Hands-on SQL

LBSC 690: Jordan Boyd-Graber

University of Maryland

October 22, 2012

\)\,\LSI r},
N\

COLLEGE OF

- INFORMATION

STUDIES

4RYLNe

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

1/40

Goals

@ Practical Database Manipulation
@ Overview of Available Database Systems

@ Introducing Assignment 3

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 2 /40

Outline

@ DBMS

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 3 /40

Database Management Software

Software that J

@ MySQL - Free, used by Facebook and Wikipedia, support by Oracle
(via Sun)

Microsoft Access - Comes with Office
Google App Engine - Free, online

Microsoft SQL

Oracle - Expensive, very full-featured

DB2 - By IBM, common for legacy systems
SQLite - Very lightweight, free

PostgreSQL - Free, open source

FoxPro / dBASE - Based on IBM databases

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 4 /40

Database Management Software

Software that J

@ MySQL - Free, used by Facebook and Wikipedia, support by Oracle
(via Sun)

Microsoft Access - Comes with Office

Google App Engine - Free, online

Microsoft SQL

Oracle - Expensive, very full-featured

DB2 - By IBM, common for legacy systems

SQLite - Very lightweight, free

PostgreSQL - Free, open source

FoxPro / dBASE - Based on IBM databases

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 4 /40

Variable Types

e INTEGER - Counting numbers (and negatives)
e FLOAT - Rational numbers (e.g. 3.1415)

o VARCHAR - Strings

e BLOB - Arbitrary data (we won't use this)

Why is this important?

As you design your database, you need to choose which datatype to use!
Use integers whenever you can.

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 5 /40

Outline

© Connecting to a Remote Computer

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 6 / 40

Working on Another Computer

@ The database runs on OIT's server
@ You have your own directory (where you put your webpages)

@ Exposure to command line interface

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

7/ 40

OS X

Already installed
Go to “Applications”
Then “Utilities”

Look for Terminal

What to type
ssh USERNAME®terpconnect.umd.edu J

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 8 /40

Windows: PuTTY

http://www.chiark.greenend.org.uk/ sgtatham/putty/download.html)

@ Might have come with WinSCP

@ Similar interface

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 9 /40

Outline

© Queries on an Existing Database

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 10 / 40

o | grabbed the index of Project Gutenberg
@ Dumped first 500k lines of Dublin Core XML into SQLite database

@ No cleanup; ignored all errors (just like real world!)

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 11 / 40

Source Data

<pgterms:etext rdf:1D="etext8476">
<dc:publisher>&pg;</dc:publisher>
<dc:title rdf:parseType="Literal">Life on the Mississippi,
Part 6.</dc:title>
<dc:creator rdf:parseType="Literal”>Twain, Mark, 1835—1910</dc:creator>
<pgterms:friendlytitle rdf:parseType="Literal">Life on the Mississippi,
Part 6. by Mark Twain</pgterms:friendlytitle>
<dc:language><dcterms:1SO639 —2><rdf:value>en</rdf:value></dcterms:1SO639 —2></dc:language>
<dc:subject>

<rdf:Bag>
<rdf:li><dcterms:LCSH><rdf:value>Authors, American — 19th century — Biography
</rdf:value></dcterms:LCSH></rdf:li>
<rdf:li><dcterms:LCSH><rdf:value>Mississippi River — Description and travel
</rdf:value></dcterms:LCSH></rdf:li>
<rdf:li><dcterms:LCSH><rdf:value>Mississippi River Valley — Social life and customs —
</rdf:value></dcterms:LCSH></rdf:li>
<rdf:li><dcterms:LCSH><rdf:value>Pilots and pilotage — Mississippi River</rdf:value><
<rdf:li><dcterms:LCSH><rdf:value>Twain, Mark, 1835—1910 — Travel — Mississippi River
</rdf:value></dcterms:LCSH></rdf:li>

</rdf:Bag>

</dc:subject>
<dc:subject><dcterms:LCC><rdf:value>PS</rdf:value></dcterms:LCC></dc:subject>
<dc:created><dcterms:W3CDTF><rdf:value>2004—07—09
</rdf:value></dcterms:W3CDTF></dc:created>
<dc:rights rdf:resource="&lic;" />
</pgterms:etext>

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 12 / 40

Getting Data into DBMS

@ Download the database for Assignment 3

wget http://umiacs.umd.edu/ jbg/teaching/LBSC_690_2010/books.db]

> wget is a program to get files from the web
» CAUTION: wget will not overwrite existing files
> If you want to delete the database, do “rm books.db”

@ Start SQLite

sqlite3 books.db J

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 13 / 40

Optional: Make output look pretty

.header on
.mode column

o By default, SQLite assumes you know the data you're looking at
@ Uses space in most efficient way possible

@ Column format better for us

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 14 / 40

What tables are there?

.tables)

sqlite> .tables
authors books categories category_map

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 15 / 40

What columns does a table have?

Pragma table_info(authors);)

Special SQLite Command

sqlite> Pragma table_info (authors);

cid name type notnull dflt_value pk
0 authorlD integer 0 1
1 year_born integer 0 0
2 year_died integer 0 0
3 name text 0 0

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 16 / 40

What columns does a table have?

Pragma table_info(authors); J

Table name

sqlite> Pragma table_info (authors);

cid name type notnull dflt_-value pk
0 authorlD integer 0 1
1 year_born integer 0 0
2 year_died integer 0 0
3 name text 0 0

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 16 / 40

Viewing contents of a table

select * from authors limit 8;

@ Asterisk means “all columns”
e “from" is followed by a table name

e “limit 8" (optional) means we only see eight results

sqlite> select * from authors limit 8;

authorID year_born year_died name

0 1862 1932 Parker, Gilbert
1 Unknown

2 1887 1969 Dell, Floyd

3

4 1852 1907 Skinner, Charle
5 1855 1919 Wilcox, Ella Wh
6 1817 1888 Storm, Theodor

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

17 / 40

Filtering and Sorting

select * from authors where year_born is not null order by name limit 8;

)

sorts by name

Asterisk means “all columns”

year_born must be something

“from” is followed by a table name

“limit 8" (optional) means we only see eight results

sqlite> select * from authors where year_born is not null order by name limit 8;

authorlD year_born year_died name

8883 1821 1893 A. L. O. E.
7919 1877 1970 Aaberg, J.

4171 1866 1930 Aakjr, Je

3129 1863 1953 Aanrud, Han
8738 1888 1948 Aaronsohn ,

7307 1838 1910 Abba, Giuse
2320 1840 1905 Abbe, Ernst
1957 1842 1911 Abbey, Henr

LBSC 690 (Boyd-Graber)

Hands-on SQL October 22, 2012

18 / 40

Filtering and Sorting

select * from authors where year_born is not null order by name limit 8;

)

sorts by name

Asterisk means “all columns”

year_born must be something

“from” is followed by a table name

“limit 8" (optional) means we only see eight results

sqlite> select * from authors where year_born is not null order by name limit 8;

authorlD year_born year_died name

8883 1821 1893 A. L. O. E.
7919 1877 1970 Aaberg, J.

4171 1866 1930 Aakjr, Je

3129 1863 1953 Aanrud, Han
8738 1888 1948 Aaronsohn ,

7307 1838 1910 Abba, Giuse
2320 1840 1905 Abbe, Ernst
1957 1842 1911 Abbey, Henr

LBSC 690 (Boyd-Graber)

Hands-on SQL October 22, 2012

18 / 40

Counting and Arithmetic

select count(*) from authors;]

@ Available functions: SUM, MIN, MAX, COUNT, AVG

e “from" is followed by a table name

e “limit 8" (optional) means we only see eight results

sqlite> select count(*) from authors;
count (*)

10691

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 19 / 40

How long does the average author live?

select count(), avg(year_died) - avg(year_born) from authors where
year_born is not null;

@ Expression of functions - this is okay!
o Filtering is fine

sqlite> select count(*), avg(year_died) — avg(year_born) from authors where year_born is no
count (*) avg(year_died) — avg(year_born)
6356 69.753775959723

@ Why is the count different?
@ Does this number seem plausible?
@ Why are data missing?

» Unknown author

» Unknown birthdate
» Transcription errors

@ Would missing data make this lower or higher?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 20 / 40

How long does the average author live?

select count(), avg(year_died) - avg(year_born) from authors where
year_born is not null;

@ Expression of functions - this is okay!
o Filtering is fine

sqlite> select count(*), avg(year_died) — avg(year_born) from authors where year_born is no
count (*) avg(year_died) — avg(year_born)
6356 69.753775959723

@ Why is the count different?
@ Does this number seem plausible?
@ Why are data missing?

» Unknown author

» Unknown birthdate
» Transcription errors

@ Would missing data make this lower or higher?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 20 / 40

How many authors lived to be an age that's a multiple of
7?

select count(*), year_died - year_born as age from authors where age % 7 J

@ Shorthand
o Filtering is fine

sqlite> select count(*), year_-died — year_born as age from authors where age \% 7 = 0 limit
count (*) age
906 56

@ Why is the count different?
@ Does this number seem plausible?
@ Why are data missing?
» Unknown author
» Unknown birthdate
» Transcription errors
@ Would missing data make this lower or higher?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 21 / 40

How many authors lived to be an age that's a multiple of
7?

select count(*), year_died - year_born as age from authors where age % 7 J

@ Shorthand
o Filtering is fine

sqlite> select count(*), year_-died — year_born as age from authors where age \% 7 = 0 limit
count (*) age
906 56

@ Why is the count different?
@ Does this number seem plausible?
@ Why are data missing?
» Unknown author
» Unknown birthdate
» Transcription errors
@ Would missing data make this lower or higher?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 21 / 40

Combining restrictions and bad data

sqlite> select * from authors where year_died — year_born > 100;

authorlD year_born year_died name

5328 1868 1970 Enock, C. Reginald (Charles Reginald)
6843 1847 1948 Jennings, Frederick Charles

7706 1856 1963 Brown, Arthur Judson

7941 176 1849 Gallatin, Albert

9423 1895 1998 Jnger, Ernst

@ Probably a typo.

@ Let's remove that record from our calculation (as an example of
multiple constraints)

sqlite> select count(*), avg(year_died) — avg(year_born) from authors where year_born
...> is not null and not name = " Gallatin ,_Albert”;

count (*) avg(year_died) — avg(year_born)

6355 69.5014948859166
LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

22 / 40

Who wrote the most books?

select count(*) as num _books, author from books group by author order
by num_books desc limit 8;

@ Count the number of records and call it num_books so we can use it
to sort later

Shows the author id
Do each count per-author
Sort by the number of books each author wrote

“limit 8" (optional) means we only see eight results

sqlite> select count(*) as num_books, author from books group by author order by num_books d
num_books author

2114 69
944 7

907 3

555 40
276 188
217 33
203 24
164 686

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 23 / 40

Who wrote the most books?

select count(*) as num_books, author from books group by author order
by num_books desc limit 8;

@ Count the number of records and call it num_books so we can use it
to sort later

Shows the author id
Do each count per-author
Sort by the number of books each author wrote

“limit 8" (optional) means we only see eight results

sqlite> select count(*) as num_books, author from books group by author order by num_books d
num_books author

2114 69
944 7

907 3

555 40
276 188
217 33
203 24
164 686

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 23 / 40

Who wrote the most books?

select count(*) as num_books, author from books group by author order
by num_books desc limit 8;

@ Count the number of records and call it num_books so we can use it
to sort later

Shows the author id
Do each count per-author
Sort by the number of books each author wrote

“limit 8" (optional) means we only see eight results

sqlite> select count(*) as num_books, author from books group by author order by num_books d
num_books author

2114 69
944 7

907 3

555 40
276 188
217 33
203 24
164 686

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 23 / 40

Who wrote the most books?

select count(*) as num_books, author from books group by author order
by num_books desc limit 8;

@ Count the number of records and call it num_books so we can use it
to sort later

Shows the author id
Do each count per-author
Sort by the number of books each author wrote

“limit 8" (optional) means we only see eight results

sqlite> select count(*) as num_books, author from books group by author order by num_books d
num_books author

2114 69
944 7

907 3

555 40
276 188
217 33
203 24
164 686

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 23 / 40

Who wrote the most books?

select count(*) as num_books, author from books group by author order
by num_books desc limit 8;

@ Count the number of records and call it num_books so we can use it
to sort later

@ Shows the author id
@ Do each count per-author
@ Sort by the number of books each author wrote
e “limit 8" (optional) means we only see eight results
sqlite> select count(*) as num_books, author from books group by author order by num_books d
num_books author
2114 69
944 7
907 3
555 40
276 188
217 33
203 24
164 686

Author 69 wrote the most books ...who is he / she?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 23 / 40

Who wrote the most books?

books.author limit 10;

select title, name from books INNER JOIN authors on authors.authorlD :J

@ Combine the books table with the authors table
@ Make sure the IDs match up

e "limit 10" (optional) means we only see ten results

sqlite> select title , name from books INNER JOIN authors on
. > authors.authorlD = books.author limit 10;
title name

When Valmond Came to Pontiac, Volume 1. Parker, Gilbert

The Translation of a Savage, Complete Parker, Gilbert
The Trespasser, Volume 2 Parker, Gilbert
The Right of Way Volume 02 Parker, Gilbert

The Log—Cabin Lady An Anonymous Aut Unknown

King Arthurs Socks and Other Village Pe Dell, Floyd
Two Months in the Camp of Big Bear

Myths and Legends of Our Own Land V Skinner, Charle
Myths and Legends of Our Own Land V Skinner, Charle
Poems of Sentiment Wilcox, Ella Wh

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

24 / 40

Who wrote the most books?

books.author limit 10;

select title, name from books INNER JOIN authors on authors.authorlD :J

@ Combine the books table with the authors table
@ Make sure the IDs match up

e "limit 10" (optional) means we only see ten results

sqlite> select title , name from books INNER JOIN authors on
. > authors.authorlD = books.author limit 10;
title name

When Valmond Came to Pontiac, Volume 1. Parker, Gilbert

The Translation of a Savage, Complete Parker, Gilbert
The Trespasser, Volume 2 Parker, Gilbert
The Right of Way Volume 02 Parker, Gilbert

The Log—Cabin Lady An Anonymous Aut Unknown

King Arthurs Socks and Other Village Pe Dell, Floyd
Two Months in the Camp of Big Bear

Myths and Legends of Our Own Land V Skinner, Charle
Myths and Legends of Our Own Land V Skinner, Charle
Poems of Sentiment Wilcox, Ella Wh

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

24 / 40

Who wrote the most books?

select count(*) as num_books, author, name from books INNER JOIN
authors on authors.authorlD = books.author group by author order by
num_books desc limit 20;

sqlite> select count(*) as num_books, author, name from books INNER JOIN

..> authors on authors.authorlD = books.author group by author order
> by num_books desc limit 20;
num_books author name
2114 69 Various
555 40 Anonymous
276 188 Shakespear
217 33 Lytton, Ed
203 24 Twain, Mar
164 686 Ebers, Geo
145 71 Dickens, C
132 0 Parker, Gi
130 1 Unknown
125 41 Verne, Jul
125 610 Balzac, Ho
113 265 Kingston ,
111 86 Jacobs, W.
109 662 Meredith ,
106 53 Doyle, Art
103 670 Motley , Jo
101 26 Howells , W
99 958 Ballantyne
LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

25 / 40

Asking and Answering Questions

@ How many books were written by authors born before 18007

@ What's the average age of authors who wrote more than 10 books?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 26 / 40

Outline

@ Creating Your Own Database

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 27 / 40

Design

@ Need to keep track of employees

>

vV vy VvYVvYyy

Age

Degree

Driver’s License Number

First Name

Last Name

Pay (determined exclusively by degree)

@ How many tables do we need?

@ What columns are in each table?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

28 / 40

Design

@ Two tables

@ Degrees

>

vvVvy

e Emp

>
>
>
>

degreelD

pay
degree_name
degree_abbrv
loyees

First Name
Last Name
License

Age

LBSC 690 (Boyd-Graber) Hands-on SQL

October 22, 2012

29 / 40

Creating a Table

CREATE TABLE Degrees (degreelD integer, Abbrev varchar(5), pay
integer, FullName varchar(30));

J

@ We're creating a new table with this name
@ The ID and the pay are both integers
@ The full and short names are both strings

@ Column format better for us

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

30 / 40

Creating a Table

CREATE TABLE Degrees (degreelD integer, Abbrev varchar(5), pay
integer, FullName varchar(30));

J

@ We're creating a new table with this name
@ The ID and the pay are both integers
@ The full and short names are both strings

@ Column format better for us

What's wrong with this table?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

30 / 40

Creating a Table

CREATE TABLE Degrees (degreelD integer, Abbrev varchar(5), pay
integer, FullName varchar(30));

J

@ We're creating a new table with this name
@ The ID and the pay are both integers
@ The full and short names are both strings

@ Column format better for us

What's wrong with this table?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

30 / 40

Deleting a table

drop table degrees;

and injection

HI, THIS 1S OK, DEPR - DD HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOLR SON YEARS STUDENT RECCRDS.
WERE HAVING SOME INAWAY Robert'); DROP T HOPE YOURE HAPPY.
(OMPUTER TROUBLE. / TRELE Shuents;—~ 7 {i
X ¢ AND T HIPE
~OH.YES UTIE - YOUVE LEARNED
BOBBY TABLES, TO SANMZE YOUR
WE CALL HIM. DHTABASE NPUTS.
@ Make sure you check input
@ Most packages have methods to “sanitize” inputs

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 31/ 40

Creating a Table (With keys and defaults)

CREATE TABLE Degrees (degreelD integer PRIMARY KEY, Abbrev
varchar(5), pay integer DEFAULT 30000, degree_name varchar(30)); J

@ The degreelD is the primary key (must be unique, and lookup is fast)
o If we don't tell the database the pay, it assumes 30000

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 32 /40

Creating a Table (With keys and defaults)

CREATE TABLE Degrees (degreelD integer PRIMARY KEY, Abbrev
varchar(5), pay integer DEFAULT 30000, degree_name varchar(30)); J

@ The degreelD is the primary key (must be unique, and lookup is fast)
o If we don't tell the database the pay, it assumes 30000

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 32 /40

Adding Data

insert into Degrees (degreelD, Abbrev, FullName) values (0, "BA",
" Bachelor of Arts"); J

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 33 /40

Adding Data

insert into Degrees (degreelD, Abbrev, FullName) values (0, "BA",
" Bachelor of Arts"); J

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 33 /40

Adding Data

insert into Degrees (degreelD, Abbrev, FullName) values (0, "BA",
" Bachelor of Arts"); J

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 33 /40

Adding Data

insert into Degrees (degreeld, Abbrev, degree_name) values (0, "BA", "Bachelor_of_Arts");
insert into Degrees (degreeld, Abbrev, degree_name) values (0, "MA", "Master_of_Arts");

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 34 / 40

Adding Data

insert into Degrees (degreeld, Abbrev, degree_name) values (0, "BA", "Bachelor_of_Arts");
insert into Degrees (degreeld, Abbrev, degree_name) values (0, "MA", "Master_of_Arts");

Error: PRIMARY KEY must be unique

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 34 / 40

Adding Data

insert into Degrees (degreeld,
insert into Degrees (degreeld,

Abbrev ,
Abbrev ,

Error: PRIMARY KEY must be unique

insert into Degrees (degreeld,
insert into Degrees (degreeld,

LBSC 690 (Boyd-Graber)

Abbrev ,
Abbrev ,

degree_name)
degree_name)

degree_name)
degree_name)

Hands-on SQL

values
values

values
values

"BA", "Bachelor_of_Arts");
"MA", " Master_of _Arts");

"HS", "High_School”);
"MLS" , " Master_of_Library_Sci

October 22, 2012 34 / 40

Modifying Data

update degrees set pay=60000 where degreelD=2;

@ Which table are we updating?
@ The column to update
@ The new cell contents

@ Which rows to update (could apply to more than one)

sqlite> select * from degrees;degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts

1 HS 30000 High School

2 MLS 30000 Master of Librar

sqlite> update degrees set pay=60000 where degreelD=2;
sqlite> update degrees set pay=20000 where degreelD=1;
sqlite> select * from degrees;

degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts
1 HS 20000 High School
2 MLS 60000 Master of Librar

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

35 / 40

Modifying Data

update degrees set pay=60000 where degreelD=2;

@ Which table are we updating?
@ The column to update
@ The new cell contents

@ Which rows to update (could apply to more than one)

sqlite> select * from degrees;degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts

1 HS 30000 High School

2 MLS 30000 Master of Librar

sqlite> update degrees set pay=60000 where degreelD=2;
sqlite> update degrees set pay=20000 where degreelD=1;
sqlite> select * from degrees;

degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts
1 HS 20000 High School
2 MLS 60000 Master of Librar

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

35 / 40

Modifying Data

update degrees set pay=60000 where degreelD=2;

@ Which table are we updating?
@ The column to update
@ The new cell contents

@ Which rows to update (could apply to more than one)

sqlite> select * from degrees;degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts

1 HS 30000 High School

2 MLS 30000 Master of Librar

sqlite> update degrees set pay=60000 where degreelD=2;
sqlite> update degrees set pay=20000 where degreelD=1;
sqlite> select * from degrees;

degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts
1 HS 20000 High School
2 MLS 60000 Master of Librar

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

35 / 40

Modifying Data

update degrees set pay=60000 where degreelD=2;

@ Which table are we updating?
@ The column to update
@ The new cell contents

@ Which rows to update (could apply to more than one)

sqlite> select * from degrees;degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts

1 HS 30000 High School

2 MLS 30000 Master of Librar

sqlite> update degrees set pay=60000 where degreelD=2;
sqlite> update degrees set pay=20000 where degreelD=1;
sqlite> select * from degrees;

degreelD Abbrev pay degree_name
0 BA 30000 Bachelor of Arts
1 HS 20000 High School
2 MLS 60000 Master of Librar

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012

35 / 40

Creating Tables (Foreign Key & Constraints)

CREATE TABLE Employees (emplID integer PRIMARY KEY, age integer,
degree integer, DriverLic varchar (10), FirstName varchar (30), LastName
varchar(30), CHECK (age > 15), FOREIGN KEY (degree) REFERENCES
Degrees(degreelD));

@ Make sure the employee is legal; every change to database must
preserve this

@ Make sure this points to valid degree

@ How could this solve our age problem?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 36 / 40

Creating Tables (Foreign Key & Constraints)

CREATE TABLE Employees (emplID integer PRIMARY KEY, age integer,
degree integer, DriverLic varchar (10), FirstName varchar (30), LastName
varchar(30), CHECK (age > 15), FOREIGN KEY (degree) REFERENCES
Degrees(degreelD));

@ Make sure the employee is legal; every change to database must
preserve this

@ Make sure this points to valid degree

@ How could this solve our age problem?

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 36 / 40

Constraints in Action

sqlite> insert into Employees (empld, age, degree, DriverLic, FirstName, LastName) values
> (0, 10, 0, "NZ01234", "Bart”, "Simpson”);
Error: constraint failed

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 37/ 40

Constraints in Action

sqlite> insert into Employees (empld, age, degree, DriverLic, FirstName, LastName) values
. > (0, 10, 0, "NZ01234", "Bart”, "Simpson");
Error: constraint failed

sqlite> insert into Employees (empld, age, degree, DriverLic, FirstName, LastName) values
. > (0, 30, 0, "NJO1234", "Homer", "Simpson”);

What about foreign key?
@ Can’t add an employee with a undefined degree

@ Can't delete degrees if employees associated with that degree

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 37/ 40

Constraints in Action

sqlite> insert into Employees (empld, age, degree, DriverLic, FirstName, LastName) values
. > (0, 10, 0, "NZ01234", "Bart”, "Simpson");
Error: constraint failed

sqlite> insert into Employees (empld, age, degree, DriverLic, FirstName, LastName) values
. > (0, 30, 0, "NJO1234", "Homer", "Simpson”);

What about foreign key?
@ Can’t add an employee with a undefined degree
@ Can't delete degrees if employees associated with that degree

@ But won't work on terpconnect (for backwards compatibility)

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 37/ 40

Deleting Data

DELETE from employees where emplD = 0;

@ Can delete multiple things at once

@ Won't complain when it deletes nothing

LBSC 690 (Boyd-Graber) Hands-on SQL

October 22, 2012

38 / 40

Outline

© Assignment 3

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 39 / 40

@ You should now know everything you need to know to do Assignment
3

@ Two questions
» Limiting queries
> Inner Joins

@ Due November 12 (but you should do it sooner)

LBSC 690 (Boyd-Graber) Hands-on SQL October 22, 2012 40 / 40

	DBMS
	Connecting to a Remote Computer
	Queries on an Existing Database
	Creating Your Own Database
	Assignment 3

