Data-Intensive Information Processing Applications — Session #3

MapReduce Algorithm Design

Jordan Boyd-Graber University of Maryland

Thursday, February 17, 2011

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Issues from Last Class

- Everybody has access to the cluster?
- Hardware Sorting
- Names
 - Ying : Jordan Boyd-Graber
 - Ychen126: Yingying Chen
- Input in Hadoop
- What is a node?
- Equal time: Avro

Input Types

- Recall: FileSplits (split), InputFormat (parse), RecordReader (iterate)
- InputFormat Options
 - TextInputFormat (offset, line text)
 - StreamInputFormat
 - Use StreamXmlRecordReader if values are XML documents
 - KeyValueTextInputFormat (key, line text)
 - Settable delimiter (tab is default)
 - SequenceFileInputFormat (key, binary)
 - Use for binary / serialized input
 - MapFile
 - Just like SequenceFile, but sorted (key must be comparable)
 - Other: HBase, conventional databases

What is a node?

- Not always 1 node per {computer, core}
- In many cases, nodes are virtual machines running in nodes (e.g. WorldLingo)
- How many nodes per machine depends on typical usage (e.g. IO vs CPU)

Avro

- Much like protocol buffers
- Uses JSON to compile schema
- Newer, but better connected with Hadoop
 - Could have better integration, but not there yet
- Benifits compared to protocol buffers
 - Schema is transmitted with serialization
 - Does not require compiling code
- Limitations compared to protocol buffers
 - Schema is transmitted with serialization
 - Cannot have nested fields
 - Cannot have null fields
- Again, not required to use them

Today's Agenda

- "The datacenter is the computer"
 - Understanding the design of warehouse-sized computes
- MapReduce algorithm design
 - How do you express everything in terms of m, r, c, p?
 - Toward "design patterns"

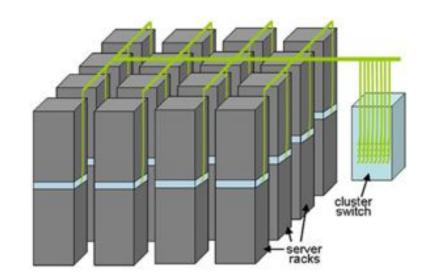
The datacenter is the computer

"Big Ideas"

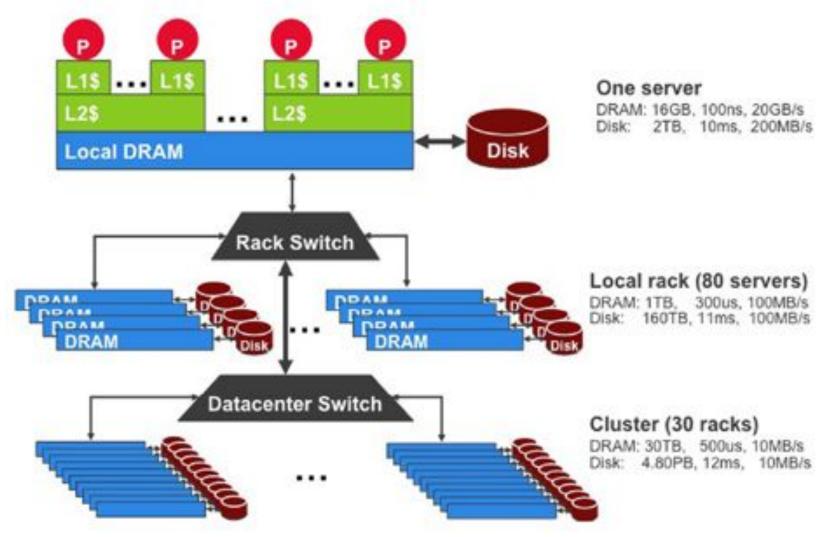
- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Source: Bonneville Power Administration

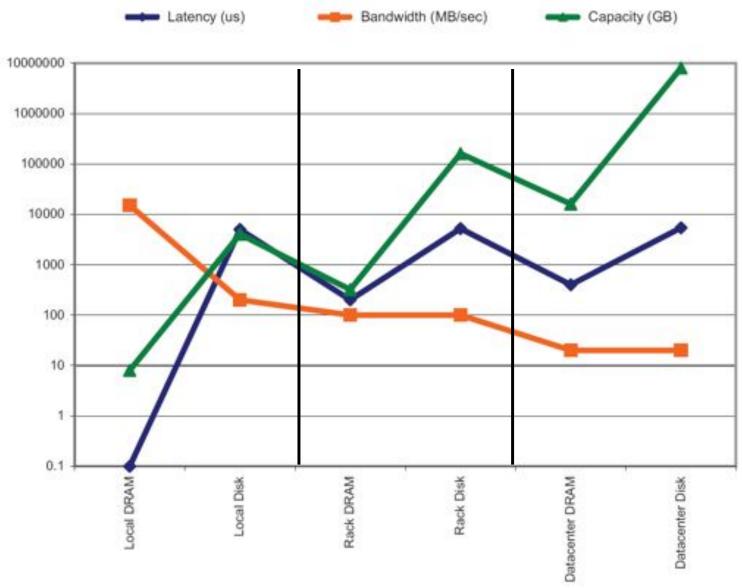
Building Blocks



Storage Hierarchy

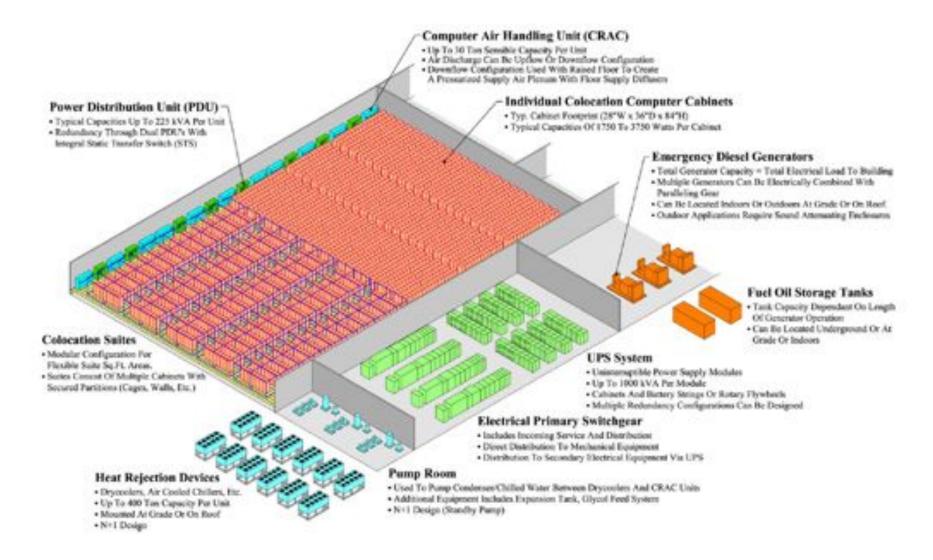


Storage Hierarchy



Source: Barroso and Urs Hölzle (2009)

Anatomy of a Datacenter



Why commodity machines?

	HP INTEGRITY SUPERDOME-ITANIUM2	HP PROLIANT ML350 G5
Processor	64 sockets, 128 cores (dual-threaded), 1.6 GHz Itanium2, 12 MB last-level cache	1 socket, quad-core, 2.66 GHz X5355 CPU, 8 MB last-level cache
Memory	2,048 GB	24 GB
Disk storage	320,974 GB, 7,056 drives	3,961 GB, 105 drives
TPC-C price/performance	\$2.93/tpmC	\$0.73/tpmC
price/performance (server HW only)	\$1.28/transactions per minute	\$0.10/transactions per minute
Price/performance (server HW only) (no discounts)	\$2.39/transactions per minute	\$0.12/transactions per minute

Why commodity machines?

- Diminishing returns for high-end machines
- Power usage is lower for mid-range machines
- If you're doing it right, many processes are memory

What about communication?

- Nodes need to talk to each other!
 - SMP: latencies ~100 ns
 - LAN: latencies ~100 μs
- Scaling "up" vs. scaling "out"
 - Smaller cluster of SMP machines vs. larger cluster of commodity machines
 - E.g., 8 128-core machines vs. 128 8-core machines
 - Note: no single SMP machine is big enough
- Let's model communication overhead...

Modeling Communication Costs

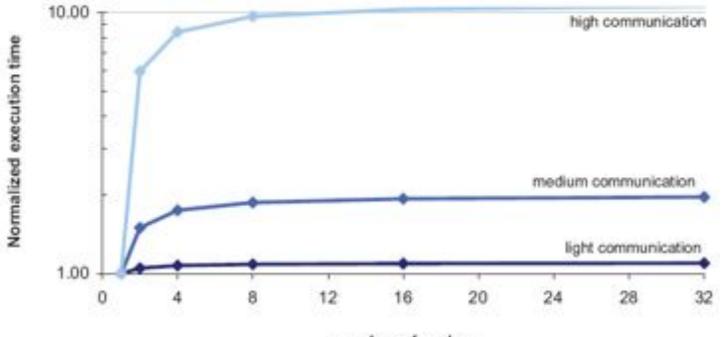
• Simple execution cost model:

- Total cost = cost of computation + cost to access global data
- Fraction of local access inversely proportional to size of cluster
- *n* nodes (ignore cores for now)

 $1 \text{ ms} + f \times [100 \text{ ns} \times n + 100 \ \mu\text{s} \times (1 - 1/n)]$

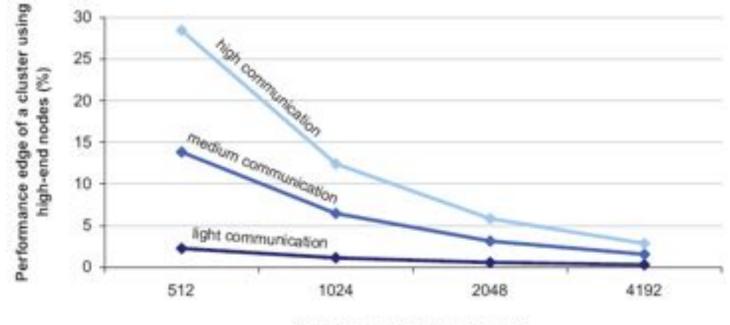
- Light communication: *f* =1
- Medium communication: f = 10
- Heavy communication: *f* = 100
- What are the costs in parallelization?

Cost of Parallelization



number of nodes

Advantages of scaling "up"



Cluster size (number of cores)

So why not?

Seeks vs. Scans

• Consider a 1 TB database with 100 byte records

- We want to update 1 percent of the records
- Scenario 1: random access
 - Each update takes ~30 ms (seek, read, write)
 - 10^8 updates = ~35 days
- Scenario 2: rewrite all records
 - Assume 100 MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Justifying the "Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Numbers Everyone Should Know*

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	25 ns
Main memory reference	100 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from disk	20,000,000 ns
Send packet CA \rightarrow Netherlands \rightarrow CA	150,000,000 ns

* According to Jeff Dean (LADIS 2009 keynote)

MapReduce Algorithm Design

MapReduce: Recap

• Programmers must specify:

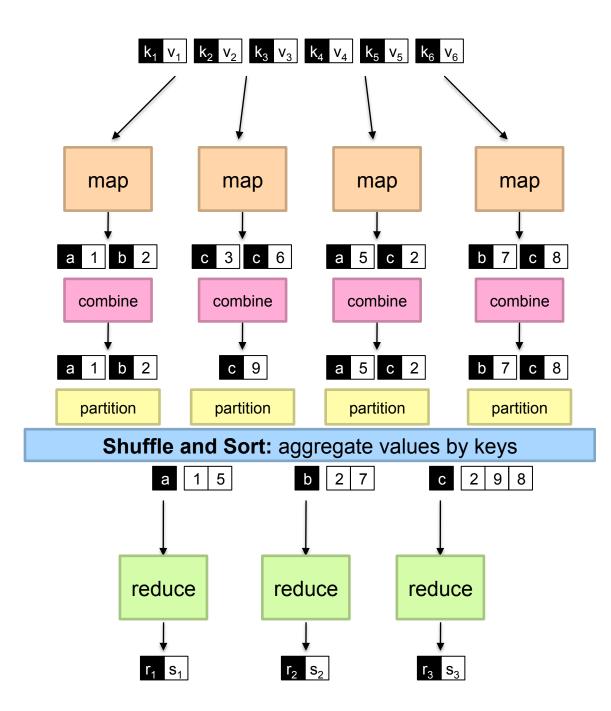
map $(k, v) \rightarrow \langle k', v' \rangle^*$ reduce $(k', v') \rightarrow \langle k', v' \rangle^*$

• All values with the same key are reduced together

• Optionally, also:

partition (k', number of partitions) \rightarrow partition for k'

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations combine (k', v') $\rightarrow \langle k', v' \rangle^*$
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic
- The execution framework handles everything else...



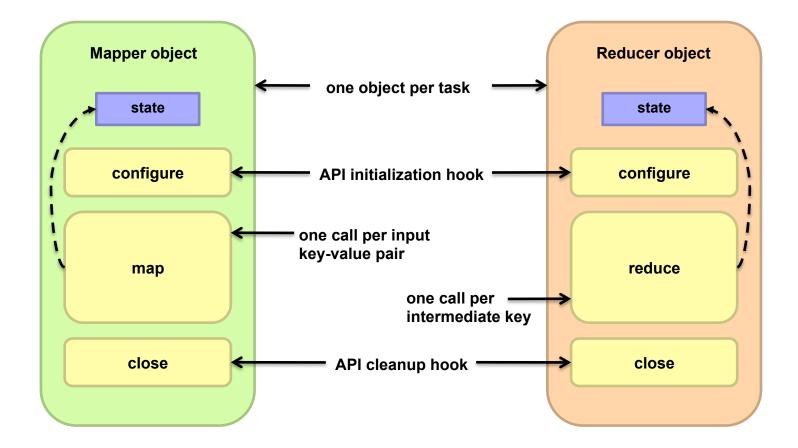
"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Preserving State



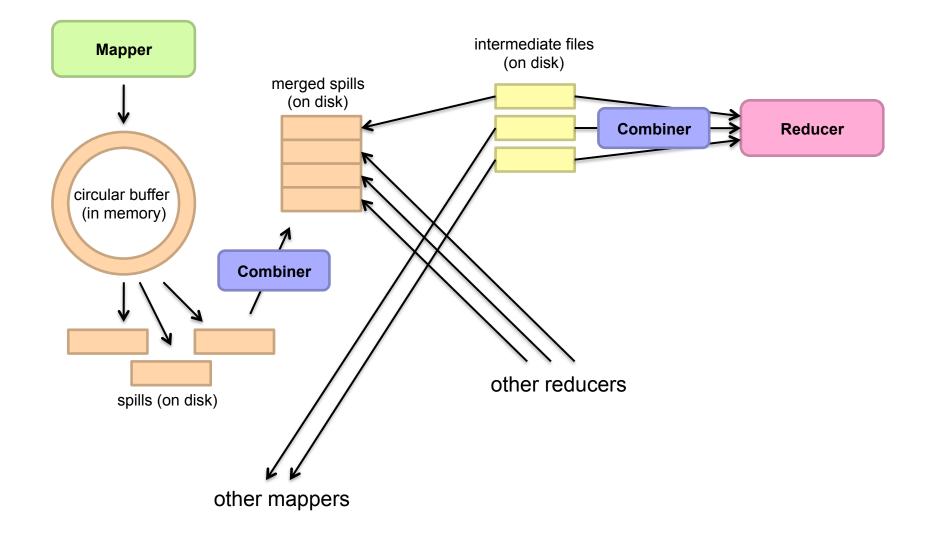
Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - Inherently costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort



Word Count: Baseline

```
1: class MAPPER
      method MAP(docid a, doc d)
2:
          for all term t \in \text{doc } d do
3:
              EMIT(term t, count 1)
4:
1: class Reducer
      method REDUCE(term t, counts [c_1, c_2, ...])
2:
          sum \leftarrow 0
3:
          for all count c \in \text{counts} [c_1, c_2, ...] do
4:
              sum \leftarrow sum + c
5:
          EMIT(term t, count s)
6:
```

What's the impact of combiners?

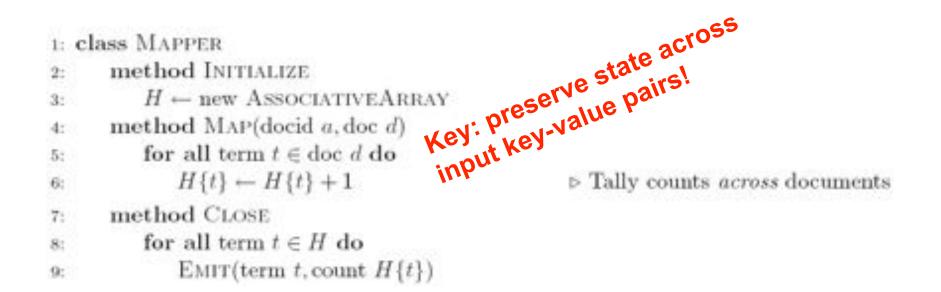
Word Count: Version 1

1: class MAPPER 2: method MAP(docid a, doc d) 3: $H \leftarrow$ new AssociativeArray 4: for all term $t \in doc d$ do 5: $H\{t\} \leftarrow H\{t\} + 1$ 6: for all term $t \in H$ do 7: EMIT(term $t, count H\{t\}$)

▷ Tally counts for entire document

Are combiners still needed?

Word Count: Version 2



Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

• Combiners and reducers share same method signature

- Sometimes, reducers can serve as combiners
- Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of all integers associated with the same key

1:	class MAPPER
2:	method MAP(string t , integer r)
3:	$E_{MIT}(string t, integer r)$
1:	class Reducer
2:	method REDUCE(string t , integers $[r_1, r_2,]$)
3:	
4:	$cnt \leftarrow 0$
5:	for all integer $r \in \text{integers } [r_1, r_2, \ldots]$ do
6;	$sum \leftarrow sum + r$
7:	$cnt \leftarrow cnt + 1$
8:	$r_{avg} \leftarrow sum/cnt$
9:	

Why can't we use reducer as combiner?

```
1: class MAPPER
       method MAP(string t, integer r)
2:
           E_{MIT}(string t, integer r)
3:
1: class Combiner
       method Combine(string t, integers [r_1, r_2, ...])
2:
           sum \leftarrow 0
3:
          cnt \leftarrow 0
4:
          for all integer r \in integers [r_1, r_2, \ldots] do
50 ....
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
7.
           E_{MIT}(string t, pair (sum, cnt))
                                                                        Separate sum and count.
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2)...])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
           EMIT(string t, integer r_{avg})
9:
```

Why doesn't this work?

```
1: class MAPPER
       method MAP(string t, integer r)
2:
           EMIT(string t, pair (r, 1))
3:
1: class Combiner
       method COMBINE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in pairs [(s_1, c_1), (s_2, c_2), ...] do
5:
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
           EMIT(string t, pair (r_{ava}, cnt))
9:
```

Fixed?

- 1: class MAPPER
- 2: method INITIALIZE
- 3: $S \leftarrow \text{new AssociativeArray}$
- 4: $C \leftarrow \text{new AssociativeArray}$
- p: method MAP(string t, integer r)
- 6: $S{t} \leftarrow S{t} + r$
- 7: $C\{t\} \leftarrow C\{t\} + 1$
- s: method CLOSE
- 9: for all term $t \in S$ do
- 10: EMIT(term t, pair $(S\{t\}, C\{t\})$)

Are combiners still needed?

Algorithm Design: Running Example

• Term co-occurrence matrix for a text collection

- M = N x N matrix (N = vocabulary size)
- M_{ij}: number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)
- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

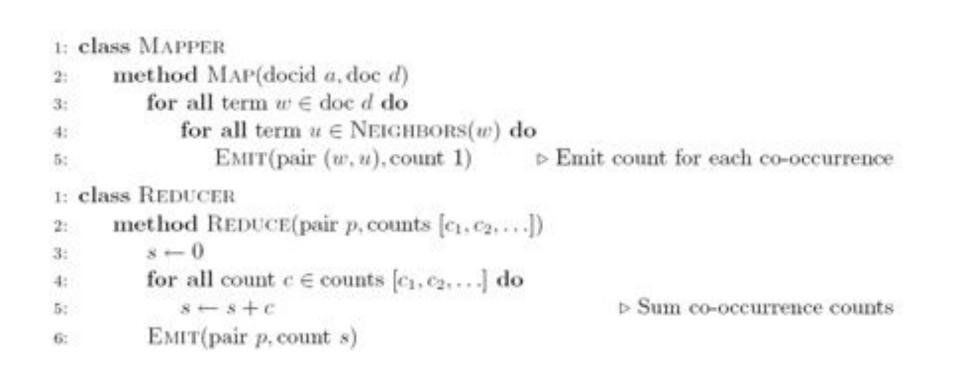
- Term co-occurrence matrix for a text collection = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code



"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

• Idea: group together pairs into an associative array

 $\begin{array}{l} (a, b) \to 1 \\ (a, c) \to 2 \\ (a, d) \to 5 \\ (a, e) \to 3 \\ (a, f) \to 2 \end{array} \qquad \qquad a \to \{ \, b: \, 1, \, c: \, 2, \, d: \, 5, \, e: \, 3, \, f: \, 2 \, \} \end{array}$

• Each mapper takes a sentence:

- Generate all co-occurring term pairs
- For each term, emit $a \rightarrow \{ b: count_b, c: count_c, d: count_d \dots \}$

• Reducers perform element-wise sum of associative arrays

$$\begin{array}{rl} a \rightarrow \{ b; 1, & d; 5, e; 3 \} \\ \hline \textbf{+} & a \rightarrow \{ b; 1, c; 2, d; 2, & f; 2 \} \\ a \rightarrow \{ b; 2, c; 2, d; 7, e; 3, f; 2 \} \\ \hline \textbf{Key:} \begin{array}{c} cleverly-constructed \ data \ structure} \\ \hline \textbf{Key:} \begin{array}{c} cleverly-constructed \ brings \ together \ partial \ results} \end{array}$$

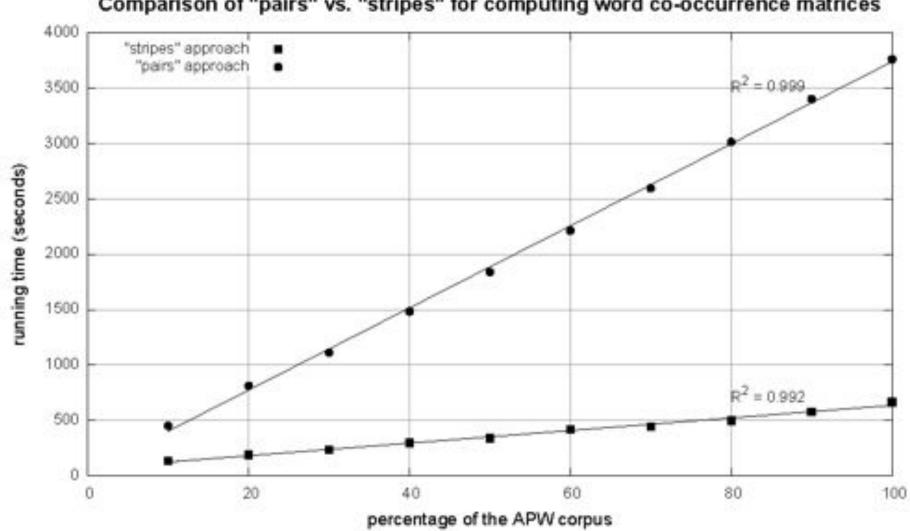
...re

Stripes: Pseudo-Code

1: C	lass Mapper	
2:	method MAP(docid $a, doc d$)	
3:	for all term $w \in \text{doc } d$ do	
4:	$H \leftarrow \text{new AssociativeArray}$	
5:	for all term $u \in NEIGHBORS(w)$	do
6:	$H\{u\} \leftarrow H\{u\} + 1$	\triangleright Tally words co-occurring with w
7:	Emit(Term w , Stripe H)	
1: c	lass Reducer	
2:	method REDUCE(term w , stripes $[H_1,, M_n]$	$H_2, H_3,])$
3:	$H_f \leftarrow \text{new AssociativeArray}$	
4:	for all stripe $H \in \text{stripes } [H_1, H_2, H_3]$	3,] do
5:	$SUM(H_f, H)$	▷ Element-wise sum
6:	EMIT(term w , stripe H_f)	

"Stripes" Analysis

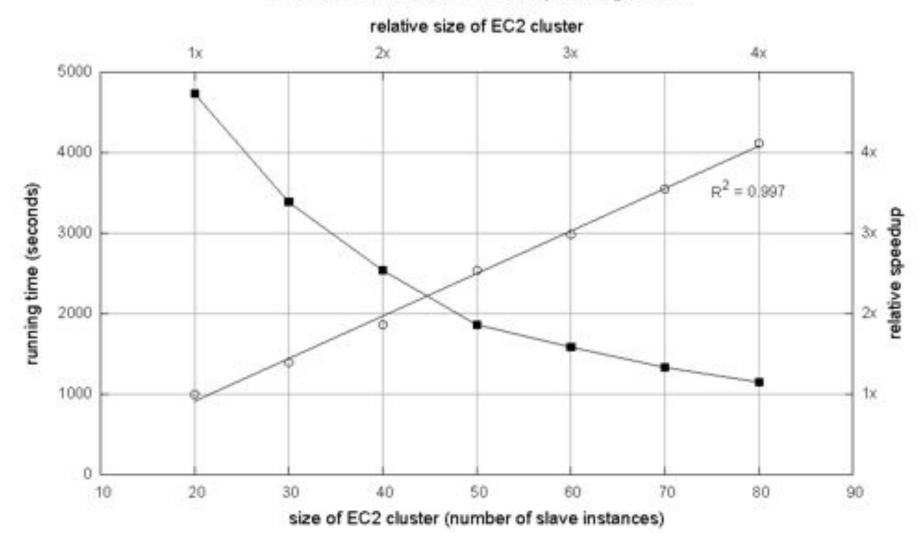
- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space



Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)



Effect of cluster size on "stripes" algorithm

Relative Frequencies

• How do we estimate relative frequencies from counts?

$$f(B \mid A) = \frac{\operatorname{count}(A, B)}{\operatorname{count}(A)} = \frac{\operatorname{count}(A, B)}{\sum_{B'} \operatorname{count}(A, B')}$$

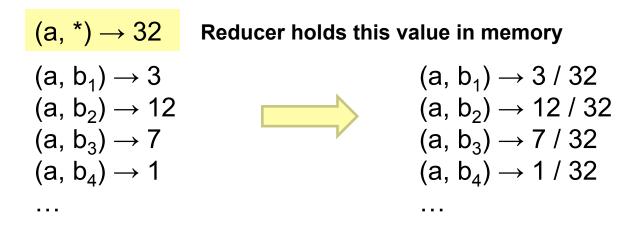
• Why do we want to do this?

• How do we do this with MapReduce?

f(B|A): "Stripes"

- $a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$
- Easy!
 - One pass to compute (a, *)
 - Another pass to directly compute f(B|A)

f(B|A): "Pairs"



• For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern
 - Computing relative frequencies requires marginal counts
 - But marginal cannot be computed until you see all counts
 - Buffering is a bad idea!
 - Trick: getting the marginal counts to arrive at the reducer before the joint counts
- Optimizations
 - Apply in-memory combining pattern to accumulate marginal counts
 - Should we apply combiners?

Order Inversion for Bigrams

Google labs Books Ngram Viewer

between 1800	and 2000	from the corpus	English	with smoothing of 3
(Search lots of be	ioks)		2010-01.00	
			I 14	with union
20001000%		1		Λ
00000900%				
10000800%		-		
00000700%				
0000600%				
0000500%				
0000400%				
0000300%				
0000200%				h Ma
20000100%				
000000000	1620	1840 1860	1860	1900 1920 1940 1960 1960

N-Gram Probability

- Given the phrase "I pity the", what is the the probability of the next word being "fool"?
- Requires counting up the number of times "I pity the fool" appears in the corpus and dividing by the number of times "I pity the" appears.
- Useful for spelling correction, machine translation, speech recognition
- When N=2, bigrams

Digging In: Bigram Example

- Run the program:
 - hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.BigramRelativeFrequency /tmp/wiki /umd-lin/jbg/output/bigram 15
- Take a look at the ouput:
 - Hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.AnalyzeBigramRelativeFrequency / umd-lin/jbg/output/bigram
- Definition
 - Mapper<LongWritable, Text, PairOfStrings, FloatWritable>
 - Reducer<PairOfStrings, FloatWritable, PairOfStrings, FloatWritable>

Digging In: Bigram Mapper

public void map(LongWritable key, Text value, Context context) {

String line = value.toString();

String prev = null;

StringTokenizer itr = new StringTokenizer(line);

```
while (itr.hasMoreTokens()) {
```

```
String cur = itr.nextToken();
```

```
if (prev == null) continue;
```

```
bigram.set(prev, cur);
```

```
context.write(bigram, one);
```

```
bigram.set(prev, "*");
```

```
context.write(bigram, one);
```

```
}
```

```
prev = cur;
```

```
}
}
```

Digging In: Bigram Reducer

public void reduce(PairOfStrings key, Iterable<FloatWritable> values, Context context) {

```
float sum = 0.0f;
Iterator<FloatWritable> iter = values.iterator();
while (iter.hasNext()) sum += iter.next().get();
if (key.getRightElement().equals("*")) {
      value.set(sum);
      marginal = sum;
} else {
      value.set(sum / marginal);
      context.write(key, value);
}
```

}

Synchronization: Pairs vs. Stripes

• Approach 1: turn synchronization into an ordering problem

- Sort keys into correct order of computation
- Partition key space so that each reducer gets the appropriate set of partial results
- Hold state in reducer across multiple key-value pairs to perform computation
- Illustrated by the "pairs" approach
- Approach 2: construct data structures that bring partial results together
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Digging In: Pairs

- Datatype:
 - import edu.umd.cloud9.io.PairOfStrings
- Definitions:

Reducer<PairOfStrings, IntWritable, PairOfStrings, IntWritable> Mapper<LongWritable, Text, PairOfStrings, IntWritable>

• Mapper

```
public void map(LongWritable key, Text line, Context context) {
   String[] terms = line.toString().split("\\s+");
   for (int i = 0; i < terms.length; i++) {
     String term = terms[i];
     for (int j = i - window; j < i + window + 1; j++) {
        // OMITTED: Check to make sure valid pair
        pair.set(term, terms[j]);
        context.write(pair, one);
}}</pre>
```

Digging In: Pairs

• Reducer

```
public void reduce(PairOfStrings key, Iterable<IntWritable> values, Context
context) {
    Iterator<IntWritable> iter = values.iterator();
    int sum = 0;
    while (iter.hasNext()) {sum += iter.next().get();}
    SumValue.set(sum);
    context.write(key, SumValue);
}
```

Digging In: Stripes

- Datatype:
 - import edu.umd.cloud9.io.fastuil.String2IntOpenHashMapWritable;
- Definitions

Mapper<LongWritable, Text, Text, String2IntOpenHashMapWritable> Reducer<Text, String2IntOpenHashMapWritable, Text, String2IntOpenHashMapWritable>

• Mapper

```
map(LongWritable key, Text line, Context context) {
   String[] terms = line.toString().split("\\s+");
   for (int i = 0; i < terms.length; i++) {
      String term = terms[i];
      map.clear();
      for (int j = i - window; j < i + window + 1; j++) map.put(terms[j], 1);
      textKey.set(term);
      context.write(textKey, map);
   }
}</pre>
```

Digging In: Stripes

• Reducer

```
public void reduce(Text key, Iterable<String2IntOpenHashMapWritable> values,
Context context) {
    Iterator<String2IntOpenHashMapWritable> iter = values.iterator();
    String2IntOpenHashMapWritable map = new String2IntOpenHashMapWritable();
    while (iter.hasNext()) map.plus(iter.next());
    context.write(key, map);
}
```

Secondary Sorting

• MapReduce sorts input to reducers by key

- Values may be arbitrarily ordered
- What if want to sort value also?

• E.g.,
$$k \to (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$$

Secondary Sorting: Solutions

- Solution 1:
 - Buffer values in memory, then sort
 - Why is this a bad idea?
- Solution 2:
 - "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
 - Let execution framework do the sorting
 - Preserve state across multiple key-value pairs to handle processing
 - Anything else we need to do?

Recap: Tools for Synchronization

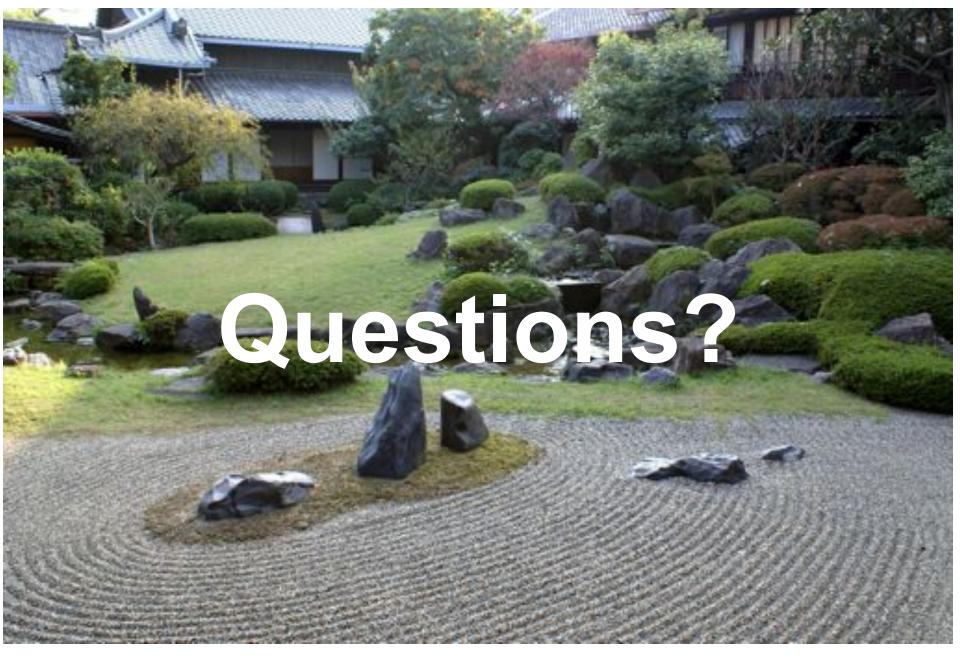
- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network

Debugging at Scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - Word count: how many unique words in Wikipedia?
 - There's no such thing as "consistent data"
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local



Source: Wikipedia (Japanese rock garden)