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Mixture Models

K-means associates data with cluster centers.
What if we actually modeled the data?

= real-valued data
= observation x; in cluster ¢;
have K clusters

model each cluster with a Gaussian distribution
X;l ¢ =k~ N(p, X)

= U, is mean vector, X, is covariance matrix
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Mixture Models
Gaussian mixture model (K = 2):




Mixture Models

Why mixture models?

= more flexible: can account for clusters with different shapes
= have data model (will be useful for choosing K)

= |ess sensitive to data scaling
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Multivariate Gaussian
Multivariate Gaussian distribution for x € R?:

p(x|p, =) = (2) ¢ |5 g 2= (xp)

= [ is vector of means
= 3 is covariance matrix
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Multivariate Gaussian
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Mixture Models
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Multivariate Gaussian
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Fitting a Mixture Model

Mixture model:
= observation X; in cluster ¢; with K clusters

= model each cluster with a Gaussian distribution

X;| ¢ =k~ N(u, Xx)

How do we find ¢, ..., ¢, (clusters) and (u1,%4),..., (Uk, k) (cluster
centers)?
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Fitting a Mixture Model

First, let's simplify the model:

= covariance matrices have only diagonal elements,

= set 02 =-.-= 0%, suppose known
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Fitting a Mixture Model

Next, use a method similar to K-means:

= start with random cluster centers
= associate observations to clusters by (log-)likelihood,

d 1 d 1 d
{(x;]6,= k) =~ log(2m) — 7 log (ﬂ ai,,-) — 5 20—ty
j=1 j=1
1 d
o< —dlog(oy) — 202 Z(Xi./ —ky)®
Ok =

d
o< _Z(Xi,j - .Uk,j)2

j=1
= refit centers uq, ..., Uk given clusters by

1
= %
ALL j nk Ij

= recluster observations...
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Fitting a Mixture Model

clustering with K-means clustering with GMM

minimize distance maximize likelihood

d
t(x;]c; = k) o< —Z(Xi,j—ﬂk,j)z

J=1

d(x;, k) =

d
Z(Xi,j — k)2
=

update means with K-means update means with GMM

use average use average

’
Mokj = a Z Xi j Uk = p” Z Xi

nk ci=k
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Fitting a Mixture Model
OK, now what if

o2 0 ... 0
s_| 0O o5 ... 0
P ¢

2

0 0 0 0%

and 02,...,0% can take different values?

= use same algorithm
= update U, and O'i with maximum likelihood estimator,

1
.Uk,;:n— E Xij
k C,'=k
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Fitting a Mixture Model

Data:

Xy Xo
-3.7 | -04
04 | 0.1

04 | 1.7
-04 | -1.0
1.3 | 1.7
1.0 | 3.3
12 | 5.2
1.3 | 0.3
11 | -0.8
05 | 2.8
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Fitting a Mixture Model

= pick centers and variances, py = [—1,—1], 02 =[1,1], uy =[1,1],
o2 =[1,1]
= compute (proportional) log likelihoods,
d

(X, lci= k ZIOQ U/ Z(Xi,j_tukrj)z/ai,j

.:1

X4 Xo k=1 k=2
3.7 | 0.4 -3.8 -12.1
0.4 0.1 -1.6 -0.6
0.4 -1.7 -1.2 -3.8
-04 | -1.0 -0.2 -3.0
1.3 | 1.7 -0.3 -6.3
1.0 3.3 -11.2 -2.6
1.2 5.2 -22.0 -9.0

1.3 0.3 -3.6 -0.3
11 -0.8 -2.2 -1.6
0.5 2.8 -8.2 -1.7
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Fitting a Mixture Model

= fit new means and variances:

py =[—1.3,—1.2]
0% =[3.1,04]
s =1[0.9,1.8]
02=0.2,5.4]

= compute new distances...
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Fitting a Mixture Model

Xq Xo k= k=2
-3.7|-04 | -1.8 | -70.8
0.4 | 0.1 -2.7 -1.0

04 | -1.7 || -0.8 -2.0

-04 | -1.0 || -0.3 -6.8
-13 | -1.7 | -05 | -16.6
1.0 | 3.3 || -274 | -0.1

12 | 52 || -559 | -1.3
1.3 | 0.3 -4.3 -0.7
1.1 | -08 || -1.2 -0.6
05| 28 | -21.3 | -0.7

No change, so clusters are final
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Fitting a Mixture Model
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Limitations of k-means / mixture models

k-means is fast and simple, but . ..
= What if your data are discrete?

= What if each data point has more than one cluster? (digits vs.
documents)

= What if you don’t know the number of clusters?
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Wrapup

= Clustering helps discover patterns
= k-means is a simple approach

= Gaussian mixture models more probabilistic foundation
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