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Roadmap

@ Classification: machines labeling data for us
@ Last time: naive Bayes and logistic regression
@ This time:
> Decision Trees
* Simple, nonlinear, interpretable
» SVMs

* (another) example of linear classifier
* State-of-the-art classification

» Examples in Rattle (Logistic, SVM, Trees)
> Discussion: Which classifier should | use for my problem?
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Outline

o Decision Trees
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Trees

Suppose that we want to construct a set of rules to represent the data
@ can represent data as a series of if-then statements
@ here, “if” splits inputs into two categories
@ “then” assigns value
@ when “if” statements are nested, structure is called a tree

True, < \False
True, True , \ False

/ \ /
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Trees

Ex: data (X1, X2, X3, Y) with X1, X, X3 are real, Y Boolean
First, see if X; > 5:
o if TRUE, seeif X; > 8

» if TRUE, return FALSE
» if FALSE, return TRUE TS T ale
o if FALSE, see if Xp < —2 * m
> if TRUE, see if X3 >0 e/’ " \j‘se
* if TRUE, return [ﬁ] [M x>0 [TRue ]
True 7N False
TRUE ¢’ N
* if FALSE, return
FALSE

» if FALSE, return TRUE
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True ¢ N False

Y \

Example 1: (X1, X2, X3) = (1,1,1)

Example 2: (X, X2, X3) = (10,—3,0)
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True ¢ N False

Y \

Example 1: (X, Xz, X3) = (1,1,1) — TRUE

Example 2: (X, X2, X3) = (10,—3,0)
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True ¢ N False

Y \

Example 1: (X, Xz, X3) = (1,1,1) — TRUE

Example 2: (X, X2, X3) = (10,—3,0) — FALSE
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Trees

Terminology:
@ branches: one side of a split

@ leaves: terminal nodes that return values

Why trees?
@ trees can be used for regression or classification

> regression: returned value is a real number
» classification: returned value is a class

@ unlike linear regression, SVMs, naive Bayes, etc, trees fit local models

> in large spaces, global models may be hard to fit
» results may be hard to interpret

o fast, interpretable predictions
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Example: Predicting Electoral Results

2008 Democratic primary:
@ Hillary Clinton
@ Barack Obama

Given historical data, how will a county (small administrative unit inside an
American state) vote?

@ can extrapolate to state level data
@ might give regions to focus on increasing voter turnout

@ would like to know how variables interact
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Example: Predicting Electoral Results

Digging into Data

Dedsion Tree: The Obama-Clinton Divide
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Example: Predicting Electoral Results

Deaigion Teee: The Obama-Clinton Divade
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Decision Trees

Decision tree representation:
@ Each internal node tests an attribute
@ Each branch corresponds to attribute value

@ Each leaf node assigns a classification

How would we represent as a function of X, Y:
@ X AND Y (both must be true)
@ X ORY (either can be true)
@ X XOR Y (one and only one is true)
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When to Consider Decision Trees

@ Instances describable by attribute-value pairs
@ Target function is discrete valued
@ Disjunctive hypothesis may be required

@ Possibly noisy training data

Examples:
@ Equipment or medical diagnosis
@ Credit risk analysis

@ Modeling calendar scheduling preferences
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Outline

Q Learning Decision Trees
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Top-Down Induction of Decision Trees

Main loop:
@ A~ the “best” decision attribute for next node
O Assign A as decision attribute for node
© For each value of A, create new descendant of node
@ Sort training examples to leaf nodes

© If training examples perfectly classified, Then STOP, Else iterate over new
leaf nodes

Which attribute is best?

[29+,35-] A1=" [29+,35-] A2="

t t f

[2IF,5-] [8%,30-] [18+,33-] [11+,2-]
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Entropy: Reminder
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@ Sis a sample of training examples

Digging into Data Classification II: Decision Trees and SVMs March 3, 2014 17/45



Entropy

How spread out is the distribution of S:

Pe(—10g; Po) + po(—log, po)

Entropy(S) = —pe 109, Pe — Pe 109, Pe
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Information Gain

Which feature A would be a more useful rule in our decision tree?

Gain(S, A) = expected reduction in entropy due to sorting on A

S
Gain(S,A) = Entropy(S) — Z ||S‘/||Entropy(8v)
veValues(A)
[29+,35-] A1="? [29+,35-] A2="
t f t f
[21F,5-]  [B+,30-] [18%,33-] [I1+,2-]
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ID3 Algorithm

@ Start at root, look for best attribute

@ Repeat for subtrees at each attribute outcome
@ Stop when information gain is below a threshold
@ Bias: prefers shorter trees (Occam’s Razor)

— a short hyp that fits data unlikely to be coincidence
— along hyp that fits data might be coincidence
> Prevents overfitting (more later)
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Outline

0 Vector space classification
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Thinking Geometrically

@ Suppose you have two classes: vacations and sports

@ Suppose you have four documents

Sports Vacations
Docy: {ball, ball, ball, travel} Docg: {travel, ball, travel}
Docy: {ball, ball} Docy: {travel}

@ What does this look like in vector space?
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Put the documents in vector space

Travel

w
'V
I

\

Ball
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Put the documents in vector space

Travel

14 1

\/

Ball
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Vector space representation of documents

@ Each document is a vector, one component for each term.
@ Terms are axes.
@ High dimensionality: 10,000s of dimensions and more

@ How can we do classification in this space?
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Vector space classification

©

As before, the training set is a set of documents, each labeled with its class.

©

In vector space classification, this set corresponds to a labeled set of points
or vectors in the vector space.

(4]

Premise 1: Documents in the same class form a contiguous region.

(4]

Premise 2: Documents from different classes don’t overlap.

©

We define lines, surfaces, hypersurfaces to divide regions.
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Classes in the vector space

Kenya
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Classes in the vector space

Kenya

Should the document x be assigned to China, UK or Kenya?
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Classes in the vector space

Kenya

Find separators between the classes
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Classes in the vector space

Kenya

Find separators between the classes
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Classes in the vector space

Based on these separators: x should be assignedto China
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Classes in the vector space

Kenya

How do we find separators that do a good job at classifying new documents like x?
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Outline

© Linear Classifiers
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Linear classifiers

@ Definition:
> A linear classifier computes a linear combination or weighted sum
> Bix; of the feature values.
> Classification decision: Y, Bix; > 6?
» ...where 6 (the threshold) is a parameter.

©

(First, we only consider binary classifiers.)

©

Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane
(higher dimensionalities).

We call this the separator or decision boundary.
We find the separator based on training set.

Methods for finding separator: logistic regression, naive Bayes, linear SVM

© © o o

Assumption: The classes are linearly separable.
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Linear classifiers

@ Definition:

> A linear classifier computes a linear combination or weighted sum
> Bix; of the feature values.

> Classification decision: Y, Bix; > 6?

» ...where 6 (the threshold) is a parameter.

©

(First, we only consider binary classifiers.)

©

Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane
(higher dimensionalities).

We call this the separator or decision boundary.
We find the separator based on training set.
Methods for finding separator: logistic regression, naive Bayes, linear SVM

Assumption: The classes are linearly separable.

®© © 6 o6 o

Before, we just talked about equations. What's the geometric intuition?
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A linear classifier in 1D

° @ Alinear classifierin 1D is a
point x described by the
equation fB1d; =0
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A linear classifier in 1D

° @ Alinear classifierin 1D is a
point x described by the
equation fB1d; =0

o x=0/p
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A linear classifier in 1D

@ Alinear classifierin 1D is a
point x described by the
equation fB1d; =0

o x=0/p

@ Points (d) with B1d; >0
are in the class c.
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A linear classifier in 1D

@ Alinear classifierin 1D is a
point x described by the
equation fB1d; =0

o x=0/p

@ Points (d) with B1d; >0
are in the class c.

@ Points (d1) with ﬁ1 di <0
are in the complement class

C.

A
[ ]
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A linear classifier in 2D

@ A linear classifierin 2D is a
line described by the

/ equation ﬁ1 ady + ﬁgdg =0
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A linear classifier in 2D

@ A linear classifierin 2D is a
line described by the

equation fB1d; + Bodb = 0
@ Example for a 2D linear

classifier
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A linear classifier in 2D

@ Alinear classifierin 2D is a
line described by the
equation B1di + fodo =0

@ Example for a 2D linear
classifier

| @ Points (d; do) with

B1di + B2db > 0 are in the
class c.
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A linear classifier in 2D

@ Alinear classifierin 2D is a
line described by the
equation B1di + fodo =0

@ Example for a 2D linear
classifier

! @ Points (dy do) with

B1di + Podo > 0 are in the
class c.

@ Points (dy db) with
,61 o] —|—ﬂ2d2 < 0 areinthe
complement class c.
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
P101 + B2dz + Bzds =0
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
P101 + B2dz + Bzds =0

@ Example for a 3D linear
classifier
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
P101 + B2dz + Bzds =0

@ Example for a 3D linear
classifier

@ Points (d1 fo) d3) with

,61 ds +/32d2 + ,63d3 >0 are
in the class c.
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
P101 + B2dz + Bzds =0

@ Example for a 3D linear
classifier

@ Points (d1 fo) d3) with
P1di + Bodo + Pads > 0 are
in the class c.

@ Points (d1 b dg) with
B1di + Bodh + Bads < 0 are
in the complement class c.
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Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
2 =0
i=1

where B; = log[P(t|c)/P(t|¢)], di = number of occurrences of t; in d, and

6 = —log[P(c)/P(c)]. Here, the index i, 1 < i < M, refers to terms of the
vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it
into a probability).
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Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
Zﬁ,d,:@

where f3; = log[P(t|c)/P(t|¢)], d: = number of occurrences of ¢ in d, and

6 = —log[P(c)/P(c)]. Here, the index i, 1 < i < M, refers to terms of the
vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it
into a probability).

Takeway

Naive Bayes, logistic regression and SVM (which we’ll get to in a second) are alll
linear methods. They choose their hyperplanes based on different objectives: joint
likelihood (NB), conditional likelihood (LR), and the margin (SVM).
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Which hyperplane?
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Which hyperplane?

@ For linearly separable training sets: there are infinitely many separating
hyperplanes.

@ They all separate the training set perfectly ...
@ ...but they behave differently on test data.
@ Error rates on new data are low for some, high for others.

@ How do we find a low-error separator?
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Outline

Q Support Vector Machines
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Support vector machines

@ Machine-learning research in the last two decades has improved classifier
effectiveness.

@ New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

@ Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary
between two classes that is maximally far from any point in the training data
(possibly discounting some points as outliers or noise)
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Support Vector Machines

@ 2-class training data

A A
A A
= A
°
b A
e o
°
°
P ) °
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Support Vector Machines

@ 2-class training data

@ decision boundary —
linear separator

Digging into Data Classification II: Decision Trees and SVMs March 3, 2014 38/45



Support Vector Machines

@ 2-class training data

@ decision boundary —
linear separator

@ criterion: being
maximally far away
from any data point
— determines
classifier margin

. Margin is
maximized
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Support Vector Machines

@ 2-class training data x;:g'm”m Support vectors

@ decision boundary — decision
. hyperplane ™\
linear separator

@ criterion: being
maximally far away AN

[ ]
from any data point
— determines
classifier margin °

@ linear separator
position defined by
support vectors

N .
<« Margin is
maximized
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Why maximize the margin?

@ Points near decision
surface — uncertain
classification
decisions (50% either
way).

@ A classifier with a
large margin makes
no low certainty
classification
decisions.

@ Gives classification
safety margin w.r.t
slight errors in
measurement or
documents variation

Digging into Data Classification II: Decision Trees and SVMs
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margin

decision
hyperplane ™y

Support vectors
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Why maximize the margin?

@ SVM classifier: large margin
around decision boundary

@ compare to decision
hyperplane: place fat separator

L °
between classes 53
> unique solution ®
@ decreased memory capacity °

@ increased ability to correctly
generalize to test data
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SVM extensions

@ Slack variables: not perfect line

@ Kernels: different geometries

@ Loss functions: Different penalties for getting the answer wrong
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Outline

0 Recap
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Classification

@ Many commercial applications
@ There are many applications of text classification for corporate Intranets,
government departments, and Internet publishers.

@ Often greater performance gains from exploiting domain-specific features
than from changing from one machine learning method to another.
(Homework 3)
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None?

o Very little?

@ A fair amount?

@ A huge amount
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None? Hand write rules or use active learning

@ Very little? Naive Bayes

@ A fair amount? SVM

@ A huge amount Doesn’t matter, use whatever works
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None? Hand write rules or use active learning
@ Very little? Naive Bayes
@ A fair amount? SVM

@ A huge amount Doesn’t matter, use whatever works

Interpretable?
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None? Hand write rules or use active learning
@ Very little? Naive Bayes
@ A fair amount? SVM

@ A huge amount Doesn’t matter, use whatever works

Interpretable? Decision trees
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Recap

@ Is there a learning method that is optimal for all text classification problems?
@ No, because there is a tradeoff between bias and variance.
@ Factors to take into account:
» How much training data is available?
» How simple/complex is the problem? (linear vs. nonlinear decision
boundary)
> How noisy is the problem?
» How stable is the problem over time?
* For an unstable problem, it's better to use a simple and robust
classifier.
* You'll be investigating the role of features in HW3!
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