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Roadmap

Identify common classes of part of speech tags

Understand why pos tags can help

How to add features to improve classification

Joint labeling: Hidden Markov Models (high level)

Hidden Markov Model (rigorous definition)
Estimating HMM
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POS Tagging: Task Definition

= Annotate each word in a sentence with a part-of-speech marker.

= | owest level of syntactic analysis.
John saw the saw and decided to take it to the table
NNP VBD DT NN CC VBD TO VB PRP IN DT NN

= Useful for subsequent syntactic parsing and word sense disambiguation.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 3/30



What are POS Tags?

= Original Brown corpus used a large set of 87 POS tags.

= Most common in NLP today is the Penn Treebank set of 45 tags. Tagset
used in these slides for “real” examples. Reduced from the Brown set
for use in the context of a parsed corpus (i.e. treebank).

= The C5 tagset used for the British National Corpus (BNC) has 61 tags.
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Tag Examples

= Noun (person, place or thing)
o Singular (NN): dog, fork
o Plural (NNS): dogs, forks
o Proper (NNP, NNPS): John, Springfields
= Personal pronoun (PRP): I, you, he, she, it
= Wh-pronoun (WP): who, what
= Verb (actions and processes)
o Base, infinitive (VB): eat
o Past tense (VBD): ate
o Gerund (VBG): eating
o Past participle (VBN): eaten
o Non 3rd person singular present tense (VBP): eat
o 3rd person singular present tense: (VBZ): eats
o Modal (MD): should, can
o To (TO): to (to eat)
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Tag Examples (cont.)

= Adjective (modify nouns)

o Basic (JJ): red, tall

o Comparative (JJR): redder, taller
o Superlative (JJS): reddest, tallest
Adverb (modify verbs)

o Basic (RB): quickly

o Comparative (RBR): quicker

o Superlative (RBS): quickest

Preposition (IN): on, in, by, to, with
Determiner:

o Basic (DT) a, an, the
o WH-determiner (WDT): which, that

Coordinating Conjunction (CC): and, but, or,
Particle (RP): off (took off), up (put up)
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Open vs. Closed Class

= Closed class categories are composed of a small, fixed set of
grammatical function words for a given language.

o Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions

= Open class categories have large number of words and new ones are
easily invented.
o Nouns (Googler, textlish), Verbs (Google), Adjectives (geeky), Abverb
(chompingly)
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Ambiguity

“Like" can be a verb or a preposition

= | like/VBP candy.

= Time flies like/IN an arrow.

“Around” can be a preposition, particle, or adverb
= | bought it at the shop around/IN the corner.

= | never got around/RP to getting a car.

= A new Prius costs around/RB $25K.
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How hard is it?

= Usually assume a separate initial tokenization process that separates
and/or disambiguates punctuation, including detecting sentence
boundaries.
= Degree of ambiguity in English (based on Brown corpus)
o 11.5% of word types are ambiguous.
o 40% of word tokens are ambiguous.
= Average POS tagging disagreement amongst expert human judges for
the Penn treebank was 3.5%

= Based on correcting the output of an initial automated tagger, which was
deemed to be more accurate than tagging from scratch.

= Baseline: Picking the most frequent tag for each specific word type
gives about 90% accuracy 93.7% if use model for unknown words for
Penn Treebank tagset.
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What about classification / feature engineering?

= Let’s view the context as input
= pos tag is the label
= How can we select better features?
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Baseline

= Just predict the most frequent class
= 0.38 accuracy
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Prefix and Suffixes

= Take what characters start a word (un, re, in)
= Take what characters end a word (1y, ing)
= Use as features
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Prefix and Suffixes

= Take what characters start a word (un, re, in)
= Take what characters end a word (1y, ing)
= Use as features (Accuracy: 0.55)
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Prefix and Suffixes

Take what characters start a word (un, re, in)

Take what characters end a word (1y, 1ng)

Use as features (Accuracy: 0.55)

What can you do to improve the set of features?
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Error Analysis

= Look at predictions of the models

= Look for patterns in frequent errors

Errors from prefix / suffix model

said (372), back (189), get (153), then (147), know (144), Mr. (87), Mike
(78)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 13/30



Error Analysis

= Look at predictions of the models

= Look for patterns in frequent errors

Errors from prefix / suffix model

said (372), back (189), get (153), then (147), know (144), Mr. (87), Mike
(78)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 13/30



Confusion Matrix: Only Capitalization

1 NN NP RB VB
1 0 4119 235
NN 0 14673 713
NP 0 11 3330
RB 0 3760 531
VB 0 12291 338

(SIS I I
[ SIS I I

Accuracy: 0.45
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Incorporating Knowledge

= Use WordNet, an electronic
dictionary in nitk

= (We'll talk more about it later)
= Now getting 0.82 accuracy
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NN
NP
RB
VB
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Error Analysis

back then now there here still long thought want even
223 145 140 116 115 100 99 88 79 67
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A more fundamental problem ...

Each classification is independent . ..
This isn’t right!
If you have a noun, it's more likely to be preceeded by an adjective

Determiners are followed by either a noun or an adjective
Determiners don’t follow each other
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Approaches

= Rule-Based: Human crafted rules based on lexical and other linguistic
knowledge.
= |earning-Based: Trained on human annotated corpora like the Penn
Treebank.
o Statistical models: Hidden Markov Model (HMM), Maximum Entropy
Markov Model (MEMM), Conditional Random Field (CRF)
o Rule learning: Transformation Based Learning (TBL)
o Deep learning: RNN / LSTM
= Generally, learning-based approaches have been found to be more
effective overall, taking into account the total amount of human
expertise and effort involved.
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HMM Definition

= A finite state machine with probabilistic state transitions.

= Makes Markov assumption that next state only depends on the current
state and independent of previous history.
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Generative Model

= Probabilistic generative model for sequences.

= Assume an underlying set of hidden (unobserved) states in which the
model can be (e.g. parts of speech).

= Assume probabilistic transitions between states over time (e.g.
transition from POS to another POS as sequence is generated).

= Assume a probabilistic generation of tokens from states (e.g. words
generated for each POS).
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Cartoon

P(PropNoun Verb Det Noun) = 0.4*0.8%0.25%0.95%0.1=0.0076

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 21/



Cartoon
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HMM Definition

Assume K parts of speech, a lexicon size of V, a series of observations
{x1,...,xy}, and a series of unobserved states {z;,..., zy}.

7 A distribution over start states (vector of length K): 7; = p(z; =)
6 Transition matrix (matrix of size K by K): 6, ; = p(z, = jlz,—1 =)
B An emission matrix (matrix of size K by V): B; ,, = p(x, = wl|z, =)
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HMM Definition

Assume K parts of speech, a lexicon size of V, a series of observations
{xy,...,xy}, and a series of unobserved states {z,..., zy}.

7 A distribution over start states (vector of length K): 7w; = p(zy =)
0 Transition matrix (matrix of size K by K): 8;; = p(z, = jlz,— = i)
B An emission matrix (matrix of size K by V): B; ,, = p(x, = wl|z, =)

Two problems: How do we move from data to a model? (Estimation) How
do we move from a model and unlabled data to labeled data? (Inference)
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Reminder: How do we estimate a probability?

= For a multinomial distribution (i.e. a discrete distribution, like over

words): i
j i

DMk a
= @; is called a smoothing factor, a pseudocount, etc.

0;
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Reminder: How do we estimate a probability?

= For a multinomial distribution (i.e. a discrete distribution, like over

words): i
j i

DMk a
= @; is called a smoothing factor, a pseudocount, etc.

0; (1)

= When ¢; =1 for all /, it’s called “Laplace smoothing” and corresponds to
a uniform prior over all multinomial distributions.
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Training Sentences

here come old flattop
MOD \Y MOD N

a crowd of people stopped and  stared
DET N PREP N \ CONJ \Y

gotta get you into my life
\Y V. PRO PREP PRO V

and | love her
CONJ PRO \Y PRO
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Training Sentences

x here come old flattop
MOD \Y MOD N

a crowd of people stopped and  stared
DET N PREP N \ CONJ \Y

gotta get you into my life
\Y V. PRO PREP PRO V

and | love her
CONJ PRO \Y PRO
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Training Sentences

x here come old flattop
z MOD \Y MOD N

a crowd of people stopped and  stared
DET N PREP N \ CONJ \Y

gotta get you into my life
\Y V. PRO PREP PRO V

and | love her
CONJ PRO \Y PRO
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Initial Probability 7

POS | Frequency | Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234

N 0.1 0.021
PREP 0.1 0.021
PRO 0.1 0.021

\Y 1.1 0.234

Remember, we're taking MAP estimates, so we add 0.1 (arbitrarily chosen)
to each of the counts before normalizing to create a probability distribution.
This is easy; one sentence starts with an adjective, one with a determiner,

one with a verb, and one with a conjunction.
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Training Sentences
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Training Sentences

here come old flattop
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Transition Probability 0

= We can ignore the words; just ook at the parts of speech. Let’s compute
one row, the row for verbs.

= We see the following transitions: V. — MOD, V — CONJ, V — V,
V — PRO, and V — PRO

POS | Frequency | Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193
N 0.1 0.018
PREP 0.1 0.018
PRO 2.1 0.368
Vv 1.1 0.193

= And do the same for each part of speech ...
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Training Sentences
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Emission Probability

Let’s look at verbs ...

Word a and come crowd flattop
Frequency 0.1 0.1 1.1 0.1 0.1
Probability | 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability | 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability | 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability | 0.0125 0.0125 0.0125 0.1375 0.1375
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Next time ...

= Viterbi algorithm: dynamic algorithm discovering the most likely pos
sequence given a sentence

= em algorithm: what if we don’t have labeled data?
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N-Gram Language Models

= Given: a string of English words W = wy, w»,, ws, ..., w,
= Question: whatis p(W)?

= Sparse data: Many good English sentences will not have been seen
before

— Decomposing p(W) using the chain rule:

p(wl’ W, Ws, ..., wn) =

p(w) p(ws|wy) p(ws|wy, wy)... p(w,|w;, ws,...w,_,)

(not much gained yet, p(w,|w, w,,...w,_;) is equally sparse)
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Markov Chain

= Markov independence assumption:

o only previous history matters
o limited memory: only last k words are included in history
(older words less relevant)
— kth order Markov model

= For instance 2-gram language model:
p(wy, o, w3, ..., wy) = p(wy) p(wa|wy) p(ws|ws)...p(wy, | wy,—1)

= What is conditioned on, here w;_; is called the history. Estimated
from counts.
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Recurrent Neural Networks

Vi1 Vi

Xt-1 X

(0000 | [0000@

—/

= Condition on all previous words
= Hidden state at each time step
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RNN parameters

By =f(W R,y + W) 1)
7 =softmax(W ) ;) (2)
P(xt+1=v]'|xt)-"x1):j\/tyj (3)

= Learn parameter hy to initialize hidden layer
= X, is representation of input (e.g., word embedding)

= j is probability distribution over vocabulary
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Training Woes

Vir1

Xt+1

0

Multiplying same matrix over and over
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Vanishing / Exploding Gradient

= Work out the math:

o Define By, / B), as upper bound of norms of W, h
o Bengio et al 1994: Partial derivative is (B B,)'*
o This can be very small or very big

= [fit's big, SGD jumps too far

= |f it's small, we don’t learn what we need: “Jane walked into the room.
John walked in too. It was late in the day. Jane said hi to g
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Gradient Clipping

Algorithm 1 Pscudo-code for norm clipping the gra-
dients whenever they explode
g5

0

if ||g|| > threshold then

5 . threshold

8¢ el
end if 5.

052 22 -2.0
5.4 o6 —24, "2
4 -2.8 ~26 jicof b

From Pascanu et al. 2013
= [f they get too big, stop at boundary

= Prevents (dashed) values from jumping around (solid)
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Fixing Vanishing Gradients

. ReLU
R(z) =maz(0, z)

8

6

4

2

C 0 -5 0 5 10

= RelU activation
= |nitialize W to identity matrix
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RNN Recap

= Simple model
= Complicated training (but good toolkits available)

= Do we need to remember everything?
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Sequence Models
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The Model of Laughter and Forgetting

= RNN is great: can remember anything
= RNN stinks: remembers everything

= Sometimes important to forget: LSTM
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RNN transforms Input into Hidden

GTQ ® [

| |
© © ©

(Can be other nonlinearities)
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LSTM has more complicated innards

® ) )
T t t

- [
A E;* A

I |
© ® ©

1 O — > <

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy
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LSTM has more complicated innards

® ) )
T t t

- [
A E;* A

I |
© ® ©

1 O — > <

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Built on gates!
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Gates

_®_

= Multiply vector dimension by value
in [0,1]

= Zero means: forget everything

= One means: carry through
unchanged

I = L STM has three different gates
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Cell State

Cios 1%

Can pass through (memory)
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Deciding When to Forget

i fe =0 Wy [h—1,2¢] + by)

Tt

Based on previous hidden state h;_;, can decide to forget past cell state
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Updating representation

i =0 (Wi-[he_1, 2] + b;)
C: = tanh(We - [he—1, 2] + bo)

Compute new contribution to cell state based on hidden state /,_; and
input x,
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Updating representation

i =0 (Wi-[he_1, 2] + b;)
C: = tanh(We - [he—1, 2] + bo)

Compute new contribution to cell state based on hidden state /,_; and
input x;. Strength of contribution is i;
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Updating representation

)
f:T i Cr=fixCy1 +ir % C,

Interpolate new cell value
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Output hidden

o =0 (W, [hi—1,2¢] + bo)

ht = Ot * tanh (Ct)
hi—1

A

Hidden layer is function of cell C;, not h;_;
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