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What is a language model?

A language model estimates the probability of a word wi given
preceding words wi−(n−1), wi−(n−2), …, wi−1.

For a bigram model (i.e., when n = 2), the probability of a
length-k sequence w1 . . .wk, denoted wk

1, is:

P(wk
1) ≈

k∏
j=1

P(wj|wj−1)



Applications of language models

As a generative model: given some initial state (random or
sampled from a data set), generate a statistically likely
sequence of words.

As a discriminative model: given a document, provide a
point estimate of the probability of the document.
(Generalizes to multiclass classification.)
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Fundamental limitation of language models

The space of linguistic expression is infinite.

Data sets are finite.
As n increases, the probability of encountering a sequence
(of in-vocabulary words) that did not occur in the training
set increases.
How do (non-deep) language models address this?
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Fundamental limitation of language models

Denote a word w as a vector v of length |V| with 1 at viw and 0
elsewhere, where V is the set of words in the vocabulary and i is

a vector of indices.

wi−4 wi−3 wi−2 wi−2 wi

What is the cosine similarity of any pair of words?
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Denote a word w as a vector v of length |V| with 1 at viw and 0
elsewhere, where V is the set of words in the vocabulary and i is

a vector of indices.
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What is the cosine similarity of any pair of words?

What behavior would the distributional hypothesis lead you to
expect of word representations?



Representation matters

Deep language models use learned, continuous representations,
which behave in concordance with the distributional hypothesis.

wi−4 wi−3 wi−2 wi−1 wi

wi−4 wi−3 wi−2 wi−1 wi



Continuous representations and generalization

DT NN VBZ VBG IN DT NN
The cat is walking in the bedroom
A dog was running in a room

The cat is running in a room
A dog is walking in a bedroom

The dog was walking in the room



Papers for today

“A Neural Probabilistic Language Model”, Bengio et al,
2003
“On the difficulty of training Recurrent Neural Networks”,
Pascanu et al, 2013
“Recurrent neural network based language model”, Mikolov
et al, 2010



Functional view of models

f(wi−n,wi−n+1, . . . ,wi−1) → wi (Bengio et al, 2003)
f(wi−1) → wi (Mikolov et al, 2010)



Word embeddings

wi−5 wi−4 wi−3 wi−2 wi−1

1 2 6 9 7

Input to
network

Word inputs

Embedding indices
Mapping from

words to indices

Word
embedding

matrix



A Neural Probabilistic Language Model

What is the most expensive operation in this network?
Why the skip connections?



The curse of the normalization term

x = (Cwt−1 ,Cwt−2 , . . . ,Cwt−n+1)

y = b + Wx + U tanh(d + Hx)

P̂(wt|wt−1, . . . ,wt−n+1) =
eywt∑

i eyi

The time complexity of a forward pass through the network is
O(|V|(nm + h)), where

V is the set of words in the vocabulary,
n is the n-gram order,
m is the dimensions of the word embeddings,
and h is the number of hidden units.



Attacking the normalization term bottleneck

Data-parallel approach

One host, shared memory (“SMP”)
Each processor computes
Suffers from lock contention
Asynchronous version: lock-free parameter updates (cf.
Hogwild)

Parameter-parallel approach

Multiple hosts, distributed memory
Each host computes all network operations up to, and
excluding, the softmax.
The unnormalized outputs are shared across hosts
The normalization term is computed centrally (via MPI).
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Discussion of results (Brown corpus)



Discussion of results (AP News corpus)



Recurrent neural networks

xt = σ(Wrecxt−1 + Winut + b)



Vanishing and exploding gradients

Deeper networks (e.g. long-range BPTT RNNs) exacerbate
this problem.

Sufficient condition for vanishing gradients: largest
eigenvalue of Wrec is < 1.
Necessary condition for exploding gradients: largest
eigenvalue is > 1.
Orthogonal initialization is common solution; “Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks”, Saxe et al,
https://arxiv.org/abs/1312.6120

arXiv:1511.07053
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Recurrent neural network based language model
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Convolutional Language Models

ti−2 ti−1 ti ti+1 ti+2
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Character Convolutional Language Models
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1 2 6

Character
convolutional

input

Character inputs

Embedding indices
Mapping from
characters to

indices

Character
embedding

matrix



Generative neural networks are improving quickly



Deep language models are improving quickly

Controllable text generation, Hu et al arXiv:1703.00955

https://arxiv.org/abs/1703.00955


Questions?


