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Issues from Last Class 
!  Everybody has access to the cluster? 

!  Hardware Sorting 

!  Names 
"  Ying : Jordan Boyd-Graber 
"  Ychen126: Yingying Chen 

!  Input in Hadoop 

!  What is a node? 

!  Equal time: Avro 



Input Types 
!  Recall: FileSplits (split), InputFormat (parse), 

RecordReader (iterate) 

!  InputFormat Options 
"  TextInputFormat (offset, line text) 
"  StreamInputFormat 

•  Use StreamXmlRecordReader if values are XML documents 
"  KeyValueTextInputFormat (key, line text) 

•  Settable delimiter (tab is default) 
"  SequenceFileInputFormat (key, binary) 

•  Use for binary / serialized input 
"  MapFile 

•  Just like SequenceFile, but sorted (key must be comparable) 
"  Other: HBase, conventional databases 



What is a node? 
!  Not always 1 node per {computer, core} 

!  In many cases, nodes are virtual machines running in 
nodes (e.g. WorldLingo) 

!  How many nodes per machine depends on typical usage 
(e.g. IO vs CPU) 



Avro 
!  Much like protocol buffers 

!  Uses JSON to compile schema 

!  Newer, but better connected with Hadoop 
"  Could have better integration, but not there yet 

!  Benifits compared to protocol buffers 
"  Schema is transmitted with serialization 
"  Does not require compiling code 

!  Limitations compared to protocol buffers 
"  Schema is transmitted with serialization 
"  Cannot have nested fields 
"  Cannot have null fields 

!  Again, not required to use them 



Today’s Agenda 
!  “The datacenter is the computer”  

"  Understanding the design of warehouse-sized computes 

!  MapReduce algorithm design 
"  How do you express everything in terms of m, r, c, p? 
"  Toward “design patterns” 



The datacenter is the computer 



“Big Ideas” 
!  Scale “out”, not “up” 

"  Limits of SMP and large shared-memory machines 

!  Move processing to the data 
"  Cluster have limited bandwidth 

!  Process data sequentially, avoid random access 
"  Seeks are expensive, disk throughput is reasonable 

!  Seamless scalability 
"  From the mythical man-month to the tradable machine-hour 



Source: NY Times (6/14/2006) 



Source: www.robinmajumdar.com 



Source: Bonneville Power Administration 



Building Blocks 

Source: Barroso and Urs Hölzle (2009) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2009) 



Storage Hierarchy 

Source: Barroso and Urs Hölzle (2009) 



Anatomy of a Datacenter 

Source: Barroso and Urs Hölzle (2009) 



Why commodity machines? 

Source: Barroso and Urs Hölzle (2009); performance figures from late 2007 



Why commodity machines? 

Source: Barroso and Urs Hölzle (2009); performance figures from late 2007 

!  Diminishing returns for high-end machines 

!  Power usage is lower for mid-range machines 

!  If you‘re doing it right, many processes are memory 



What about communication? 
!  Nodes need to talk to each other! 

"  SMP: latencies ~100 ns 
"  LAN: latencies ~100 µs 

!  Scaling “up” vs. scaling “out” 
"  Smaller cluster of SMP machines vs. larger cluster of commodity 

machines 
"  E.g., 8 128-core machines vs. 128 8-core machines 
"  Note: no single SMP machine is big enough 

!  Let’s model communication overhead… 

Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009) 



Modeling Communication Costs 
!  Simple execution cost model: 

"  Total cost = cost of computation + cost to access global data 
"  Fraction of local access inversely proportional to size of cluster 
"  n nodes (ignore cores for now) 

•  Light communication: f =1 
•  Medium communication: f =10 
•  Heavy communication: f =100 

!  What are the costs in parallelization? 

1 ms + f ! [100 ns ! n + 100 µs ! (1 - 1/n)] 



Cost of Parallelization 



Advantages of scaling “up” 

So why not? 



Seeks vs. Scans 
!  Consider a 1 TB database with 100 byte records 

"  We want to update 1 percent of the records 

!  Scenario 1: random access 
"  Each update takes ~30 ms (seek, read, write) 
"  108 updates = ~35 days 

!  Scenario 2: rewrite all records 
"  Assume 100 MB/s throughput 
"  Time = 5.6 hours(!) 

!  Lesson: avoid random seeks! 

Source: Ted Dunning, on Hadoop mailing list 



Justifying the “Big Ideas” 
!  Scale “out”, not “up” 

"  Limits of SMP and large shared-memory machines 

!  Move processing to the data 
"  Cluster have limited bandwidth 

!  Process data sequentially, avoid random access 
"  Seeks are expensive, disk throughput is reasonable 

!  Seamless scalability 
"  From the mythical man-month to the tradable machine-hour 



Numbers Everyone Should Know* 

L1 cache reference  0.5 ns 
Branch mispredict 5 ns 
L2 cache reference  7 ns 
Mutex lock/unlock  25 ns 
Main memory reference 100 ns 
Send 2K bytes over 1 Gbps network 20,000 ns 
Read 1 MB sequentially from memory 250,000 ns 
Round trip within same datacenter 500,000 ns 
Disk seek 10,000,000 ns 
Read 1 MB sequentially from disk 20,000,000 ns 
Send packet CA ! Netherlands ! CA 150,000,000 ns 

* According to Jeff Dean (LADIS 2009 keynote) 



MapReduce Algorithm Design 



MapReduce: Recap 
!  Programmers must specify: 

map (k, v) ! <k’, v’>* 
reduce (k’, v’) ! <k’, v’>* 
"  All values with the same key are reduced together 

!  Optionally, also: 
partition (k’, number of partitions) ! partition for k’ 
"  Often a simple hash of the key, e.g., hash(k’) mod n 
"  Divides up key space for parallel reduce operations 
combine (k’, v’) ! <k’, v’>* 
"  Mini-reducers that run in memory after the map phase 
"  Used as an optimization to reduce network traffic 

!  The execution framework handles everything else… 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 



“Everything Else” 
!  The execution framework handles everything else… 

"  Scheduling: assigns workers to map and reduce tasks 
"  “Data distribution”: moves processes to data 
"  Synchronization: gathers, sorts, and shuffles intermediate data 
"  Errors and faults: detects worker failures and restarts 

!  Limited control over data and execution flow 
"  All algorithms must expressed in m, r, c, p 

!  You don’t know: 
"  Where mappers and reducers run 
"  When a mapper or reducer begins or finishes 
"  Which input a particular mapper is processing 
"  Which intermediate key a particular reducer is processing 



Tools for Synchronization 
!  Cleverly-constructed data structures 

"  Bring partial results together 

!  Sort order of intermediate keys 
"  Control order in which reducers process keys 

!  Partitioner 
"  Control which reducer processes which keys 

!  Preserving state in mappers and reducers 
"  Capture dependencies across multiple keys and values 



Preserving State 

Mapper object 

configure 

map 

close 

state 
one object per task 

Reducer object 

configure 

reduce 

close 

state 

one call per input  
key-value pair 

one call per  
intermediate key 

API initialization hook 

API cleanup hook 



Scalable Hadoop Algorithms: Themes 
!  Avoid object creation 

"  Inherently costly operation 
"  Garbage collection 

!  Avoid buffering 
"  Limited heap size 
"  Works for small datasets, but won’t scale! 



Importance of Local Aggregation 
!  Ideal scaling characteristics: 

"  Twice the data, twice the running time 
"  Twice the resources, half the running time 

!  Why can’t we achieve this? 
"  Synchronization requires communication 
"  Communication kills performance 

!  Thus… avoid communication! 
"  Reduce intermediate data via local aggregation 
"  Combiners can help 



Shuffle and Sort 

Mapper 

Reducer 

other mappers 

other reducers 

circular buffer  
(in memory) 

spills (on disk) 

merged spills  
(on disk) 

intermediate files  
(on disk) 

Combiner 

Combiner 



Word Count: Baseline 

What’s the impact of combiners? 



Word Count: Version 1 

Are combiners still needed? 



Word Count: Version 2 

Are combiners still needed? 



Design Pattern for Local Aggregation 
!  “In-mapper combining” 

"  Fold the functionality of the combiner into the mapper by 
preserving state across multiple map calls 

!  Advantages 
"  Speed 
"  Why is this faster than actual combiners? 

!  Disadvantages 
"  Explicit memory management required 
"  Potential for order-dependent bugs 



Combiner Design 
!  Combiners and reducers share same method signature 

"  Sometimes, reducers can serve as combiners 
"  Often, not… 

!  Remember: combiner are optional optimizations 
"  Should not affect algorithm correctness 
"  May be run 0, 1, or multiple times 

!  Example: find average of all integers associated with the 
same key 



Computing the Mean: Version 1 

Why can’t we use reducer as combiner? 



Computing the Mean: Version 2 

Why doesn’t this work? 



Computing the Mean: Version 3 

Fixed? 



Computing the Mean: Version 4 

Are combiners still needed? 



Algorithm Design: Running Example 
!  Term co-occurrence matrix for a text collection 

"  M = N x N matrix (N = vocabulary size) 
"  Mij: number of times i and j co-occur in some context  

(for concreteness, let’s say context = sentence) 

!  Why? 
"  Distributional profiles as a way of measuring semantic distance 
"  Semantic distance useful for many language processing tasks 



MapReduce: Large Counting Problems 
!  Term co-occurrence matrix for a text collection 

= specific instance of a large counting problem 
"  A large event space (number of terms) 
"  A large number of observations (the collection itself) 
"  Goal: keep track of interesting statistics about the events 

!  Basic approach 
"  Mappers generate partial counts 
"  Reducers aggregate partial counts 

How do we aggregate partial counts efficiently? 



First Try: “Pairs” 
!  Each mapper takes a sentence: 

"  Generate all co-occurring term pairs 
"  For all pairs, emit (a, b) ! count 

!  Reducers sum up counts associated with these pairs 

!  Use combiners! 



Pairs: Pseudo-Code 



“Pairs” Analysis 
!  Advantages 

"  Easy to implement, easy to understand 

!  Disadvantages 
"  Lots of pairs to sort and shuffle around (upper bound?) 
"  Not many opportunities for combiners to work 



Another Try: “Stripes” 
!  Idea: group together pairs into an associative array 

!  Each mapper takes a sentence: 
"  Generate all co-occurring term pairs 
"  For each term, emit a ! { b: countb, c: countc, d: countd … } 

!  Reducers perform element-wise sum of associative arrays 

(a, b) ! 1  
(a, c) ! 2  
(a, d) ! 5  
(a, e) ! 3  
(a, f) ! 2  

a ! { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a ! { b: 1,         d: 5, e: 3 } 
a ! { b: 1, c: 2, d: 2,         f: 2 } 
a ! { b: 2, c: 2, d: 7, e: 3, f: 2 } 

+ 

Key: cleverly-constructed data structure 

brings together partial results 



Stripes: Pseudo-Code 



“Stripes” Analysis 
!  Advantages 

"  Far less sorting and shuffling of key-value pairs 
"  Can make better use of combiners 

!  Disadvantages 
"  More difficult to implement 
"  Underlying object more heavyweight 
"  Fundamental limitation in terms of size of event space 



Cluster size: 38 cores 
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 





Relative Frequencies 
!  How do we estimate relative frequencies from counts? 

!  Why do we want to do this? 

!  How do we do this with MapReduce? 



f(B|A): “Stripes”  

!  Easy! 
"  One pass to compute (a, *) 
"  Another pass to directly compute f(B|A) 

a !  {b1:3, b2 :12, b3 :7, b4 :1, … } 



f(B|A): “Pairs”  

!  For this to work: 
"  Must emit extra (a, *) for every bn in mapper 
"  Must make sure all a’s get sent to same reducer (use partitioner) 
"  Must make sure (a, *) comes first (define sort order) 
"  Must hold state in reducer across different key-value pairs 

(a, b1) ! 3  
(a, b2) ! 12  
(a, b3) ! 7 
(a, b4) ! 1  
… 

(a, *) ! 32  

(a, b1) ! 3 / 32  
(a, b2) ! 12 / 32 
(a, b3) ! 7 / 32 
(a, b4) ! 1 / 32 
… 

Reducer holds this value in memory 



“Order Inversion” 
!  Common design pattern 

"  Computing relative frequencies requires marginal counts 
"  But marginal cannot be computed until you see all counts 
"  Buffering is a bad idea! 
"  Trick: getting the marginal counts to arrive at the reducer before 

the joint counts 

!  Optimizations 
"  Apply in-memory combining pattern to accumulate marginal counts 
"  Should we apply combiners? 



Order Inversion for Bigrams 



N-Gram Probability 
!  Given the phrase „I pity the“, what is the the probability of 

the next word being „fool“? 

!  Requires counting up the number of times „I pity the fool“ 
appears in the corpus and dividing by the number of times 
„I pity the“ appears. 

!  Useful for spelling correction, machine translation, speech 
recognition 

!  When N=2, bigrams 



Digging In: Bigram Example 
!  Run the program: 

"  hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.BigramRelativeFrequency  
/tmp/wiki /umd-lin/jbg/output/bigram 15 

!  Take a look at the ouput: 
"  Hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.AnalyzeBigramRelativeFrequency /

umd-lin/jbg/output/bigram  

!  Definition 
"  Mapper<LongWritable, Text, PairOfStrings, FloatWritable> 
"  Reducer<PairOfStrings, FloatWritable, PairOfStrings, FloatWritable> 



Digging In: Bigram Mapper 
public void map(LongWritable key, Text value, Context context) { 

 String line = value.toString(); 

 String prev = null; 

 StringTokenizer itr = new StringTokenizer(line); 

 while (itr.hasMoreTokens()) { 

  String cur = itr.nextToken(); 

   if (prev == null) continue; 

  bigram.set(prev, cur); 

  context.write(bigram, one); 

  bigram.set(prev, "*"); 

  context.write(bigram, one); 

 } 

 prev = cur; 

} 

} 



Digging In: Bigram Reducer 
public void reduce(PairOfStrings key, Iterable<FloatWritable> values, Context context) { 

 float sum = 0.0f; 

 Iterator<FloatWritable> iter = values.iterator(); 

 while (iter.hasNext()) sum += iter.next().get(); 

 if (key.getRightElement().equals("*")) { 

  value.set(sum); 

  marginal = sum; 

 } else { 

  value.set(sum / marginal); 

  context.write(key, value); 

 } 

} 



Synchronization: Pairs vs. Stripes 
!  Approach 1: turn synchronization into an ordering problem 

"  Sort keys into correct order of computation 
"  Partition key space so that each reducer gets the appropriate set 

of partial results 
"  Hold state in reducer across multiple key-value pairs to perform 

computation 
"  Illustrated by the “pairs” approach 

!  Approach 2: construct data structures that bring partial 
results together 
"  Each reducer receives all the data it needs to complete the 

computation 
"  Illustrated by the “stripes” approach 



Digging In: Pairs 
!  Datatype: 

"  import edu.umd.cloud9.io.PairOfStrings 

!  Definitions: 

!  Mapper 

public void map(LongWritable key, Text line, Context context) { 
  String[] terms = line.toString().split("\\s+"); 
  for (int i = 0; i < terms.length; i++) { 
   String term = terms[i]; 
   for (int j = i - window; j < i + window + 1; j++) { 
        // OMITTED: Check to make sure valid pair 
        pair.set(term, terms[j]); 
        context.write(pair, one); 
}}} 

Reducer<PairOfStrings, IntWritable, PairOfStrings, IntWritable> 
Mapper<LongWritable, Text, PairOfStrings, IntWritable> 



Digging In: Pairs 
!  Reducer 

public void reduce(PairOfStrings key, Iterable<IntWritable> values, Context 
context) { 
   Iterator<IntWritable> iter = values.iterator(); 
   int sum = 0; 
         while (iter.hasNext()) {sum += iter.next().get();} 
   SumValue.set(sum); 
   context.write(key, SumValue); 
} 



Digging In: Stripes 
!  Datatype: 

"  import edu.umd.cloud9.io.fastuil.String2IntOpenHashMapWritable; 

!  Definitions 

!  Mapper 

map(LongWritable key, Text line, Context context) { 
    String[] terms = line.toString().split("\\s+"); 
    for (int i = 0; i < terms.length; i++) { 
        String term = terms[i]; 
        map.clear(); 
        for (int j = i - window; j < i + window + 1; j++) map.put(terms[j], 1);  
        textKey.set(term); 
        context.write(textKey, map); 
     } 
} 

Mapper<LongWritable, Text, Text, String2IntOpenHashMapWritable> 
Reducer<Text, String2IntOpenHashMapWritable, Text,  

 String2IntOpenHashMapWritable> 



Digging In: Stripes 
!  Reducer 

public void reduce(Text key, Iterable<String2IntOpenHashMapWritable> values, 
Context context) { 
     Iterator<String2IntOpenHashMapWritable> iter = values.iterator(); 
     String2IntOpenHashMapWritable map = new String2IntOpenHashMapWritable(); 
     while (iter.hasNext()) map.plus(iter.next()); 
    context.write(key, map); 
} 



Secondary Sorting 
!  MapReduce sorts input to reducers by key 

"  Values may be arbitrarily ordered 

!  What if want to sort value also? 
"  E.g., k ! (v1, r), (v3, r), (v4, r), (v8, r)… 



Secondary Sorting: Solutions 
!  Solution 1: 

"  Buffer values in memory, then sort 
"  Why is this a bad idea? 

!  Solution 2: 
"  “Value-to-key conversion” design pattern: form composite 

intermediate key, (k, v1) 
"  Let execution framework do the sorting 
"  Preserve state across multiple key-value pairs to handle 

processing 
"  Anything else we need to do? 



Recap: Tools for Synchronization 
!  Cleverly-constructed data structures 

"  Bring data together 

!  Sort order of intermediate keys 
"  Control order in which reducers process keys 

!  Partitioner 
"  Control which reducer processes which keys 

!  Preserving state in mappers and reducers 
"  Capture dependencies across multiple keys and values 



Issues and Tradeoffs 
!  Number of key-value pairs 

"  Object creation overhead 
"  Time for sorting and shuffling pairs across the network 

!  Size of each key-value pair 
"  De/serialization overhead 

!  Local aggregation 
"  Opportunities to perform local aggregation varies 
"  Combiners make a big difference 
"  Combiners vs. in-mapper combining 
"  RAM vs. disk vs. network 



Debugging at Scale 
!  Works on small datasets, won’t scale… why? 

"  Memory management issues (buffering and object creation) 
"  Too much intermediate data 
"  Mangled input records 

!  Real-world data is messy! 
"  Word count: how many unique words in Wikipedia? 
"  There’s no such thing as “consistent data” 
"  Watch out for corner cases 
"  Isolate unexpected behavior, bring local 



Source: Wikipedia (Japanese rock garden) 

Questions? 


