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Refresher: Random variables

� Random variables take on values in a sample space.
� This week we will focus on discrete random variables:
� Coin flip: {H,T }
� Number of times a coin lands heads after N flips: {0,1,2, . . . ,N}
� Number of words in a document: Positive integers {1,2, . . .}

� Reminder: we denote the random variable with a capital letter; denote a
outcome with a lower case letter.
� E.g., X is a coin flip, x is the value (H or T ) of that coin flip.
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Refresher: Discrete distributions

� A discrete distribution assigns a probability
to every possible outcome in the sample space

� For example, if X is a coin flip, then

P(X =H) = 0.5

P(X = T ) = 0.5

� Probabilities have to be greater than or equal to 0 and probabilities over
the entire sample space must sum to one

∑

x

P(X = x) = 1
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Mathematical Conventions

0!

If n! = n · (n−1)! then 0! = 1 if
definition holds for n> 0.

n0

Example for 3:

32 =9 (1)

31 =3 (2)

3−1 =
1

3
(3)
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Today: Types of discrete distributions

� There are many different types of discrete distributions, with different
definitions.

� Today we’ll look at the most common discrete distributions.
� And we’ll introduce the concept of parameters.

� These discrete distributions (along with the continuous distributions
next) are fundamental

� Regression, classification, and clustering
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Bernoulli distribution

� A distribution over a sample space with two values: {0,1}
� Interpretation: 1 is “success”; 0 is “failure”
� Example: coin flip (we let 1 be “heads” and 0 be “tails”)

� A Bernoulli distribution can be defined with a table of the two
probabilities:
� X denotes the outcome of a coin flip:

P(X = 0) = 0.5

P(X = 1) = 0.5

� X denotes whether or not a TV is defective:

P(X = 0) = 0.995

P(X = 1) = 0.005
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Bernoulli distribution

� Do we need to write out both probabilities?

P(X = 0) = 0.995

P(X = 1) = 0.005

� What if I only told you P(X = 1)? Or P(X = 0)?

P(X = 0) = 1−P(X = 1)

P(X = 1) = 1−P(X = 0)

� We only need one probability to define a Bernoulli distribution
� Usually the probability of success, P(X = 1).
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Bernoulli distribution

Another way of writing the Bernoulli distribution:

� Let θ denote the probability of success (0≤ θ ≤ 1).

P(X = 0) = 1−θ
P(X = 1) = θ

� An even more compact way to write this:

P(X = x) = θ x(1−θ )1−x

� This is called a probability mass function.
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Probability mass functions

� A probability mass function (PMF) is a function that assigns a probability
to every outcome of a discrete random variable X .
� Notation: f (x)= P(X = x)

� Compact definition

� Example: PMF for Bernoulli random variable X ∈ {0,1}

f (x) = θ x(1−θ )1−x

� In this example, θ is called a parameter.
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Parameters

� Define the probability mass function

� Free parameters not constrained by the PMF.

� For example, the Bernoulli PMF could be written with two parameters:

f (x) = θ x
1 θ

1−x
2

But θ2 ≡ 1−θ1 . . . only 1 free parameter.

� The complexity ≈ number of free parameters. Simpler models have
fewer parameters.
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Sampling from a Bernoulli distribution

� How to randomly generate a value distributed according to a Bernoulli
distribution?

� Algorithm:
1. Randomly generate a number between 0 and 1

r = random(0, 1)
2. If r <θ , return success

Else, return failure
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