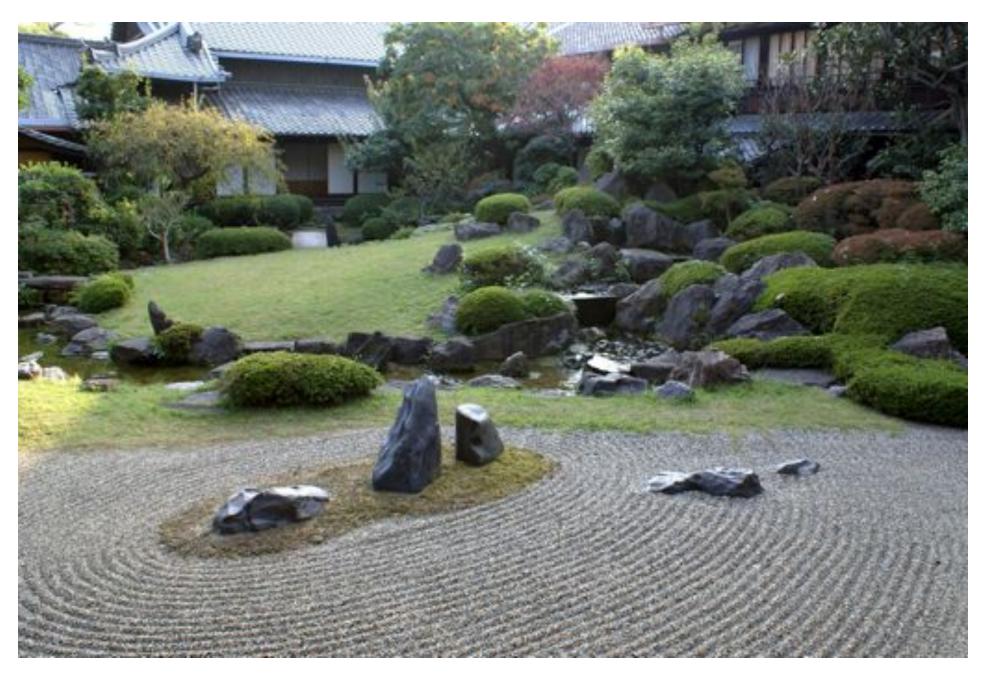
Data-Intensive Information Processing Applications — Session #6

Language Models

Jordan Boyd-Graber University of Maryland

Thursday, March 10, 2011



Source: Wikipedia (Japanese rock garden)

Today's Agenda

- Sharing data and more complicated MR jobs
- What are Language Models?
 - Mathematical background and motivation
 - Dealing with data sparsity (smoothing)
 - Evaluating language models
- Large Scale Language Models using MapReduce
- Midterm

Sharing Data

- Already discussed: parameters in configuration
- HDFS
 - Have mappers or reduc Path path = new Path("/testfile");
 - Does not ensure locality
- Distributed Cache

- FileSystem hdfs = FileSystem.get(new Configuration());
 Path path = new Path("/testfile"):
- FSDataInputStream dis = hdfs.open(path); System.out.println(dis.readUTF()); dis.close();
- Add an argument: -files Important_data.txt
- Important_data.txt will be copied into HDFS
- Every task can now access it as a local file
- Deleted when no longer needed

Controlling Execution

- Call runJob multiple times
 - Look at PageRank example in Cloud9
 - runJob blocks until finished
- More complicated dependencies?
 - Use JobControl implements
 Runnable

```
JobControl workflow = new JobControl("workflow");

Job foo = new Job( ... );

Job bar = new Job( ... );

Job baz = new Job( ... );

baz.addDependingJob(bar);
baz.addDependingJob(foo);
bar.addDependingJob(foo);

workflow.addJob(foo);
workflow.addJob(bar);
workflow.addJob(baz);
workflow.run();
```

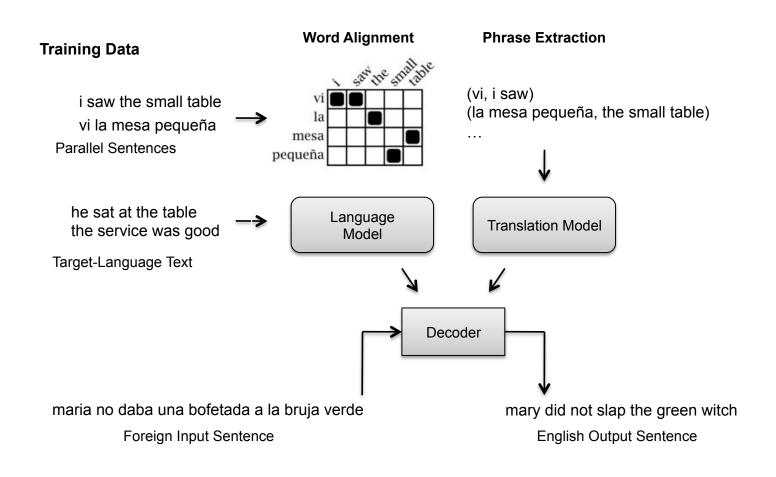
- What?
 - LMs assign probabilities to sequences of tokens
- O How?
 - Based on previous word histories
 - n-gram = consecutive sequences of tokens
- Why?
 - Speech recognition
 - Handwriting recognition
 - Predictive text input
 - Statistical machine translation

FAIL

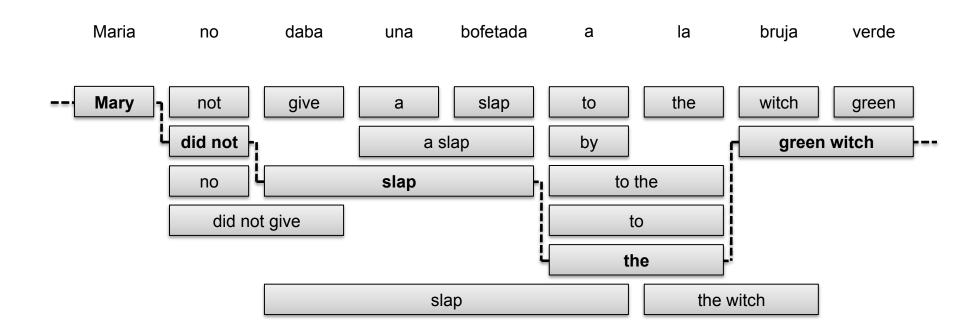
Advanced sent

i like to think of jesus as a mischievous bedger
i like to tape my fingers together
i like to take the world to sing
i like to take the time to love your body lyrics
i like to take the world to sing lyrics
i like to think outside the quadrilateral parallelogram
i like to think of jesus in a tuxedo t shirt
i like to think of jesus
i like to throw my hands up in the air sometimes lyrics
i like to tape my thumbs
Google Search | fim Feeling Lucky

Statistical Machine Translation



SMT: The role of the LM

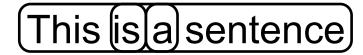


N=1 (unigrams)


```
Unigrams:
```

```
This, is, a, sentence
```

N=2 (bigrams)



Bigrams:

This is, is a, a sentence

N=3 (trigrams)

This(is a) sentence

Trigrams:

This is a, is a sentence

Computing Probabilities

$$P(w_1, w_2, \dots, w_T)$$

$$= P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots P(w_T|w_1, \dots, w_{T-1})$$
 [chain rule]

Is this practical?

No! Can't keep track of all possible histories of all words!

Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-N+1},\ldots,w_{k-1})$$

N=1: Unigram Language Model

$$P(w_k|w_1,\ldots,w_{k-1})\approx P(w_k)$$

$$\Rightarrow P(w_1, w_2, \dots, w_T) \approx P(w_1)P(w_2)\dots P(w_T)$$

Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-N+1},\ldots,w_{k-1})$$

N=2: Bigram Language Model

$$P(w_k|w_1,\ldots,w_{k-1})\approx P(w_k|w_{k-1})$$

$$\Rightarrow P(w_1, w_2, \dots, w_T) \approx P(w_1 | < S >) P(w_2 | w_1) \dots P(w_T | w_{T-1})$$

Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-N+1},\ldots,w_{k-1})$$

N=3: Trigram Language Model

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-2},w_{k-1})$$

$$\Rightarrow P(w_1, w_2, \dots, w_T) \approx P(w_1 | < S > < S >) \dots P(w_T | w_{T-2} w_{T-1})$$

Building N-Gram Language Models

- Use existing sentences to compute n-gram probability estimates (training)
- Terminology:
 - N = total number of words in training data (tokens)
 - V = vocabulary size or number of unique words (types)
 - $C(w_1,...,w_k)$ = frequency of n-gram $w_1, ..., w_k$ in training data
 - $P(w_1, ..., w_k)$ = probability estimate for n-gram $w_1 ... w_k$
 - $P(w_k|w_1, ..., w_{k-1})$ = conditional probability of producing w_k given the history $w_1, ..., w_{k-1}$

What's the vocabulary size?

Building N-Gram Models

- Start with what's easiest!
- Compute maximum likelihood estimates for individual n-gram probabilities
 - Unigram: $P(w_i) = \frac{C(w_i)}{N}$
 - $\textbf{ Bigram:} P(w_i,w_j) = \frac{C(w_i,w_j)}{N}$ $P(w_j|w_i) = \frac{P(w_i,w_j)}{P(w_i)} = \frac{C(w_i,w_j)}{\sum_w C(w_i,w)} = \frac{C(w_i,w_j)}{C(w_i)}$
- Uses relative frequencies as estimates
- Maximizes the likelihood of the training data for this model of P(D|M)

Example: Bigram Language Model

```
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
```

Training Corpus

Bigram Probability Estimates

Note: We don't ever cross sentence boundaries

Building N-Gram Models

- Start with what's easiest!
- Compute maximum likelihood estimates for individual n-gram probabilities
 - Unigram: $P(w_i) = \frac{C(w_i)}{N}$
 - Bigram: $P(w_i,w_j)=\frac{C(w_i,w_j)}{N}$ $P(w_j|w_i)=\frac{P(w_i,w_j)}{P(w_i)}=\frac{C(w_i,w_j)}{\sum_w C(w_i,w)}=\frac{C(w_i,w_j)}{C(w_i)}$
- Uses relative frequencies as estimates
- Maximizes the likelihood of the data given the model P(D|M)

More Context, More Work

- Larger N = more context
 - Lexical co-occurrences
 - Local syntactic relations
- More context is better?
- Larger N = more complex model
 - For example, assume a vocabulary of 100,000
 - How many parameters for unigram LM? Bigram? Trigram?
- Larger N has another more serious problem!

Data Sparsity

Bigram Probability Estimates

Why? Why is this bad?

Data Sparsity

- Serious problem in language modeling!
- Becomes more severe as N increases
 - What's the tradeoff?
- Solution 1: Use larger training corpora
 - Can't always work... Blame Zipf's Law (Looong tail)
- Solution 2: Assign non-zero probability to unseen n-grams
 - Known as smoothing

Smoothing

- Zeros are bad for any statistical estimator
 - Need better estimators because MLEs give us a lot of zeros
 - A distribution without zeros is "smoother"
- The Robin Hood Philosophy: Take from the rich (seen n-grams) and give to the poor (unseen n-grams)
 - And thus also called discounting
 - Critical: make sure you still have a valid probability distribution!
- Language modeling: theory vs. practice

Laplace's Law

- Simplest and oldest smoothing technique
 - Statistical justification: Uniform prior over multinomial distributions
- Just add 1 to all n-gram counts including the unseen ones
- So, what do the revised estimates look like?

Laplace's Law: Probabilities

Unigrams

$$P_{MLE}(w_i) = \frac{C(w_i)}{N} \longrightarrow P_{LAP}(w_i) = \frac{C(w_i) + 1}{N + V}$$

Bigrams

$$P_{MLE}(w_i, w_j) = \frac{C(w_i, w_j)}{N} \longrightarrow P_{LAP}(w_i, w_j) = \frac{C(w_i, w_j) + 1}{N + V^2}$$

Careful, don't confuse the N's!

$$P_{LAP}(w_j|w_i) = \frac{P_{LAP}(w_i, w_j)}{P_{LAP}(w_i)} = \frac{C(w_i, w_j) + 1}{C(w_i) + V}$$

What if we don't know V?

Laplace's Law: Frequencies

Expected Frequency Estimates

$$C_{LAP}(w_i) = P_{LAP}(w_i)N$$

$$C_{LAP}(w_i, w_j) = P_{LAP}(w_i, w_j)N$$

Relative Discount

$$d_1 = \frac{C_{LAP}(w_i)}{C(w_i)}$$

$$d_2 = \frac{C_{LAP}(w_i, w_j)}{C(w_i, w_j)}$$

Laplace's Law

- Bayesian estimator with uniform priors
- Moves too much mass over to unseen n-grams
- What if we added a fraction of 1 instead?

Lidstone's Law of Succession

- Add 0 < γ < 1 to each count instead
- The smaller γ is, the lower the mass moved to the unseen n-grams (0=no smoothing)
- The case of γ = 0.5 is known as Jeffery-Perks Law or Expected Likelihood Estimation
- How to find the right value of γ?

- Intuition: Use n-grams seen once to estimate n-grams never seen and so on
- \circ Compute N_r (frequency of frequency r)

$$N_r = |\{w_i, w_j : C(w_i, w_j) = r\}|$$

- N_o is the number of items with count 0
- N₁ is the number of items with count 1
- ...

 For each r, compute an expected frequency estimate (smoothed count)

$$r' = C_{GT}(w_i, w_j) = (r+1)\frac{N_{r+1}}{N_r}$$

 Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities

$$P_{GT}(w_i, w_j) = \frac{C_{GT}(w_i, w_j)}{N}$$
 $P_{GT}(w_j | w_i) = \frac{C_{GT}(w_i, w_j)}{C(w_i)}$

Is this still a probability?

$$\sum_{r} \sum_{x:C(x)=r} r = \sum_{r} N_r(r+1) \frac{N_{r+1}}{N_r} = \sum_{r} (r+1)N_{r+1} = N$$

• What about an unseen bigram?

$$r' = C_{GT} = (0+1)\frac{N_1}{N_0} = \frac{N_1}{N_0}$$

$$P_{GT} = \frac{C_{GT}}{N}$$

• Do we know N_o ? Can we compute it for bigrams?

$$N_0 = V^2 - \text{bigrams}$$
 we have seen

Good-Turing Estimator: Example

r	Nr
I	138741
2	25413
3	10531
4	5997
5	3565
6	•••

$$N_0 = (14585)^2 - 199252$$
 $C_{unseen} = N_1 / N_0 = 0.00065$
 $P_{unseen} = N_1 / (N_0 N) = 1.06 \times 10^{-9}$

Note: Assumes mass is uniformly distributed

C(person she) = 2
$$C_{GT}$$
(person she) = (2+1)(10531/25413) = 1.243 C (person) = 223 P (she|person) = C_{GT} (person she)/223 = 0.0056

 For each r, compute an expected frequency estimate (smoothed count)

$$r' = C_{GT}(w_i, w_j) = (r+1)\frac{N_{r+1}}{N_r}$$

 Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities

$$P_{GT}(w_i, w_j) = \frac{C_{GT}(w_i, w_j)}{N}$$
 $P_{GT}(w_j | w_i) = \frac{C_{GT}(w_i, w_j)}{C(w_i)}$

What if w_i isn't observed?

- Can't replace all MLE counts
- What about r_{max} ?
 - $N_{r+1} = 0$ for $r = r_{max}$
- Solution 1: Only replace counts for r < k (~10)
- Solution 2: Fit a curve S through the observed (r, N_r) values and use S(r) instead
- For both solutions, remember to do what?
- Bottom line: the Good-Turing estimator is not used by itself but in combination with other techniques

Combining Estimators

- Better models come from:
 - Combining n-gram probability estimates from different models
 - Leveraging different sources of information for prediction
- Three major combination techniques:
 - Simple Linear Interpolation of MLEs
 - Katz Backoff
 - Kneser-Ney Smoothing

Linear MLE Interpolation

- Mix a trigram model with bigram and unigram models to offset sparsity
- Mix = Weighted Linear Combination

$$P(w_k|w_{k-2}w_{k-1}) = \lambda_1 P(w_k|w_{k-2}w_{k-1}) + \lambda_2 P(w_k|w_{k-1}) + \lambda_3 P(w_k)$$

$$0 <= \lambda_i <= 1 \qquad \sum_i \lambda_i = 1$$

Linear MLE Interpolation

- λ_i are estimated on some held-out data set (not training, not test)
- Estimation is usually done via an EM variant or other numerical algorithms (e.g. Powell)

Backoff Models

- Consult different models in order depending on specificity (instead of all at the same time)
- The most detailed model for current context first and, if that doesn't work, back off to a lower model
- Continue backing off until you reach a model that has some counts

Backoff Models

- Important: need to incorporate discounting as an integral part of the algorithm... Why?
- MLE estimates are well-formed...
- But, if we back off to a lower order model without taking something from the higher order MLEs, we are adding extra mass!
- Katz backoff
 - Starting point: GT estimator assumes uniform distribution over unseen events... can we do better?
 - Use lower order models!

Katz Backoff

Given a trigram "x y z"

$$P_{katz}(z|x,y) = \begin{cases} P_{GT}(z|x,y), & \text{if } C(x,y,z) > 0\\ \alpha(x,y)P_{katz}(z|y), & \text{otherwise} \end{cases}$$

$$P_{katz}(z|y) = \begin{cases} P_{GT}(z|y), & \text{if } C(y,z) > 0\\ \alpha(y)P_{GT}(z), & \text{otherwise} \end{cases}$$

Details:

Choose α so that it's a probability distribution

Trust (use ML for) large probabilities (e.g. if they appear more than 5 times)

Kneser-Ney Smoothing

- Observation:
 - Average Good-Turing discount for r ≥ 3 is largely constant over r
 - So, why not simply subtract a fixed discount D (≤1) from non-zero counts?
- Absolute Discounting: discounted bigram model, back off to MLE unigram model
- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model

Kneser-Ney Smoothing

Intuition

- Lower order model important only when higher order model is sparse
- Should be optimized to perform in such situations

Example

- C(Los Angeles) = C(Angeles) = M; M is very large
- "Angeles" always and only occurs after "Los"
- Unigram MLE for "Angeles" will be high and a normal backoff algorithm will likely pick it in any context
- It shouldn't, because "Angeles" occurs with only a single context in the entire training data

Kneser-Ney Smoothing

- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model
 - Based on appearance of unigrams in different contexts
 - Excellent performance, state of the art

$$P_{KN}(w_k|w_{k-1}) = \frac{C(w_{k-1}w_k) - D}{C(w_{k-1})} + \beta(w_k)P_{CONT}(w_k)$$

$$P_{CONT}(w_i) = \frac{N(\bullet w_i)}{\sum_{w'} N(\bullet w')}$$

 $N(\bullet w_i)$ = number of different contexts w_i has appeared in

- Why interpolation, not backoff?
- Statistical Reason: lower-order model is CRP base distribution

Explicitly Modeling OOV

- Fix vocabulary at some reasonable number of words
- During training:
 - Consider any words that don't occur in this list as unknown or out of vocabulary (OOV) words
 - Replace all OOVs with the special word <UNK>
 - Treat <UNK> as any other word and count and estimate probabilities

• During testing:

- Replace unknown words with <UNK> and use LM
- Test set characterized by OOV rate (percentage of OOVs)

Evaluating Language Models

- Information theoretic criteria used
- Most common: Perplexity assigned by the trained LM to a test set
- Perplexity: How surprised are you on average by what comes next?
 - If the LM is good at knowing what comes next in a sentence ⇒
 Low perplexity (lower is better)
 - Relation to weighted average branching factor

Computing Perplexity

- Given test set W with words $w_1, ..., w_N$
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words

$$PP(T) = P(w_1, \dots, w_N)^{-1/N}$$

 Using the probability chain rule and (say) a bigram LM, we can write this as

$$PP(T) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

A lot easier to do with logprobs!

Practical Evaluation

- Use <s> and </s> both in probability computation
- Count </s> but not <s> in N
- Typical range of perplexities on English text is 50-1000
- Closed vocabulary testing yields much lower perplexities
- Testing across genres yields higher perplexities
- Can only compare perplexities if the LMs use the same vocabulary

Order	Unigram	Bigram	Trigram
PP	962	170	109

Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable Test: 1.5 million words, same genre as training

Typical "State of the Art" LMs

- Training
 - N = 10 billion words, V = 300k words
 - 4-gram model with Kneser-Ney smoothing
- Testing
 - 25 million words, OOV rate 3.8%
 - Perplexity ~50

Take-Away Messages

- LMs assign probabilities to sequences of tokens
- N-gram language models: consider only limited histories
- Data sparsity is an issue: smoothing to the rescue
 - Variations on a theme: different techniques for redistributing probability mass
 - Important: make sure you still have a valid probability distribution!

Scaling Language Models with MapReduce

Language Modeling Recap

- Interpolation: Consult <u>all</u> models at the same time to compute an interpolated probability estimate.
- Backoff: Consult the highest order model first and backoff to lower order model <u>only if</u> there are no higher order counts.
- Interpolated Kneser Ney (state-of-the-art)
 - Use absolute discounting to save some probability mass for lower order models.
 - Use a novel form of lower order models (count unique single word contexts instead of occurrences)
 - Combine models into a true probability model using interpolation

$$P_{KN}(w_3|w_1, w_2) = \frac{C_{KN}(w_1w_2w_3) - D}{C_{KN}(w_1w_2)} + \lambda(w_1w_2)P_{KN}(w_3|w_2)$$

Questions for today

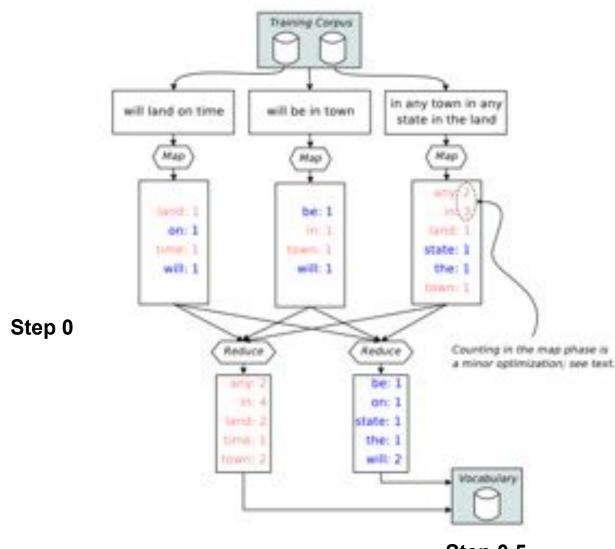
Can we efficiently train an IKN LM with terabytes of data?

Does it really matter?

Using MapReduce to Train IKN

- Step 0: Count words [MR]
- Step 0.5: Assign IDs to words [vocabulary generation] (more frequent → smaller IDs)
- Step 1: Compute *n*-gram counts [MR]
- Step 2: Compute lower order context counts [MR]
- Step 3: Compute unsmoothed probabilities and interpolation weights [MR]
- Step 4: Compute interpolated probabilities [MR]

Steps 0 & 0.5



Step 0.5

Steps 1-4

<u>.</u>		Step 1	Step 2	Step 3	Step 4
Mapper Input	Input Key	DocID	<i>n</i> -grams "a b c"	"a b c"	"a b"
Марр	Input Value	Document	C _{total} ("a b c")	C _{KN} ("a b c")	_Step 3 Output_
.					
Outpu r Inpu	Intermediate Key	<i>n</i> -grams "a b c"	"a b c"	"a b" (history)	"c b a"
Mapper Output Reducer Input	Intermediate Value	C _{doc} ("a b c")	C' _{KN} ("a b c")	("c", C _{KN} ("a b c"))	(P'("a b c"), λ("a b"))
≥ ш.					
	Partitioning	"a b c"	"a b c"	"a b"	"c b"
_					
Reducer Output	Output Value	C _{total} ("a b c")	C _{KN} ("a b c")	("c", P'("a b c"), λ("a b"))	(P _{KN} ("a b c"), λ("a b"))
<u>r</u> 0 .		Count n-grams	Count contexts	Compute unsmoothed probs AND interp. weight	Compute ts Interp. probs

All output keys are always the *same* as the intermediate keys I only show trigrams here but the steps operate on bigrams and unigrams as well

Steps 1-4

<u>.</u>		Step 1	Step 2	Step 3	Step 4
Mapper Input	Input Key	DocID	<i>n</i> -grams "a b c"	"a b c"	"a b"
Марр	Input Value	Document	C _{total} ("a b c")	C _{KN} ("a b c")	_Step 3 Output_
			Details are n	ot important!	
Output r Input	Intermediate Key	5 MR jobs to train IKN (expensive)!			"c b a"
Mapper Output Reducer Input	Intermediate Value	(interpola	IKN LMs are big! terpolation weights are context dependent)		'a b c"), λ("a b"))
	Partitioning	Can we do something that has better behavior at scale in terms of time and space?		"c b"	
Reducer	Output Value	C _{total} ("a b c")	C _{KN} ("a b c")	("c", P'("a b c"), λ("a b"))	(P _{KN} ("a b c"), λ("a b"))
E o		Count n-grams	Count contexts	Compute unsmoothed probs AND interp. weights	Compute Interp. probs

All output keys are always the *same* as the intermediate keys I only show trigrams here but the steps operate on bigrams and unigrams as well

Let's try something stupid!

- Simplify backoff as much as possible!
- Forget about trying to make the LM be a true probability distribution!
- Don't do any discounting of higher order models!
- Have a single backoff weight independent of context! $[\alpha(\bullet) = \alpha]$

$$S(w_3|w_2,w_1)=rac{c(w_1w_2w_3)}{c(w_1w_2)}$$
 if $c(w_1w_2w_3)>0$
$$=lpha S(w_3|w_2) \quad \text{otherwise}$$

$$S(w_3)=rac{c(w_3)}{N} \quad \text{(recursion ends at unigrams)}$$
 "Stupid Backoff (SB)"

Using MapReduce to Train SB

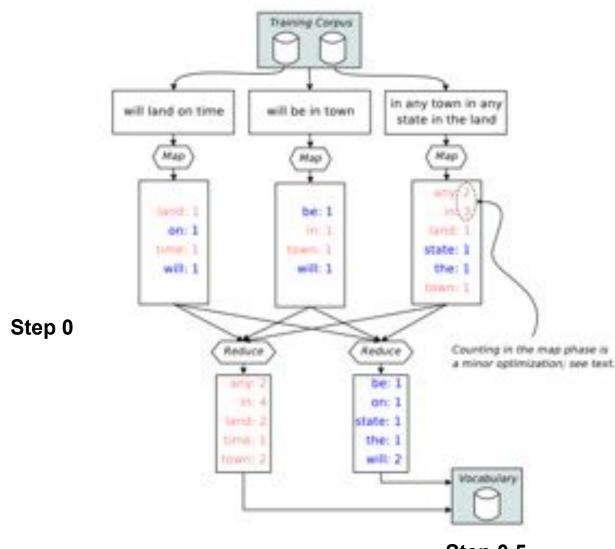
Step 0: Count words [MR]

 Step 0.5: Assign IDs to words [vocabulary generation] (more frequent → smaller IDs)

Step 1: Compute *n*-gram counts [MR]

Step 2: Generate final LM "scores" [MR]

Steps 0 & 0.5



Step 0.5

Steps 1 & 2

put		Step 1	Step 2
Mapper Input	Input Key	DocID	First two words of <i>n</i> -grams "a b c" and "a b" ("a b")
Ma	Input Value	Document	C _{total} ("a b c")
± +			
Outpu er Inpu	Intermediate Key	<i>n</i> -grams "a b c"	"a b c"
Mapper Output Reducer Input	Intermediate Value	C _{doc} ("a b c")	S("a b c")
_			
	Partitioning	first two words (why?) "a b"	last two words "b c"
er It			
Reducer Output	Output Value	"a b c", C _{total} ("a b c")	S("a b c") [write to disk]
Ľ.		Count n-grams	Compute LM scores

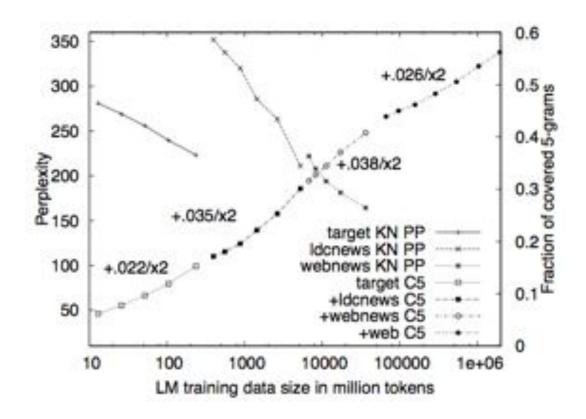
- All unigram counts are replicated in all partitions in both steps
- The clever partitioning in Step 2 is the key to efficient use at runtime!
- The trained LM model is composed of partitions written to disk

Which one wins?

	target	webnews	web
# tokens	237M	31G	1.8T
vocab size	200k	5M	16M
# n-grams	257M	21G	300G
LM size (SB)	2G	89G	1.8T
time (SB)	20 min	8 hours	1 day
time (KN)	2.5 hours	2 days	-
# machines	100	400	1500

Table 2: Sizes and approximate training times for 3 language models with Stupid Backoff (SB) and Kneser-Ney Smoothing (KN).

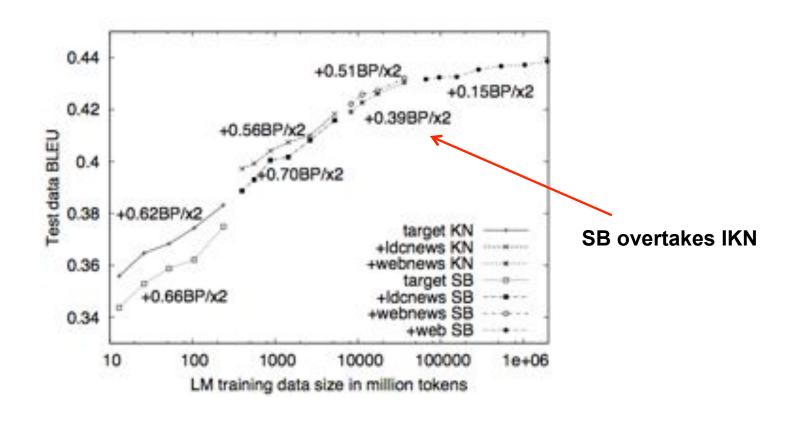
Which one wins?



Can't compute perplexity for SB. Why?

Why do we care about 5-gram coverage for a test set?

Which one wins?



BLEU is a measure of MT performance.

Not as stupid as you thought, huh?

Take away

- The MapReduce paradigm and infrastructure make it simple to scale algorithms to web scale data
- At Terabyte scale, efficiency becomes really important!
- When you have a lot of data, a more scalable technique (in terms of speed and memory consumption) can do better than the state-of-the-art even if it's stupider!

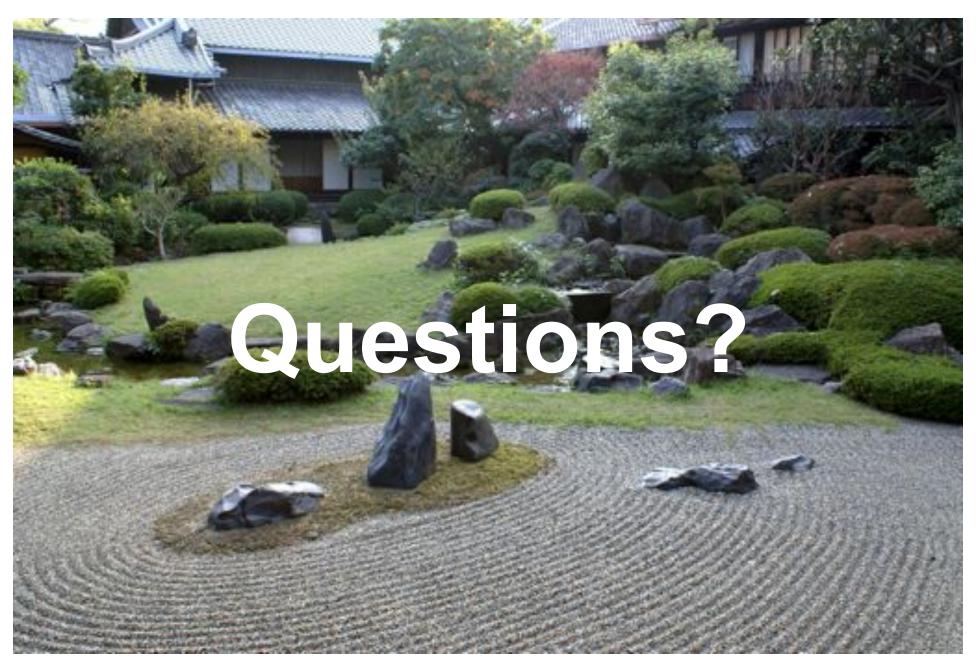
"The difference between genius and stupidity is that genius has its limits."
- Oscar Wilde

"The dumb shall inherit the cluster"

- Nitin Madnani

Midterm

- 30-50 Multiple Choice Questions
 - Basic concepts
 - Not particularly hard or tricky
 - Intersection of lecture and readings
- 2-3 Free Response Questions
 - Write a psedocode MapReduce program to ...
 - Simulate this algorithm on simple input
- Have all of class, shouldn't take more than an hour
- Sample questions ...



Source: Wikipedia (Japanese rock garden)