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Mixture Models

K-means associates data with cluster centers.

What if we actually modeled the data?

� real-valued data

� observation xi in cluster ci

� have K clusters

� model each cluster with a Gaussian distribution

xi |ci = k ∼N(µk ,Σk)

� µk is mean vector, Σk is covariance matrix
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Mixture Models

Gaussian mixture model (K = 2):
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Mixture Models

Why mixture models?

� more flexible: can account for clusters with different shapes

� have data model (will be useful for choosing K )

� less sensitive to data scaling
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Multivariate Gaussian

Multivariate Gaussian distribution for x ∈Rd :

p(x |µ,Σ) = (2π)−
d
2 |Σ|−

1
2 e−

1
2 (x−µ)TΣ−1(x−µ)

� µ is vector of means
� Σ is covariance matrix

Credit: Wikipedia
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Multivariate Gaussian

pdf when µ= [0,0] and Σ=

�
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Multivariate Gaussian
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Fitting a Mixture Model

Mixture model:

� observation xi in cluster ci with K clusters

� model each cluster with a Gaussian distribution

xi |ci = k ∼N(µk ,Σk)

How do we find c1, . . . ,cn (clusters) and (µ1,Σ1), . . . ,(µK ,ΣK ) (cluster
centers)?
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Fitting a Mixture Model

First, let’s simplify the model:

� covariance matrices have only diagonal elements,

Σ=









σ2
1 0 . . . 0

0 σ2
2 . . . 0

. . . . . . . . . 0
0 0 0 σ2

K









� set σ2
1 = · · ·=σ

2
K , suppose known
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Fitting a Mixture Model

Next, use a method similar to K-means:
� start with random cluster centers
� associate observations to clusters by (log-)likelihood,

`(xi |ci = k)=−
d

2
log(2π)−

1

2
log

�

d
∏

j=1

σ2
k ,j

�

−
1

2

d
∑

j=1

(xi ,j −µk ,j)
2/σ2

k ,j

∝−d log(σk)−
1

2σ2
k

d
∑

j=1

(xi ,j −µk ,j)
2

∝−
d
∑

j=1

(xi ,j −µk ,j)
2

� refit centers µ1, . . . ,µK given clusters by

µk ,j =
1

nk

∑

ci=k

xi ,j

� recluster observations...
� stop when no change in clusters
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Fitting a Mixture Model

clustering with K-means

minimize distance

d(xi ,µk) =

√

√

√

√

d
∑

j=1

(xi ,j −µk ,j)2

update means with K-means

use average

µk ,j =
1

nk

∑

ci=k

xi ,j

clustering with GMM

maximize likelihood

`(xi |ci = k)∝−
d
∑

j=1

(xi ,j −µk ,j)
2

update means with GMM

use average

µk ,j =
1

nk

∑

ci=k

xi ,j
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Fitting a Mixture Model

OK, now what if

Σ=









σ2
1 0 . . . 0

0 σ2
2 . . . 0

. . . . . . . . . 0
0 0 0 σ2

K









and σ2
1, . . . ,σ2

K can take different values?

� use same algorithm
� update µk and σ2

k with maximum likelihood estimator,

µk ,j =
1

nk

∑

ci=k

xi ,j

σ2
k ,j =

1

nk

∑

ci=k

(xi ,j −µk ,j)
2
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Fitting a Mixture Model

Data:

x1 x2

-3.7 -0.4
0.4 0.1
0.4 -1.7
-0.4 -1.0
-1.3 -1.7
1.0 3.3
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1.1 -0.8
0.5 2.8
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Fitting a Mixture Model

� pick centers and variances, µ1 = [−1,−1], σ2
1 = [1,1], µ1 = [1,1],

σ2
1 = [1,1]

� compute (proportional) log likelihoods,

`(xi |ci = k) =−
d
∑

j=1

log(σj)−
1

2

d
∑

j=1

(xi ,j −µk ,j)
2/σ2

k ,j

x1 x2 k = 1 k = 2
-3.7 -0.4 -3.8 -12.1
0.4 0.1 -1.6 -0.6
0.4 -1.7 -1.2 -3.8
-0.4 -1.0 -0.2 -3.0
-1.3 -1.7 -0.3 -6.3
1.0 3.3 -11.2 -2.6
1.2 5.2 -22.0 -9.0
1.3 0.3 -3.6 -0.3
1.1 -0.8 -2.2 -1.6
0.5 2.8 - 8.2 -1.7
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Fitting a Mixture Model

� fit new means and variances:

µ1 = [−1.3,−1.2]

σ2
1 = [3.1,0.4]

µ2 = [0.9,1.8]

σ2
2 = [0.2,5.4]

� compute new distances...
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Fitting a Mixture Model

x1 x2 k = 1 k = 2
-3.7 -0.4 -1.8 -70.8
0.4 0.1 -2.7 -1.0
0.4 -1.7 -0.8 -2.0
-0.4 -1.0 -0.3 -6.8
-1.3 -1.7 -0.5 -16.6
1.0 3.3 -27.4 -0.1
1.2 5.2 -55.9 -1.3
1.3 0.3 -4.3 -0.7
1.1 -0.8 -1.2 -0.6
0.5 2.8 -21.3 -0.7

No change, so clusters are final
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Fitting a Mixture Model
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Limitations of k -means / mixture models

k -means is fast and simple, but . . .

� What if your data are discrete?

� What if each data point has more than one cluster? (digits vs.
documents)

� What if you don’t know the number of clusters?
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Wrapup

� Clustering helps discover patterns

� k -means is a simple approach

� Gaussian mixture models more probabilistic foundation
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