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Which hyperplane?

For linearly separable training sets: there are infinitely many separating
hyperplanes.

They all separate the training set perfectly . ..

... but they behave differently on test data.

Error rates on new data are low for some, high for others.

= How do we find a low-error separator?
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Support vector machines

= Machine-learning research in the last two decades has improved
classifier effectiveness.

= New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

= Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision
boundary between two classes that is maximally far from any point in the
training data (possibly discounting some points as outliers or noise)
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Support Vector Machines

= 2-class training data
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Support Vector Machines

= 2-class training data

= decision boundary —
linear separator
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Support Vector Machines

= 2-class training data

= decision boundary —
linear separator

= criterion: being
maximally far away
from any data point —
determines classifier
margin

N Margin is
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Support Vector Machines

= 2-class training data

= decision boundary —
linear separator

= criterion: being
maximally far away

from any data point —

determines classifier
margin

= linear separator
position defined by
support vectors

e: Jordan Boyd-Graber | UMD

Maximum Support vectors
margin

decision
hyperplane ™\

N .
<« Margin is
maximized




Why maximize the margin?

= Points near decision
surface — uncertain
classification decisions

= A classifier with a large
margin is always
confident

= Gives classification
safety margin
(measurement or
variation)
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Why maximize the margin?

= SVM classifier: large margin
around decision boundary
= compare to decision hyperplane:
place fat separator between
classes d

o unique solution ®
= decreased memory capacity

= increased ability to correctly
generalize to test data
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Equation
= Equation of a hyperplane
w-x;i+b=0 (1)

= Distance of a point to hyperplane
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= The margin p is given by
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= The margin p is given by
W-x;+b 1
= min W )i',—i_ |: =~ (3)
(x)es  lwll [lwl|

= This is because for any point on the marginal hyperplane, - x + b= %1
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Optimization Problem
We want to find a weight vector i and bias b that optimize

]
min —||w|[? (4)
wb 2

subject to y;(W- x;+ b) > 1, Vie[1,m].
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