameter selection of λ′ and k on the classi-

fication accuracy performance on the Extended YaleB database.

Table 2. Classification accuracies using spatial pyramid features

on the Caltech101. SDL also provides the standard deviations.
Training Images 5 10 15 20 25 30

Malik [34] 46.6 55.8 59.1 62.0 - 66.20

Lazebnik [15] - - 56.4 - - 64.6

Griffin [9] 44.2 54.5 59.0 63.3 65.8 67.60

Irani [2] - - 65.0 - - 70.40

Grauman [11] - - 61.0 - - 69.10

Venkatesh [25] - - 42.0 - - -

Gemert [7] - - - - - 64.16

Yang [31] - - 67.0 - - 73.20

Wang [29] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [30] 48.8 60.1 64.9 67.7 69.2 70.7

K-SVD [1] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [35] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD [12] 54.0 63.1 67.7 70.5 72.3 73.6

SDL
55.3 63.4 67.5 70.7 73.1 75.3

±0.5 ± 0.5 ± 0.3 ± 0.3 ± 0.4 ± 0.4

results are shown in Table 2. Our approach outperforms all

the competing approaches except the comparison with LC-

KSVD in the case of 15 training samples per category.

We randomly select 30 images per category as training

images, and evaluate our approach with different dictionary

sizes from 306 to 1530. We also compare our results with

the baseline, K-SVD [1], D-KSVD [35], LC-KSVD [12],

SRC [30] and LLC [29]. Figure 5(b) shows that our ap-

proach outperforms the competing K-SVD, D-KSVD, SRC,

LLC and is comparable to LC-KSVD.

We also compare the computation time of training a dic-

tionary with the K-SVD, D-KSVD and LC-KSVD. The pa-

rameter k (for k-nearest-neighbor graph construction) is 10.

As shown in Table 3, our approach can train approximately

15 times faster when we construct a dictionary of size 306.

More importantly, our approach does not degrade too much

even with a dictionary of size 1530. The computation time

for learning a dictionary using these state-of-art approaches

increases with the dictionary size; however, the computa-

tion time for our approach remains nearly constant.

5.2. Dictionary Learning from A Large Set of Dic
tionary Item Candidates

5.2.1 Keck Gesture Dataset

The Keck gesture dataset [17] consists of 14 different ges-

tures 4, which are a subset of the military signals. We use

the silhouette-based descriptor from [17] to capture shape

information while we use optical-flow based features to en-

4The gesture classes include turn left, turn right, attention left, attention

right, flap, stop left, stop right, stop both, attention both, start, go back,

close distance, speed up and come near.

Table 3. Computation time (s) for dictionary training using spatial

pyramid features on the Caltech101 dataset.
Dict. size 306 510 714 918 1122 1326 1530

SDL 37.5 36.7 36.6 36.9 37.1 36.7 36.7

K-SVD [1] 578.3 790.1 1055 1337 1665 2110 2467

D-KSVD [35] 560.1 801.3 1061 1355 1696 2081 2551

LC-KSVD [12] 612.1 880.6 1182 1543 1971 2496 3112

Table 4. Computation time (s) for dictionary training using shape

features on the Keck gesture dataset.
Dict. size 40 60 80 100 120 140 160 180

SDL 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.0

K-means 1.2 1.1 1.6 1.4 1.8 2.1 2.1 2.2

ME [10] 48.5 57.2 70.2 84.6 91.5 113.1 118.9 130

LiuShah [18] 599.2 597.9 597.2 596.1 593.9 590.3 587.4 582

MMI [26] 64.6 92.6 115.5 140.3 150.1 164.1 184.4 201

code motion information. Both types of feature descriptor

are 256 dimensions. We compute the class distribution ma-

trix introduced in [26] to obtain the count matrix N .

Following the experimental settings in [26], we obtain an

initial large dictionary D0 via K-SVD. The dictionary size

|D0| is set to be approximately twice the dimension of the

feature descriptor. Given D0, our aim is to learn a compact

and discriminative dictionary D∗.
We employ a leave-one-person-out protocol to report the

classification result. A sparsity value of 30 is used. We eval-

uate our approach with different dictionary sizes and differ-

ent features. Then we compare our results with the base-

line, K-means, and Liu-Shah [18], ME [10] and MMI [26].

In Figure 7, our results outperform the baseline, K-means,

Liu-Shah, ME and MMI, and is comparable to MMI* 5.

To evaluate the discrimination and compactness of

learned dictionaries, we learned a 40 element dictionary

from D0 using six different approaches. Purity is the his-

togram of maximum probabilities of observing any class

given a dictionary item [14]. Compactness is captured by

the histogram of pairwise correlation coefficients of items

in D∗ [35] (lower correlations better). From Figure 8, our

approach is most pure, and second most compact compared

to the baseline, K-means, and Liu-Shah, ME and MMI.

In addition, we compare the computation time to learn

a dictionary using shape features with K-means, Liu-Shah,

ME and MMI. The parameter k is set to 3. Our approach is

at least 50 times faster than Liu-Shah, ME and MMI in Ta-

ble 4. The computation time using K-means is comparable

to our approach, but its classification accuracy performance

is much poorer than ours, as shown in Figure 7.

6. Conclusion

We present a greedy-based dictionary learning approach

via maximizing a monotonically increasing and submod-

ular function. By integrating the entropy rate of a ran-

dom walk on a graph and a discriminative term into the

5MMI and MMI* here are the MMI1 and MMI2 approaches in [26]

respectively. K-means, ME and MMI results are based on our own imple-

mentations while MMI* results are copied from the original paper. For the

K-means method, we perform K-means clustering over D0 to obtain D∗.

20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dictionary Size

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

SDL

baseline

K−means

ME

Liu−Shah

MMI

MMI*

(a) Shape, |D0| = 600, k = 3

20 40 60 80 100 120 140 160 180 200
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dictionary Size

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

SDL

baseline

K−means

ME

Liu−Shah

MMI

MMI*

(b) Motion, |D0| = 600, k = 6

20 40 60 80 100 120 140 160 180 200
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dictionary Size

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

SDL

baseline

K−means

ME

Liu−Shah

MMI

MMI*

(c) Shape + Motion, |D0| = 1200, k = 2

Figure 7. Classification accuracy using different approaches with different features and dictionary sizes. The results for MMI* are copied

from [26]. The classification accuracy using initial dictionary D0: (1) 26% (shape); (2) 26% (motion); (3) 36% (joint shape-motion).

0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

SDL

baseline

K−means

ME

Liu−Shah

MMI

(a) Compactness,|D∗| = 40

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

SDL

baseline

K−means

ME

Liu−Shah

MMI

(b) Purity, |D∗| = 40

Figure 8. Purity and compactness comparisons with dictionary size

40 on the Keck gesture dataset. At the left-most bin of (a) and

the right-most bin of (b), a compact and discriminative dictionary

should have high purity and high compactness.

objective function, which makes each cluster compact and

class pure, the learned dictionary is both representative and

discriminative. The objective function is optimized by a

highly efficient greedy algorithm, which can be easily ap-

plied to a large dataset. It outperforms recently proposed

dictionary learning approaches including D-KSVD [35],

SRC [30], LLC [29], Liu-Shah [18], ME [10], MMI [26],

and can be comparable to LC-KSVD [12]. Possible future

work includes exploring methods for efficiently updating

the learned dictionary for a new category while keeping its

the representative and discriminative power.

Acknowledgement

This work was supported by the Army Research Of-

fice MURI Grant W911NF-09-1-0383 and the Global

Land Cover Facility with NASA Grants NNX08AP33A,

NNX08AN72G and NNX11AH67G.

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing

overcomplete dictionries for sparse representation. IEEE Trans. on Signal Pro-

cessing, 54(1):4311–4322, 2006.

[2] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighor based

image classification, 2008. CVPR.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,

3rd Edition, 2009.

[4] T. Cover and J. Thomas. Elements of Information Theory, 2nd Edition, 2006.

[5] K. Engan, S. Aase, and J. Husφy. Frame based signal compression using

method of optimal directions (mod), 1999. IEEE Symp. Circ. Syst.

[6] L. FeiFei, R. Fergus, and P. Perona. Learning generative visual models from

few training samples, 2004. CVPR Workshop.

[7] J. Gemert, J. Geusebroek, C. Veenman, and A. Smeulders. Kernel codebooks

for scene categorization, 2008. ECCV.

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. Illumination cone models

for face recognition under variable lighting and pose. TPAMI, 23(6):643–660,

2001.

[9] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset, 2007.

CIT Technical Report 7694.

[10] C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in gaus-

sian processes, 2005. ICML.

[11] P. Jain, B. Kullis, and K. Grauman. Fast image search for learned metrics, 2008.

CVPR.

[12] Z. Jiang, Z. Lin, and L. Davis. Learning a discriminative dictionary for sparse

coding via label consistent k-svd, 2011. CVPR.

[13] A. Krause and V. Cevher. Submodular dictionary selection for sparse represen-

tation, 2010. ICML.

[14] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by

information loss minimization. TPAMI, 31(7):1294–1309, 2009.

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyra-

mid matching for recognizing natural scene categories, 2007. CVPR.

[16] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms,

2006. NIPS.

[17] Z. Lin, Z. Jiang, and L. Davis. Recognizing actions by shape-motion prototypes

trees, 2009. ICCV.

[18] J. Liu and M. Shah. Learning human actions via information maximization,

2008. CVPR.

[19] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel

segmentation, 2011. CVPR.

[20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative

learned dictionaries for local image analysis, 2008. CVPR.

[21] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary

learning, 2009. NIPS.

[22] J. Marial, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for

sparse coding, 2009. ICML.

[23] M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering, 2005. NIPS.

[24] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations

for maximizing submodular set functions. Mathematical Programming, 1978.

[25] D. Pham and S. Venkatesh. Joint learning and dictionary construction for pat-

tern recognition, 2008. CVPR.

[26] Q. Qiu, Z. Jiang, and R. Chellappa. Sparse dictionary-based representation and

recognition of action attributes, 2011. ICCV.

[27] F. Rodriguez and G. Sapiro. Sparse representations for image classification:

Learning discriminative and reconstructive non-parametric dictionaries.

[28] C. Rother, V. Kolmogorov, and A. Blake. Interactive foreground extraction

using iterated graph cuts, 2004. SIGGRAPH.

[29] J. Wang, J. Yang, K. Yu, F. Lv, T. huang, and Y. Gong. Locality-constrained

linear coding for image classification, 2010. CVPR.

[30] J. Wright, M. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition

via sparse representation. TPAMI, 31(2):210–227, 2009.

[31] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using

sparse coding for image classification, 2009. CVPR.

[32] J. Yang, K. Yu, and T. Huang. Supervised translation-invariant sparse coding,

2010. CVPR.

[33] L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual

codebook genearation with classifier training for object category recognition,

2008. CVPR.

[34] H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest

neighbor classification for visual category recognition, 2006. CVPR.

[35] Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recog-

nition, 2010. CVPR.

[36] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approx-

imating multiway partition problems. Mathematical Programming, 2005.

