
1

Web-Scale Databases

A database perspective on the cloud

Data-Intensive Information Processing Applications !
Session #7

Andreas Thor
University of Maryland & University of Leipzig

Thursday, March 31, 2011

2

Agenda
•  Cloud ! Hadoop/MapReduce

1.  Object Storage (Amazon S3)
2.  Cloud Database (BigTable/Hbase)

•  Add Database stuff to Hadoop/MapReduce
3.  SQL to MapReduce
4.  Data Warehouse on top of Hadoop/MapReduce (Hive)

DeWitt & Stonebraker. MapReduce: A major step backwards.
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html.

Stonebraker et. al: MapReduce and parallel DBMSs: friends or foes? CACM 2010

3

Storage Services

[Amazon] DeCandia et al. Dynamo: Amazon’s Highly Available Key-value Store. SOSP’07

4

Object Storage Services
•  Service for storing objects (binary data) in the cloud

–  Upload , storage on multiple nodes, download
•  Simple structure

–  Buckets: simple (flat) containers
–  Objects: arbitrary data (e.g., files), arbitrary size
–  Authentication, access rights

•  Simple API
–  HTTP requests (REST-ful API): PUT, GET, DELETE
–  Used by applications, e.g., DropBox (online backup & sync tool)

•  Performance
–  fast, scalable, high availability

•  Costs
–  “pay as you go”: #requests, data size, upload/download size

•  Example: Microsoft Azure Storage, Amazon Simple Storage Service (S3)

5

Problems
•  Concurrent user access

–  YouTube videos, collaborative work on documents,
•  Problem: concurrent writes

–  Conditional Updates: “IF current version =X THEN Update”
–  Node-based versioning

•  Data copies on multiple nodes
–  Reliability: Redundancy against node outage
–  Read performance: Multiple clients can read different copies in parallel (locality)

•  Problem: replica synchronization
–  Strong Consistency: Any read access will return the updated version
–  Eventual Consistency: All accesses will eventually return the updated version

6

Amazon S3/Dynamo: Overview
•  Amazon S3 is based on Amazon Dynamo
•  Distributed, scalable key-value store

–  designed for “small data objects” (1MB / key)
•  Characteristics

–  high availability
–  low latency

•  Eventually consistent data store
–  Write access always possible
–  relaxed consistency in favor of availability

•  Performance SLA (Service Level Agreement)
–  “response within 300ms for 99.9% of requests for peak client load of 500 requests

per second”
•  P2P-like structure

–  no master nodes, all nodes have the same functionality
–  each node is aware of data at peers

7

Amazon Dynamo: Partitioning
•  Each node is assigned a position in a ring

–  Position= random value of a hash function
•  Node assignment

–  Compute hash value of key
–  Choose next N nodes on ring (clock-wise)
–  Example: Hash(key) between A and B
" for N=3: nodes B, C, and D

–  Performant node insert / delete / remove
because neighboring nodes affected only

•  Preference list
–  List of N nodes that are assigned for a given key
–  each node has a preference list for all keys

•  Consistent hashing
–  appropriate hash function needed for data locality and load balancing

A
B

C

D E

F

G

Hash(key)

8

Amazon Dynamo: Data access
•  Key value store interface

–  Primary key access, no complex queries
–  Request to any node of the ring
–  Request will be forwarded to one (first) node of the key’s preference list

•  Put (Key, Context, Object)
–  Coordinator creates vector clock (versioning) based on request’s context
–  Coordinator writes object + vector clock
–  Replication

•  Write requests to N-1 other nodes out of the preference list
•  Success, if (at least) W-1 nodes succeed
•  asynchronous replica updates for W<N " consistency problems

•  Get (Key)
–  Read request to N nodes of the preference list
–  Return responses from R nodes " may contain multiple versions; list of (object,

context) pairs

9

Amazon Dynamo: Replication
•  Read/Write Quorum

–  R/W = minimal number of replica nodes that must be synchronized for successful
read/write operation

–  Application can adjust (N,R,W) to meet needs for performance, availability, and
durability

•  Consistency if R + W > N
–  User/application-controlled conflict resolution for different versions

•  Variants
–  Read-optimized: R=1, W=N
–  Write-optimized: R=N, W=1
–  Default: (3,2,2)

10

Amazon Dynamo: Versioning
•  Example of object versioning

•  “Vector Clocks” represent dependencies between different versions of the
same object " reconcile multiple versions
–  version counter per replica node,

e.g., D ([Sx, 1]) for object D, node Sx, version 1
–  Vector clock: list of (node, counter) pairs to indicate available object

versions

11

Amazon Dynamo: Versioning (2)
•  Vector Clocks to determine depen-

dencies between 2 object versions
–  Counters of 1st vector clock ! all counters

of 2nd vector clock! 1st version is (direct)
ancestor and can be deleted

–  otherwise: conflict resolution
•  Read returns all known versions incl.

vector clocks
–  subsequent update merges all version

•  Application determines conflict
resolution

–  vector clocks part of get/put requests

12

Amazon Dynamo: Temporary failures
•  Temporary node failure should be transparent to the user
•  Sloppy Quorum (N, R, W)

–  All operations performed on first N healthy nodes
–  still “writable” if replica not available (e.g., W=N)

•  Hinted Handoff
–  If node is unavailable, replication request is sent to another node (“hinted replica”)
–  Background job: When original node has recovered, send hinted replica to original

node

13

Amazon Dynamo: Replica synchronization
•  Hash-Tree (Merkle Tree) for key

range
–  Leafs = hash value of key value
–  Parents = hash value of respective

child node values
•  Advantages

–  Efficient check if two replicas are
identical = roots have same value

–  Efficient recursive identification of
out-of-sync sub trees

•  Disadvantages
–  Computational costs during

repartitioning (e.g., new nodes)
K1
V1

K2
V2

K3
V3

K4
V4

H(k1) H(k2) H(k4) H(k3)

H(H(k1), H(k2)) H(H(k3), H(k4))

H(H(H(k1), H(k2)), H(H(k3), H(k4)))

...

...

H(...)

...

14

Amazon Dynamo: Techniques (Summary)

•  Additional techniques
–  Gossip protocol for P2P network (new nodes, failure identification,)

Problem Technique Advantage

Partitioning Consistent Hashing Scalability

High availability of
writes

Vector Clocks +
conflict resolution
during reads

Versioning independent from
update frequency

Temporary node
failure

Sloppy Quorum and
Hinted Handoff

High availability; reliable

Recovering Hash Tree
(Merkle Tree)

Efficient background
synchronization of replicas

15

Amazon S3/Dynamo vs. Azure Storage
Amazon Dynamo Azure Storage

Partitioning Hash function Object name
Dynamically
extensible

+ +

Routing P2P hierarchical
Replication asynchronous synchronous
Consistency Eventual Consistency Strong Consistency

Handling
concurrent
writes

during read;
multiple versions with
vector clock

during write;
conditional updates

Performance Adjustable by read/write
quorum

Read optimized; CDN
(eventual consistency)

16

Web (nonSQL) Databases

[BigTable] Chang et al. Bigtable: A Distributed Storage System for Structured Data. OSDI’06
[HBase] http://hadoop.apache.org/hbase/

17

Web Database: Usage scenario
•  Web table

–  Table contains crawled web pages incl. date, time, ...
–  Key: web page URL
–  millions/billions of pages

•  Random access
–  Crawler adds / updates web pages
–  Search engine delivers cached version of web pages

•  Batch processing
–  Build search engine index

•  Dynamic web applications (e.g., Facebook) need fast random access to
(semi-) structured data

18

Google‘s BigTable

•  Distributed data storage system

–  column-oriented key-value store
–  multi-dimensional
–  Versioning
–  High availability
–  High performance

•  Goals
–  Billions of rows, millions of columns, thousands of version
–  Real-time read/write random access
–  Large data (PB)
–  linear scalability with the number of nodes

•  Idea / techniques
–  Architecture allows efficient but simple data access method
–  no additional overhead (e.g., ACID)

•  HBase is Hadoop implementation of BigTable

19

Data model
•  Distributed, multi-dimensional, sorted map

(row:string, column:string, time:int64) ! string
–  Keys for row and columns
–  time stamp
–  Arbitrary data (Strings / Byte strings)

•  Rows
–  Read and write operations are atomic per row only
–  Data stored in (lexicographical) order of row keys

20

Data model (2)
•  Columns

–  can be added dynamically at run-time
•  Column families

–  Group together n similar columns
–  column key = family: qualifier
–  Disk/memory storage w.r.t. to column families (columns of the same family are

stored „close together“)
•  Time stamp

–  different versions of data per cell
–  garbage collection of older versions („keep t versions only“)

21

Data model (3)
•  Conceptual (alternative)

•  Physical storage

Row Key Time Stamp Column Contents Column Family Anchor
“com.cnn.www” T9 Anchor:cnnsi.com CNN

T8 Anchor:my.look.ca CNN.COM
T6 “<html>.. “
T5 “<html>.. “

Row Key Time Stamp Contents
com.cnn.www T6 “<html>..”

T5 “<html>..”

Row Key Time Stamp Anchor
com.cnn.www T9 Anchor:cnnsi.com CNN

T5 Anchor:my.look.ca CNN.COM

22

Architecture
•  Data partitioning

–  Rows sorted by key
–  Horizontal table partitioning into tablets
–  Tablet distribution across multiple tablet servers

•  Master Server
–  Assignment: Tablet # Tablet Server
–  Add/delete tablet servers
–  Load balancing for tablet servers

•  Tablet Server
–  Manages 10-1,000 tablets
–  Realizes read and write access
–  Tablet split if tablet too large (100-200MB)

•  Client
–  Communication with tablet server for reading / writing

Master Server
(GFS Master Server)

Tablet Server
(GFC Chunk

Server)

...

Tablet Server
(GFC Chunk

Server)

...
Tablets (Chunks)

23

Tablet Location
•  2-level catalog management with Root and METADATA table
•  Root table

–  Links to all tablets of a METADATA table
–  Stored in 1 Tablet (never split)

•  METADATA table
–  Links to all tablets (of user tables)
–  Identifier: table name + key of last row
–  Table are sorted by key

•  Address space
–  Entry size: 1KB
–  Tablet size: 128MB
–  Addressable tablets:

•  METADATA: 128MB / 1KB = 217 tablets
•  User Table: 217 $ 217 = 234 tablets

–  Size of all user tablets: 234 $ 128 MB = 241 MB = 2 million TB

24

Tablet: Read and write access
•  SSTable File (Sorted String Table)

–  Immutable sorted map
–  Bloom Filter to check if

SSTable contains data for
row+column

•  Write access
–  Write to transaction Log (for redo)
–  Write to MemTable (RAM)

•  Asynchronous: Compaction
–  Minor: Copy data from MemTable to SSTable (and delete from log)
–  Merge: Merge MemTable and SSTable(s) to new SSTable
–  Major: Remove deleted data (=merge to one SSTable)

•  Read access
–  Read from MemTable and SSTables to find data

25

Performance
•  #Read/WriteOps

per second for
1000Byte

•  Good scalability
for up to 250
tablet servers

•  Write is faster than read
–  Commit-Log is append only; Read requires access to MemTable + SSTable

•  Random reads slowest
–  Access (all) SSTables

•  Scanning and sequential reads are more efficient
–  Make use of sorted keys

26

Bigtable vs. RDBMS
BigTable / HBase RDBMS

Assumption (hardware) failures are prevalent (hardware) failures are rare
Replication built-in external
Normalization unnormalized data

(wide, sparse tables)
normalized data (3NF)
(compact, redundant free tables)

Query key-based access: point and range SQL
Scalability linear, unlimited limited (due to ACID, foreign keys, views,

trigger, ...)
Index primary key primary key + secondary indexes
Transactions - +
Atomicity row level transaction level
Consistency No integrity constraints, no referential

integrity
Integrity constraints and referential
integrity

Isolated
execution

- +

Durability + +

27

MapReduce and SQL

[CouchDB] http://couchdb.apache.org/
[Data] http://labs.mudynamics.com/wp-content/uploads/2009/04/icouch.html

28

Query transformation
•  (manual) rewrite from SQL to MapReduce

•  Example: CouchDB
•  Document-oriented data store

–  no schema
–  JSON format
–  simple versioning concept

•  Query/view definition
–  specify map and reduce function in Javascript (or other language)

29

{“_id”:”1”, "name":"fish.jpg",”time":”17:46","user":"bob“,"camera":"nikon",
 "info":{"width":100,"height":200,"size":12345},"tags":["tuna","shark"]}
{“_id”:”2”, "name":"trees.jpg",“time":”17:57”,"user":"john”,"camera":"canon",
 "info":{"width":30,"height":250,"size":32091},"tags":["oak"]}
....

Example data
•  Conceptional: nested table

•  Internal representation as document set (JSON format)

id name time user camera info tags
width height size

1 fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark]
2 trees.jpg 17:57 john canon 30 250 32091 [oak]
3 snow.png 17:56 john canon 64 64 1253 [tahoe, powder]
4 hawaii.png 17:59 john nikon 128 64 92834 [maui, tuna]
5 hawaii.gif 17:58 bob canon 320 128 49287 [maui]
6 island.gif 17:43 zztop nikon 640 480 50398 [maui]

30

Selection
•  Selection = attribute value condition

–  SQL: ... WHERE attr = “xy”
•  Map

–  check condition using IF statement
–  return selected document

•  Reduce
–  id function

•  Example
–  SQL: SELECT * FROM table WHERE user = “bob”

id name time user camera info tags
width height size

1 fish.jpg 17:46 bob nikon 100 200 12345 [tuna, shark]
5 hawaii.gif 17:58 bob canon 320 128 49287 [maui]

31

Selection: Example

{id:1,user:bob ...}
{id:2,user:john ...}
{id:3,user:john ...}
{id:4,user:john ...}
{id:5,user:bob ...}
{id:6,user:zztop...}

ma
p

sh
uff

le
+

so
rt

re
du

ce

key value
null {id:1 ...}
null {id:5 ...}

key values
null [{id:1 ...},

{id:5 ...}]

[{id:1 ...},{id:5 ...}]

map
function (doc) {
 if (doc.user == “bob”)
 emit (doc.id, doc);
}

reduce
function (key, values) {
 return values[0];
}

emit (null, doc);
return values;

key value
1 {id:1 ...}
5 {id:5 ...}

key values
1 [{id:1 ...}]
5 [{id:5 ...}]

{id:1 ...}
{id:5 ...}

ma
p

sh
ffl+

srt

re
du

ce
 Alternative

32

Projection
•  Projection = restrict set of attributes

–  SQL: SELECT Attr1, Attr2 FROM ...
•  Map

–  create new (“restricted”) document
•  Reduce

–  id function
•  Duplicate removal

–  map: key = projected attributes
–  reduce: return first value

•  Example
–  SQL: SELECT (DISTINCT) user FROM table

user
bob
john
john
john
bob
zztop

user
bob
john
zztop

33

Projection: Example (w/o duplicate removal)

{id:1,user:bob ...}
{id:2,user:john ...}
{id:3,user:john ...}
{id:4,user:john ...}
{id:5,user:bob ...}
{id:6,user:zztop...}

ma
p

re
du

ce

key value
1 {user:bob }
2 {user:john}
3 {user:john}
4 {user:john}
5 {user:bob}
6 {user:zztop}

{user:bob }
{user:john}
{user:john}
{user:john}
{user:bob}
{user:zztop}

map
function (doc) {
 emit(doc.id,{“user”:doc.user});
}

reduce
function (key, values) {
 return values[0];
}

key value
1 [{user:bob }]
2 [{user:john}]
3 [{user:john}]
4 [{user:john}]
5 [{user:bob}]
6 [{user:zztop}]

sh
uff

le
+

so
rt

34

Projection: Example (w/ duplicate removal)

{id:1,user:bob ...}
{id:2,user:john ...}
{id:3,user:john ...}
{id:4,user:john ...}
{id:5,user:bob ...}
{id:6,user:zztop...}

ma
p

re
du

ce

key value
bob {user:bob }
john {user:john}
john {user:john}
john {user:john}
bob {user:bob}
zztop {user:zztop}

{user:bob }
{user:john}
{user:zztop}

map
function (doc) {
 emit(doc.user,{“user”:doc.user});
}

reduce
function (key, values) {
 return values[0];
}

key value
bob [{user:bob },

{user:bob }]
john [{user:john},

{user:john},
{user:john}]

zztop [{user:zztop}] sh
uff

le
+

so
rt

35

Grouping and aggregate functions
•  Grouping

–  Divides records into groups based on shared attribute values
–  Produces one record (row) per group
–  Aggregate functions to compute aggregated values (per group), e.g., SUM

•  Map
–  Key = group attribute values

•  Reduce
–  Return first key value
–  Optional: Apply aggregate function(s)

•  Example
–  SELECT camera, AVG(info.size) as avgsize

FROM Table
GROUP BY camera

camera avgsize
canon 27543.3
nikon 51859

36

Grouping and aggregate functions: Example

{id:1,user:bob ...}
{id:2,user:john ...}
{id:3,user:john ...}
{id:4,user:john ...}
{id:5,user:bob ...}
{id:6,user:zztop...}

ma
p

re
du

ce

{camera:canon,
avgsize: 27543.3}
{camera:nikon,
avgsize: 51859}

map
function (doc) {
 emit(doc.camera,
 doc.info.size);
}

reduce
function (key, values) {
 sum = 0;
 for (i=0; i<values.length; i++) {
 sum = sum + values[i];
 }
 return {"camera":keys,
 “avgsize":sum/values.length};
}

sh
uff

le
+

so
rt

key value
nikon 12345
canon 32091
canon 1253
nikon 92834
canon 49287
nikon 50398

key value
canon [32091,

1253,
49287]

nikon [12345,
92834,
50398]

37

Equi-join + multi-valued attribute
•  Equi-join = combine records from two relations based on attribute equality

–  SQL: ... WHERE Tab1.Attr1 = Tab2.Attr2
•  Multi-valued attribute in 1NF

–  1-to-many, many-to-many relationships
–  equi-joins needed

•  Map
–  Key = join attribute value

•  Reduce
–  Iteration over all value pairs

•  Example (SQL)
–  SELECT Tab1.name AS name1, Tab2.name AS name2

FROM table AS Tab1, table AS Tab2,
 tagtab AS Tag1, tagtab AS Tag2
WHERE Tag1.id=Tab1.id AND Tag2.id=Tab2.id
AND Tag1.tag = Tag2.tag
AND Tab1.name < Tab2.name

name1 name2
hawaii.png island.gif
hawaii.gif hawaii.png
hawaii.gif island.gif
fish.jpg hawaii.png

id tag
1 tuna
1 shark
4 maui
4 tuna
5 maui

38

Equi join + multi-valued attribute: Example (1)
map
function (doc) {
 for (i=0; i<doc.tags.length; i++) {
 emit (doc.tags[i], doc.name);
}

reduce
function (key, values) {
 var result = new Array();
 for (i=0; i<values.length; i++) {
 for (k=0; k<values.length; k++) {
 if (values[i]<values[k] {
 result.push ({name1:values[i], name2:values[k]});
 }
 }
 }
 return result;
}

39

Equi join + multi-valued attribute: Example (2)

{id:1,...}
{id:2,...}
{id:3,...}
{id:4,...}
{id:5,...}
{id:6,...}

ma
p

re
du

ce

key value

tuna fish.jpg
shark fish.jpg
oak tree.jpg
tahoe snow.png
powder snow.png
maui hawaii.png
tuna hawaii.png
maui hawaii.gif
maui island.gif

[{name1:hawaii.png,
name2: island.gif},
{name1:hawaii.gif,
name2:hawaii.png},
{name1:hawaii.gif,
name2:island.gif}]
[]
[]
[]
[]
[{name1:fish.jpg,
name2:hawaii.png}]

key value
maui [hawaii.png,

hawaii.gif,
island.gif]

oak [tree.jpg]
power [snow.png]
shark [fish.jpg]
tahoe [snow.png]
tuna [fish.jpg,

hawaii.png]

sh
uff

le
+

so
rt

40

MapReduce and Data Warehouses

[Hive] Thusoo et.al.: Hive-a petabyte scale data warehouse using hadoop. ICDE 2010
[HiveUrl] http://hadoop.apache.org/hive/
[Hive1] http://www.slideshare.net/zshao/hive-data-warehousing-analytics-on-hadoop-presentation
[Hive2] http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook
[Hive3] http://www.slideshare.net/jsichi/hive-evolution-apachecon-2010

41

Hadoop/MR vs. Parallel DBS
•  Hadoop/MR advantages

–  Scalability, fault tolerance
–  configuration effort, costs
–  no initial data loading

•  Parallel DBS advantages
–  Declarative query language
–  Queries run faster by order of magnitude
–  Support for compressed data
–  Random access

•  Common use cases MapReduce
–  ETL
–  Data mining, data clustering
–  Analysis of semi-structured data (e.g., web log files)
–  Ad-hoc data analysis

42

Data analysis: Facebook
•  Facebook

–  4TB compressed data per day
–  135TB compressed data are analyzed per day

•  Aggregations
–  #clicks/page views per day/month/...

•  Ad-hoc analysis
–  How many uploaded pictures per county / state on New Year’s Eve?

•  Data Mining
–  User profiles based on attributes (#pageviews, #sessions, time, ...)

•  Spam detection
–  (suspicious) frequent patterns in user generated content

•  Analysis / optimization of online advertisement
–  #AdClicks per user (type) ...

43

Hive
•  Data Warehouse based on Hadoop
•  Hive = MapReduce + SQL

–  SQL is simple and widely-used
–  MapReduce scalability

•  Automatic translation SQL to MapReduce necessary
–  Programs hard to maintain, almost no reuse
–  Difficult for non experts
–  Limited expressiveness, e.g., long code (development time!) to realize simple count/

average queries

44

Hive: Overview
•  Management and analysis of structured data using Hadoop

–  no OLTP database, high latency
•  File-based data storage (HDFS)

–  metadata for mapping files to tables
–  complex data types (e.g., list, map)
–  direct file access, different data formats

•  HiveQL queries are executed using MapReduce
–  include scripts (e.g., written in Python) in queries
–  metadata, e.g., for optimizing joins

•  Scalability and fault tolerance
–  HDFS + MapReduce

•  Extensibility
–  User-Defined Table-Generating Functions (UDTF)
–  User-Defined Aggregate Functions (UDAF)

45

Hive: Architecture
•  Metastore

–  Tables, columns (type)
–  Location, partitions
–  Information on (de)serialization

•  CLI / Web-GUI
–  Browse metastore
–  Send queries

•  Thrift
–  Cross-language Service " HiveQL

•  Compiler + Optimizer
–  Query optimization and translation of

HiveQL query to DAG of MapReduce
jobs

•  Executor
–  Execute MR-jobs of DAG

46

Hive: Data type & data access
•  Data types

–  simple and composite data types
–  list, map

•  Flexible (de)serialization of tables
–  multiple (user-defined) format, e.g. XML, JSON, CSV
–  multiple “storage engines”, e.g., file

•  Advantages
–  no initial data loading into data warehouse (no data replication!)
–  no data transformation to relational model but direct file access

•  Disadvantages
–  no pre-processing, e.g., indexing
–  always full (file) table scan necessary

47

Hive: Tables, partitions, and files
•  Table links to existing file(s) in HDFS

–  Table has corresponding HDFS directory: /wh/pvs
–  Definition of columns for data partitioning
 /wh/pvs/ds=20090801/ctry=US
 /wh/pvs/ds=20090801/ctry=CA

–  Bucketing: Split data of a directory based on hash value
 /wh/pvs/ds=20090801/ctry=US/part-00000 …
 /wh/pvs/ds=20090801/ctry=US/part-00020

partitions (multiple
levels possible)

HDFS files
(Hash buckets possible)

table

Clicks
ds=2090801

ds=2090802

48

Hive: Table
•  Create
 CREATE EXTERNAL TABLE pvs

 (userid int, pageid int, ds string, stry string)
 PARTITIONED ON(ds string, ctry string)
 STORED AS textfile

 LOCATION ‘/path/to/existing/file’

•  Load
 status_updates
 (user_id int, status string, ds string)
 LOAD DATA LOCAL
 INPATH ‘/logs/status_updates’
 INTO TABLE status_updates
 PARTITION (ds=’2009-03-20’)

49

Hive-QL
•  Similar to SQL

–  Selection, projection, equi-join, union, sub-queries, group by, aggregate functions
–  Sort by vs. order by

•  Extend queries by
–  MapReduce scripts
–  UDF, may operate on complex data structures (lists, map)

FROM (
 FROM pv_users
 SELECT TRANSFORM(pv_users.userid, pv_users.date)
 USING 'map_script'
 AS(dt, uid)
 CLUSTER BY(dt)
) map
INSERT INTO TABLE pv_users_reduced
SELECT TRANSFORM(map.dt, map.uid)
USING 'reduce_script'
AS (date, count);

50

Hive-QL: Query transformation
•  Hive-QL query is transformed into DAG (directed acyclic graph)
•  Nodes: operators

–  TableScan
–  Select, Extract
–  Filter
–  Join, MapJoin, Sorted Merge Map Join
–  GroupBy, Limit
–  Union, Collect
–  FileSink, HashTableSink, ReduceSink
–  UDTF

•  Graph represents data flow
•  multiple (parallel) Map/Reduce phases possible

51

Hive-QL: Query transformation (Example)
•  Example

SELECT *

FROM status_updates

WHERE status

 LIKE ‘michael jackson’

52

Hive-QL: Query transformation (Example) (2)
SELECT COUNT(*)

FROM status_updates

WHERE ds=‘2009-08-01’

Updates per Map

All updates

Materialize
map output

53

Hive: Query transformation and optimization
•  DAG can become very complex
•  Optimization techniques

–  Ignore unnecessary columns
–  Apply selection as early as possible
–  Ignore unnecessary partitions

54

Hive: Join

userid age ...
111 25 ...
222 32 ...

key value
111 <R,1>
111 <R,2>
222 <R,2>

pageId userId ...
1 111 ...
2 111 ...
1 222 ...

key value
111 <S,25>
222 <S,32>

key value
111 <R,1>
111 <R,2>
111 <S,25>

key value
222 <R,2>
222 <S,32>

pageId age
1 25
2 25

pageId age
2 32

page_view

user ma
p

sh
uff

le
+

so
rt

re
du

ce

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv
JOIN user u ON (pv.userid = u.userid)

pv_users

•  Key = Join-Key, Value has flag (R or S) to distinguish between tables
•  Multi-way join using the same join key " 1 MapReduce job
•  Multi-way join using n join keys " n MapReduce jobs

55

MapJoin: Performance improvement
•  MapJoin

–  small table as additional map input
–  can be transformed into hash table
–  no reduce necessary
–  n way join possible if n-1 tables can

be made available as additional
map input

•  Dynamic optimization
–  Determine small/large table at

runtime
–  Apply MapJoin if possible, e.g., if

small table(s) fit into memory

pageId userId ...
1 111 ...
2 111 ...
1 222 ...

page_view

pageId userIds
1 [111,222]
2 [111]

HashTable

userid age ...
111 25 ...
222 32 ...

user

ma
p

pageId age
1 25
2 25
2 32

pv_users

56

Hive: Group By INSERT INTO TABLE pageid_age_sum
SELECT pageid, age, count(*)
FROM pv_users
GROUP BY pageid, age

pageId age
1 25
1 25

pv_users

pageId age
1 25
2 32

key value
<1,25> 2

key value
<1,25> 1
<2,32> 1

ma
p

sh
uff

le
+

so
rt

re
du

ce

key value
<1,25> 2
<1,25> 1

key value
<2,32> 1

pageId age count
1 25 3

pageId age count
2 32 1

pageid_age_sum

•  Key = group attributes
•  Reduce = aggregation function

–  pre-aggregation using a map combiner is possible (e.g., (<1,25>,2))

57

User-defined scripts
•  Include user-defined scripts in HiveQL queries using TRANSFORM

operator
–  Data (de)serialization
–  Transfer via stdin/stdout

computeAuthorityValue.py

import sys
for line in sys.stdin:
 id = line.strip()
 ... compute authval ...
 print '\t'.join([id, authval])

ADD FILE computeAuthorityValue.py;
SELECT
 TRANSFORM (userid)
 USING ‘computeAuthorityValue.py'
 AS id, authority_value
 FROM user

userid authority_value
111 0.1
222 0.8

userid age ...
111 25 ...
222 32 ...

user

58

Hadoop/MR vs. Parallel DBS
Hadoop / MapReduce Shared Nothing-RDBMS

Data size PB TB-PB
Data structure semi-structured data static schema
Partitioning Blocks in DFS (byte-wise) Horizontal
Query MapReduce programs Declarative (SQL)
Data access Batch via indexes (e.g., range)
Updates Write once read many times Read and write many times
Scheduling Runtime Compile-time
Processing Parse tuples at runtime efficient access to attributes

(Storage Manager)
Data flow Pull – materialize intermediate results Push – tuple pipelining between operators
Fault tolerance Restart map/reduce task query restart (operator restart)
Scalability linear, unlimited linear, limited
Hardware heterogeneous (cheap commodity

hardware)
homogeneous (expensive high end
hardware)

Software free, open source very expensive

59

Summary
•  New database-like developments in the cloud
•  Database techniques integrated in Hadoop/MR

•  There is many many more
–  Pig Latin – a programming language for MapRedue-based data processing
–  HadoopDB – a hybrid of Hadoop/MR and RDBMS
–  Megastore – “BigTable + ACID”
–  Dremel – ad-hoc query system for analysis of read-only nested data
–  RDBMS in the Cloud – e.g., IBM DB2 running on Amazon EC2
–  Data management optimizations in the cloud – e.g., load balancing
–  ...

