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Roadmap

@ What are probabilities

> Discrete
» Continuous

@ How to manipulate probabilities

@ Properties of probabilities
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Preface: Why make us do this?

@ Probabilities are the language we use to describe data

@ A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

@ Later classes will be about how to do this for different probability models and
different types of data

@ But first, we need key definitions of probability
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Preface: Why make us do this?

©

Probabilities are the language we use to describe data

©

A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

©

Later classes will be about how to do this for different probability models and
different types of data

©

But first, we need key definitions of probability

©

So pay attention!
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Preface: Why make us do this?

@ Probabilities are the language we use to describe data

@ A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

@ Later classes will be about how to do this for different probability models and
different types of data

@ But first, we need key definitions of probability
@ So pay attention!

@ Also, ya'll need to get your environments set up
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Outline

o Properties of Probability Distributions
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Random variable

@ Probability is about random variables.
@ A random variable is any “probabilistic” outcome.
@ For example,
> The flip of a coin
» The height of someone chosen randomly from a population
@ We'll see that it's sometimes useful to think of quantities that are not strictly
probabilistic as random variables.

» The temperature on 11/12/2013
» The temperature on 03/04/1905
» The number of times “streetlight” appears in a document
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Random variable

(4]

Random variables take on values in a sample space.

(4]

They can be discrete or continuous:
» Coin flip: {H, T}
» Height: positive real values (0, 00)
» Temperature: real values (—00,00)
» Number of words in a document: Positive integers {1,2,...}

We call the outcomes events.

(4]

(4]

Denote the random variable with a capital letter; denote a realization of the
random variable with a lower case letter.

@ E.g., X'is acoin flip, x is the value (H or T) of that coin flip.
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Discrete distribution

@ A discrete distribution assigns a probability
to every event in the sample space

@ For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 03

@ And probabilities have to be greater than 0

@ Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=6)

@ The probabilities over the entire space must sum to one
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Discrete distribution

@ A discrete distribution assigns a probability
to every event in the sample space

@ For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 03

@ And probabilities have to be greater than 0

@ Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=6)

@ The probabilities over the entire space must sum to one
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Discrete distribution

@ A discrete distribution assigns a probability
to every event in the sample space

@ For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 0.3

@ And probabilities have to be greater than 0

@ Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=86)
@ The probabilities over the entire space must sum to one

> P(x=x)=1
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Discrete distribution

@ A discrete distribution assigns a probability
to every event in the sample space

@ For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 03

@ And probabilities have to be greater than 0

@ Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=56)
@ The probabilities over the entire space must sum to one

D P(x=x)=1
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Outline

O Working with probability distributions
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Events

An eventis a set of outcomes to which a
probability is assigned

@ drawing a black card from a deck of cards
@ drawing a King of Hearts
Intersections and unions:

@ Intersection: drawing a red and a King
P(ANB) (1)
@ Union: drawing a spade or a King

P(AUB)=P(A)+ P(B)—P(ANB) (2
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Events

An eventis a set of outcomes to which a
probability is assigned

@ drawing a black card from a deck of cards
@ drawing a King of Hearts
Intersections and unions:

@ Intersection: drawing a red and a King
P(ANB) (1)
@ Union: drawing a spade or a King

P(AUB)=P(A)+ P(B)—P(ANB) (2
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Events

An eventis a set of outcomes to which a
probability is assigned

@ drawing a black card from a deck of cards
@ drawing a King of Hearts
Intersections and unions:

@ Intersection: drawing a red and a King
P(ANB) (1)
@ Union: drawing a spade or a King

P(AUB)=P(A)+ P(B)—P(ANB) (2
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Joint distribution

@ Typically, we consider collections of random variables.

@ The joint distribution is a distribution over the configuration of all the random
variables in the ensemble.

@ For example, imagine flipping 4 coins. The joint distribution is over the space
of all possible outcomes of the four coins.

P(HHHH) = 0.0625
P(HHHT) = 0.0625
P(HHTH) = 0.0625

@ You can think of it as a single random variable with 16 values.
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Visualizing a joint distribution

~X

~X, ~y
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Marginalization

If we are given a joint distribution, what if we are only interested in the distribution
of one of the variables?

We can compute the distribution of P(X) from P(X, Y, Z) through marginalization:

ZZPXY y,Z=2) ZZP P(Y=y,Z=2z|X)
XZZP (Y=y,Z=2|X)
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

Marginalization allows us to compute @ Marginalize out weather

distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ Marginalize out temperature

@ New table still sums to 1

February 3, 2014
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

7 o Marginalize out weather
T=Hot T=Mild T=Cold

Marginalization allows us to compute
distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ Marginalize out temperature

@ New table still sums to 1
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

7 o Marginalize out weather
T=Hot T=Mild T=Cold

15
@ Marginalize out temperature

Marginalization allows us to compute
distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ New table still sums to 1
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

7 o Marginalize out weather
T=Hot T=Mild T=Cold
15 .55 .30
@ Marginalize out temperature

Marginalization allows us to compute
distributions over smaller sets of
variables:

e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ New table still sums to 1
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Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data

13/37



Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10

W=Cloudy | .05 35 20

Marginalization allows us to compute
distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension
@ New table still sums to 1
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10

W=Cloudy .05 .35 .20

Marginalization allows us to compute
distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension
@ New table still sums to 1
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10

W=Cloudy | .05 35 20

Marginalization allows us to compute
distributions over smaller sets of
variables:
e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension
@ New table still sums to 1
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny .10 .20 .10 Marainali t "
@ Marginalize out weather
W=ClI .05 .35 .20
Cloudy > T=Hot T=Mild T=Cold
Marginalization allows us to compute 15 55 -30
distributions over smaller sets of @ Marginalize out temperature
variables: W=Sunny | .40
W=Cloudy | .60

e P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ New table still sums to 1

February 3, 2014 13/37
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,

P(ANB)

P(AIE) =515,
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,

P(ANB)

P(AIB) =~
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,
P(ANB)

P(A|B) = P(B)
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,
P(ANB)

P(A|B) = P(B)

(o] New outcome
space!
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
@ B= Second die
B=1 B=2 B=3 B=4 B=5 B=6

A=1 2 3 4 5 6 7
A=2 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
@ B= Second die
B-1 B=2 B=3 B=4 B=5 B=6 P(A>3NB+A=6)=

A=1 2 3 4 5 6 7 P(A>3)=
A=2 3 4 5 6 7 8 P(A>3|B+A=6)=
A=3 4 5 6 7 8 9
A=4 | 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die

@ B= Second die 5
P(A>SOB+A:6):£

B=1 B=2 B=3 B=4 B=5 B=6
A=1 2 3 4 5 6 7 P(A>3)=
A=2 3 4 5 6 7 8 P(A>3|B+A=6)=
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
@ B= Second die P(A>3ﬂB+A:6):£
B=1 B=2 B=3 B=4 B=5 B=6 36

AT 2 3 4 5 6 7 P(A>3)= >
A2 | 3 4 5 6 7 8 6
as | 2 s 5 . 8 9 P(A>3|B+A=6)=
A=4 | 5 6 7 8 9 10
A=5 | 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
2
@ B= Second die P(A>3mB+A:6):£
= = = = = = 3
B=1 B=2 B=3 B=4 B=5 B=6 p(as3) =2
A=1 2 3 4 5 6 7 6
A=2 | 3 4 5 6 7 8 2 55
36
A=3 4 5 6 7 8 9 P(A>3|B+A:6):§:£§
A=4 5 6 7 8 9 10 6
A=5 | 6 7 8 9 10 11
A=6 | 7 8 9 10 11 12
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Conditional Probabilities

Example
What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die 5
@ B= Second die P(A>3”B+A:6):£
B=i B=2 B=3 B=4 B=5 B=6 P(A>3) =2

A1 | 2 3 4 5 6 7 62
A28 4S5 6T 8 a3 tA=6) =B =2
A3 | 4 5 6 7 8 9 ¢ 363
A4 | 5 6 7 8 9 10 1
A5 | 6 7 8 9 10 11 =5
A6 | 7 8 9 10 11 12
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Outline

© combining Probability Distributions
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The chain rule

@ The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:

P(X,Y) = P(X, Y)%

~—
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The chain rule

@ The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:

P
= P(XIY)P(Y)

P(X,Y) = P(X, Y)%

~—
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The chain rule

@ The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:
P(Y)
P(X,Y) = P(X,Y)=—/=
(XY) = PV
= P(XIY)P(Y)

~—

@ For example, let Y be a disease and X be a symptom. We may know
P(X|Y) and P(Y) from data. Use the chain rule to obtain the probability of
having the disease and the symptom.

@ In general, for any set of N variables

N
P(Xi,.... Xw) = [ [P(XalX1, ..., Xo1)
n=1
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Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

P(AlB)P(B)

P(BIA) = =5

Q Start with P(A|B)
@ Change outcome space from B to
© Change outcome space again from Q to A
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Bayes’ Rule

What is the relationship between P(A|B) and P(B| A)?

P(AlB)P(B)

P(BIA) =5

@ Start with P(A|B)
@ Change outcome space from Bto 2

© Change outcome space again from 2 to A

P(A]B)
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Bayes’ Rule

What is the relationship between P(A|B) and P(B| A)?

P(AlB)P(B)

P(BIA) =5

@ Start with P(A|B)
@ Change outcome space from Bto Q: P(A|B)P(B)

© Change outcome space again from 2 to A

Q

P(A]B)

AN P(AIB) P(B) = P(A,B)
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Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

P(A|B)P(B)

P(BIA) =50

@ Start with P(A|B)
@ Change outcome space from B to Q: P(A|B)P(B)

. P(A|B)P(B
© Change outcome space again from € to A: PAIB)A(E) /‘3(2\)( )
a P(A|B) P(B)/P(A) = P(A,B)/P(A) = P(B|A)
P(A|B) o
A\ P(A|B) P(B) = P(A,B) ‘ ;\\‘~
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Independence

Random variables X and Y are independent if and only if
P(X=x,Y=y)=P(X=x)P(Y =y).

Conditional probabilities equal unconditional probabilities with independence:
o P(X=x|Y)=P(X=x)

@ Knowing Y tells us nothing about X
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Independence

Random variables X and Y are independent if and only if
P(X=x,Y=y)=P(X=x)P(Y =y).
Conditional probabilities equal unconditional probabilities with independence:
o P(X=x|Y)=P(X=x)
@ Knowing Y tells us nothing about X

Mathematical examples:

@ If | draw two socks from my (multicolored) laundry, is the color of the first sock
independent from the color of the second sock?
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Independence

Random variables X and Y are independent if and only if
P(X=x,Y=y)=P(X=x)P(Y =y).
Conditional probabilities equal unconditional probabilities with independence:
o P(X=x|Y)=P(X=x)
@ Knowing Y tells us nothing about X

Mathematical examples:

@ If | draw two socks from my (multicolored) laundry, is the color of the first sock
independent from the color of the second sock?

@ If I flip a coin twice, is the first outcome independent from the second
outcome?
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Independence

Intuitive Examples:
@ Independent:

» you use a Mac / the Green line is on schedule
> snowfall in the Himalayas / your favorite color is blue
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Independence

Intuitive Examples:
@ Independent:

» you use a Mac / the Green line is on schedule
> snowfall in the Himalayas / your favorite color is blue

@ Not independent:

» you vote for Mitt Romney / you are a Republican
> there is a traffic jam on the Beltway / the Redskins are playing
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Independence

Sometimes we make convenient assumptions.

the values of two dice

(4]

the value of the first die and the sum of the values

°
@ whether it is raining and the number of taxi cabs

@ whether it is raining and the amount of time it takes me to hail a cab
°

the first two words in a sentence
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Outline

o Continuous Distributions
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Continuous random variables

©

We’ve only used discrete random variables so far (e.g., dice)

(4]

Random variables can be continuous.

(4]

We need a density p(x), which integrates to one.

J p(x)dx =1

@ Probabilities are integrals over smaller intervals. E.g.,
6.5
P(Xe€(—2.4,6.5)) :f p(x)dx
—24

*]

E.g., if x€R then

Notice when we use P, p, X, and x.
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Continuous random variables

@ We've only used discrete random variables so far (e.g., dice)
@ Random variables can be continuous.

@ We need a density p(x), which integrates to one.

E.g., if x€R then
o0
J p(x)dx =1

—00

@ Probabilities are integrals over smaller intervals. E.g.,

6.5

P(X €(—2.4,6.5)) = f p(x)ax

—24

@ Notice when we use P, p, X, and x.

@ Integrals? | didn’t sign up for this!
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Integrals?

Nl PO

{15

A

A

\
* \.
a1+ 1.0000
-
‘ ¥ AR A | M | L = 0.7 !
< 3 -3 - ' ' 3 3 s
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Integrals?

s

< -2

-
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Integrals?
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The Gaussian distribution

@ The Gaussian (or Normal) is a continuous distribution.

p(xlu, o) = \/g—m exp{—w}

202

@ The density of a point x is proportional to the negative exponentiated half
distance to u scaled by o2.

@ u is called the mean; o2 is called the variance.
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Gaussian density

0.3
|

p(x)
0.2

0.1

0.0
|

@ The mean u controls the location of the bump.
@ The variance o2 controls the spread of the bump.
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Outline

Q Expectation and Entropy
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Expectation

An expectation of a random variable is a weighted average:

E[f(X)] = ) (x)p(x) (discrete)
= f f(x) p(x) dx (continuous)
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Expectation

Expectations of constants or known values:
o E[g|=a
o E[y|y=y]=y
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Expectation

Example: Gaussian distribution X ~ N(u, 02)

o0
1 1 2
E[X]:f X e 202 1) gy
e V2mo?
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Expectation

Example: Gaussian distribution X ~ N(u, 02)

o0
1 1 2
E[X]:f X e 202 1) gy
e V2mo?

=4
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Expectation Intuition

@ Average or outcome (might not be an event: 2.4 children)

@ Center of mass

@ “Fair Price” of a wager
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Expectation of die / dice

What is the expectation of the roll of die?
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Expectation of die / dice

What is the expectation of the roll of die?

One die
1 1 1 1 1 1 _
1-g+2-5+3-5+4-5+5-5+6-g— J
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Expectation of die / dice

What is the expectation of the roll of die?

One die
1 1 1 1 1 1 _
1-g+2'g+3'6+4'g+5'6+6'g—3.5 J
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Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1-g+2-g—|—3'6—|—4'g+5'6+6'g—3.5 J

What is the expectation of the sum of two dice?
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Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1.g+2:-g+3-5g+4-5+5-5+6-5=35 J

What is the expectation of the sum of two dice?
Two die

1 2 3 4 5 6 5 4 3 2 1
2ias+3 g+ g +5 55 +6-p +7 55 +8: 5 +9- . +10- 5x +11- - +-12- - = J
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Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1.g+2:-g+3-5g+4-5+5-5+6-5=35 J

What is the expectation of the sum of two dice?
Two die

1 2 3 4 5 6 5 4 3 2 1
Loz e e e gs e g e o s e e -l e e -l s g T e T2 2 _7J
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Entropy

@ Measure of disorder in a system

@ In the real world, entroy in a system tends to
increase
@ Can also be applied to probabilities:
> |Is one (or a few) outcomes certain (low
entropy)
> Are things equiprobable (high entropy)
@ In data science

» We look for features that allow us to
reduce entropy (decision trees)

D® PHILPA

> All else being equal, we seek models BOLTZM;
RLLAN )

that have maximum entropy (Occam’s gt
BOLTZM

razor)

DI ING. 0% PHIL
10 It
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Aside: Logarithms

0 lg(x)=be20=x

@ Makes big numbers small

@ Way to think about them: cutting a lg(4)=2
carrot

I9(8)=3
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Aside: Logarithms

9(=0 | |
n
lg(2)=1 | l |
0 lg(x)=be=2b=x
@ Makes big numbers small
@ Way to think about them: cutting a '
carrot lg(4)=2 | : |
=
@ Negative numbers?
98)=3 ag
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Aside: Logarithms

0 lg(x)=be20=x

@ Makes big numbers small

@ Way to think about them: cutting a
carrot Ig(4)=2
@ Negative numbers?

@ Non-integers?

{

Ig(8)=3
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a
random variable:

H(X) = —E[lg(p(X))]
= —Zp(x) lg(p(x)) (discrete)

= —f p(x) 1g(p(x)) dx (continuous)

—00
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a
random variable:

H(X) =—E[lg(p(X))]

= —Zp(x) lg(p(x)) (discrete)
= —f p(x) 1g(p(x)) dx (continuous)

Does not account for the values of the random variable, only the spread of the
distribution.
® H(X)>0
@ uniform distribution = highest entropy, point mass = lowest
@ suppose P(X=1)=p, P(X=0)=1-pand
P(Y=100)=p, P(Y=0)=1—p: X and Y have the same entropy
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a
random variable:

H(X) =—E[lg(p(X))]

= —Zp(x) lg(p(x)) (discrete)
= —f p(x) 1g(p(x)) dx (continuous)

Does not account for the values of the random variable, only the spread of the
distribution.
® H(X)>0
@ uniform distribution = highest entropy, point mass = lowest
@ suppose P(X=1)=p, P(X=0)=1-pand
P(Y=100)=p, P(Y=0)=1—p: X and Y have the same entropy

Examples (in class)
Entropy of one die, two dice. J
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Whew!

@ That’s it for now
@ You don’t have to be an expert on this stuff (there are other classes for that)

@ This is to get your feet wet and to know the concepts when you see the math
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Next Time

@ Technological foundations
@ Dealing with messy data

@ Telling stories with data
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