
Graph Algorithms
Data-Intensive Information Processing Applications ! Session #5

Jordan Boyd-Graber
University of Maryland

Thursday, March 3, 2011

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Old Business
!  HW1 Graded

"  Combiners throw away data!

!  HW2 Due

!  Last week slides updated

!  Dense Representations

!  Dumbo

Source: Wikipedia (Japanese rock garden)

Today’s Agenda
!  Graph problems and representations

!  Parallel breadth-first search

!  PageRank

What’s a graph?
!  G = (V,E), where

"  V represents the set of vertices (nodes)
"  E represents the set of edges (links)
"  Both vertices and edges may contain additional information

!  Different types of graphs:
"  Directed vs. undirected edges
"  Presence or absence of cycles

!  Graphs are everywhere:
"  Hyperlink structure of the Web
"  Physical structure of computers on the Internet
"  Interstate highway system
"  Social networks

Source: Wikipedia (Königsberg)

Some Graph Problems
!  Finding shortest paths

"  Routing Internet traffic and UPS trucks

!  Finding minimum spanning trees
"  Telco laying down fiber

!  Finding Max Flow
"  Airline scheduling

!  Identify “special” nodes and communities
"  Breaking up terrorist cells, spread of avian flu

!  Bipartite matching
"  Monster.com, Match.com

!  And of course... PageRank

Max Flow / Min Cut

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Graphs and MapReduce
!  Graph algorithms typically involve:

"  Performing computations at each node: based on node features,
edge features, and local link structure

"  Propagating computations: “traversing” the graph

!  Key questions:
"  How do you represent graph data in MapReduce?
"  How do you traverse a graph in MapReduce?

Representing Graphs
!  G = (V, E)

!  Two common representations
"  Adjacency matrix
"  Adjacency list

Adjacency Matrices
Represent a graph as an n x n square matrix M

"  n = |V|
"  Mij = 1 means a link from node i to j

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1

2

3

4

Adjacency Matrices: Critique
!  Advantages:

"  Amenable to mathematical manipulation
"  Iteration over rows and columns corresponds to computations on

outlinks and inlinks

!  Disadvantages:
"  Lots of zeros for sparse matrices
"  Lots of wasted space

Adjacency Lists
Take adjacency matrices… and throw away all the zeros

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

Adjacency Lists: Critique
!  Advantages:

"  Much more compact representation
"  Easy to compute over outlinks

!  Disadvantages:
"  Much more difficult to compute over inlinks

Single Source Shortest Path
!  Problem: find shortest path from a source node to one or

more target nodes
"  Shortest might also mean lowest weight or cost

!  First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm Example

0

!

!

!

!

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

0

10

5

!

!

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Single Source Shortest Path
!  Problem: find shortest path from a source node to one or

more target nodes
"  Shortest might also mean lowest weight or cost

!  Single processor machine: Dijkstra’s Algorithm

!  MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path
!  Consider simple case of equal edge weights

!  Solution to the problem can be defined inductively

!  Here’s the intuition:
"  Define: b is reachable from a if b is on adjacency list of a
#  DISTANCETO(s) = 0
"  For all nodes p reachable from s,

DISTANCETO(p) = 1
"  For all nodes n reachable from some other set of nodes M,

DISTANCETO(n) = 1 + min(DISTANCETO(m), m " M)

s

m3

m2

m1

n

…

…

…

d1

d2

d3

Source: Wikipedia (Wave)

Visualizing Parallel BFS

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

From Intuition to Algorithm
!  Data representation:

"  Key: node n
"  Value: d (distance from start), adjacency list (list of nodes

reachable from n)
"  Initialization: for all nodes except for start node, d = !

!  Mapper:
"  #m " adjacency list: emit (m, d + 1)

!  Sort/Shuffle
"  Groups distances by reachable nodes

!  Reducer:
"  Selects minimum distance path for each reachable node
"  Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed
!  Each MapReduce iteration advances the “known frontier”

by one hop
"  Subsequent iterations include more and more reachable nodes as

frontier expands
"  Multiple iterations are needed to explore entire graph

!  Preserving graph structure:
"  Problem: Where did the adjacency list go?
"  Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

Stopping Criterion
!  How many iterations are needed in parallel BFS (equal

edge weight case)?

!  Convince yourself: when a node is first “discovered”, we’ve
found the shortest path

!  Now answer the question...
"  Six degrees of separation?

!  Practicalities of implementation in MapReduce

Comparison to Dijkstra
!  Dijkstra’s algorithm is more efficient

"  At any step it only pursues edges from the minimum-cost path
inside the frontier

!  MapReduce explores all paths in parallel
"  Lots of “waste”
"  Useful work is only done at the “frontier”

!  Why can’t we do better using MapReduce?

Weighted Edges
!  Now add positive weights to the edges

"  Why can’t edge weights be negative?

!  Simple change: adjacency list now includes a weight w for
each edge
"  In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m

!  That’s it?

Stopping Criterion
!  How many iterations are needed in parallel BFS (positive

edge weight case)?

!  Convince yourself: when a node is first “discovered”, we’ve
found the shortest path

Not true!

Additional Complexities

s

p
q

r

search frontier

10

n1

n2
n3

n4

n5

n6 n7
n8

n9

1

1
1

1

1

1
1

1

Stopping Criterion
!  How many iterations are needed in parallel BFS (positive

edge weight case)?

!  Practicalities of implementation in MapReduce

Graphs and MapReduce
!  Graph algorithms typically involve:

"  Performing computations at each node: based on node features,
edge features, and local link structure

"  Propagating computations: “traversing” the graph

!  Generic recipe:
"  Represent graphs as adjacency lists
"  Perform local computations in mapper
"  Pass along partial results via outlinks, keyed by destination node
"  Perform aggregation in reducer on inlinks to a node
"  Iterate until convergence: controlled by external “driver”
"  Don’t forget to pass the graph structure between iterations

Connection to Theory
!  Bulk Synchronous Processing (1990 Valiant)

!  Nodes (Processors) can communicate with any neighbor

!  However, messages do not arrive until synchronization
phase

Random Walks Over the Web
!  Random surfer model:

"  User starts at a random Web page
"  User randomly clicks on links, surfing from page to page

!  PageRank
"  Characterizes the amount of time spent on any given page
"  Mathematically, a probability distribution over pages

!  PageRank captures notions of page importance
"  Correspondence to human intuition?
"  One of thousands of features used in web search
"  Note: query-independent

Given page x with inlinks t1…tn, where
"  C(t) is the out-degree of t
"  ! is probability of random jump
"  N is the total number of nodes in the graph

PageRank: Defined

X

t1

t2

tn

…

Computing PageRank
!  Properties of PageRank

"  Can be computed iteratively
"  Effects at each iteration are local

!  Sketch of algorithm:
"  Start with seed PRi values
"  Each page distributes PRi “credit” to all pages it links to
"  Each target page adds up “credit” from multiple in-bound links to

compute PRi+1

"  Iterate until values converge

Simplified PageRank
!  First, tackle the simple case:

"  No random jump factor
"  No dangling links

!  Then, factor in these complexities…
"  Why do we need the random jump?
"  Where do dangling links come from?

Sample PageRank Iteration (1)

n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1 0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166) Iteration 1

Sample PageRank Iteration (2)

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033

0.033

0.3 0.166

0.083 0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133) Iteration 2

PageRank in MapReduce

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3 n4 n5

n2 n4 n3 n5 n1 n2 n3 n4 n5

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank Pseudo-Code

Complete PageRank
!  Two additional complexities

"  What is the proper treatment of dangling nodes?
"  How do we factor in the random jump factor?

!  Solution:
"  Second pass to redistribute “missing PageRank mass” and

account for random jumps

"  p is PageRank value from before, p' is updated PageRank value
"  |G| is the number of nodes in the graph
"  m is the missing PageRank mass

PageRank Convergence
!  Alternative convergence criteria

"  Iterate until PageRank values don’t change
"  Iterate until PageRank rankings don’t change
"  Fixed number of iterations

!  Convergence for web graphs?

Beyond PageRank
!  Link structure is important for web search

"  PageRank is one of many link-based features: HITS, SALSA, etc.
"  One of many thousands of features used in ranking…

!  Adversarial nature of web search
"  Link spamming
"  Spider traps
"  Keyword (Language Model) stuffing
"  Domain Sniping
"  Requester-Mirage
"  …

Digging In: Counters
!  How do you know how many dangling pages?

!  Use counters
"  Many built in counters
"  Visible on JobTracker
"  Keeps long-running jobs from being killed
"  Good for debugging

 static enum WordType {
 STARTS_WITH_DIGIT,
 STARTS_WITH_LETTER
}

context.getCounter(WordType.STARTS_WITH_LETTER).increment(1);

RunningJob job = JobClient.runJob(conf); // blocks until job completes
Counters c = job.getCounters();
long cnt = c.getCounter(WordType.STARTS_WITH_DIGIT);

Efficient Graph Algorithms
!  Sparse vs. dense graphs

!  Graph topologies

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are everywhere!

Local Aggregation
!  Use combiners!

"  In-mapper combining design pattern also applicable

!  Maximize opportunities for local aggregation
"  Simple tricks: sorting the dataset in specific ways
"  Partition graphs

Graphs at Google
!  MapReduce – designed to handle PageRank

!  MapReduce still handles 80% of computations

!  Pregel (based on BSP)
"  Node – centric computation

•  Can send messages to neighbors
•  Can add edges, neighbors
•  Process previous messages

"  Handle conflict
"  Provide partitioning heuristics (reduce communication)
"  Not public

Source: Wikipedia (Japanese rock garden)

Questions?

Digging In: BFS Node

Digging In: BFS Node

Digging In: BFS Node

Digging In: BFS Node

Digging In: BFS Mapper

Digging In: BFS Mapper

Digging In: BFS Mapper

Digging In: BFS Mapper

Digging In: BFS Reducer

Digging In: BFS Reducer

Digging In: Runner
!  For multiple iterations, use multiple jobs inside a for loop

!  Convergence?

!  Combiner?

Source: Wikipedia (Japanese rock garden)

Questions?

