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Variational Inference

Inferring hidden variables
Unlike MCMC:

Deterministic
Easy to gauge convergence
Requires dozens of iterations

Doesn't require conjugacy

Slightly hairier math
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Setup

X = x1., observations
Z = z1.m hidden variables
« fixed parameters
Want the posterior distribution
p(z,x|a)

p(Z|X,O¢):m (1)
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Motivation

Can't compute posterior for many interesting models
GMM (finite)

Draw pux ~ N(0,72)
For each observation i =1...n:

Draw z; ~ Mult(r)
Draw x; ~ N (juz;, 03)

Posterior is intractable for large n, and we might want to add priors

TT5y p(ui) TT7 p(2)p(x; | 2, pi1:)

p(ul:K, Z1:n ‘ Xl:n) =

Lo S TU—y p(1i) Ty p20)P(xi | 21, p1:60)
2)
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Motivation

Can't compute posterior for many interesting models
GMM (finite)
Draw px ~ N(0,72)

For each observation i =1...n:

Draw z; ~ Mult(7)
Draw x; ~ N (i, 03)

Posterior is intractable for large n, and we might want to add priors

TTy p(ui) TT7y p(2)p(x; | 2, pi1:)
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Consider all means
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Can't compute posterior for many interesting models
GMM (finite)

Draw px ~ N(0,72)
For each observation i =1...n:

Draw z; ~ Mult(7)
Draw x; ~ N (jz;, 73)

Posterior is intractable for large n, and we might want to add priors

Ty p(i) TT7y P(zi)P(xi | 2is p11:k)

p(ﬂl:K; Z1:n ‘ Xl:n) =

fm:K sz Hf:l p(kk) H7:1 p(zi)p(xi| zi, pi:k)
(2)

Consider all assignments
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Main ldea

We create a variational distribution over the latent variables

q(z1:m | V) (3)

Find the settings of v so that g is close to the posterior

If g == p, then this is vanilla EM
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What does it mean for distributions to be close?

We measure the closeness of distributions using Kullback-Leibler
Divergence

KL(qllp) = Eq [Iog p("f‘)x)} (4)
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What does it mean for distributions to be close?

We measure the closeness of distributions using Kullback-Leibler
Divergence

q(2) } (@)

KL(q|l p) = Eq [Iog p(Z1%)

Characterizing KL divergence
If g and p are high, we're happy
If g is high but p isn't, we pay a price
If g is low, we don't care
If KL = 0, then distribution are equal
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What does it mean for distributions to be close?

We measure the closeness of distributions using Kullback-Leibler
Divergence

q(2) } (@)

KL(q|l p) = Eq [Iog p(Z1%)

Characterizing KL divergence
If g and p are high, we're happy
If g is high but p isn't, we pay a price
If g is low, we don't care
If KL = 0, then distribution are equal

This behavior is often called “mode splitting”: we want a good
solution, not every solution.
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Jensen’s Inequality: Concave Functions and Expectations

log(t-z1+ (1 —t)-22) .-

When f is concave

tlog(wy) + (1 —t)log(x2)  F(E[X]) > E[f(X)]

1 L2

If you haven't seen this before, spend fifteen minutes to convince
yourself that it's true
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Evidence Lower Bound (ELBO)

Apply Jensen’s inequality on log probability of data

log p(x) = log [ /Z p(x, Z)}
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Evidence Lower Bound (ELBO)

Apply Jensen’s inequality on log probability of data

log p(x) =log [/Z p(x,z)

=log [/z p(x, 2)

Add a term that is equal to one

| S

Lo

@)

Q
—~~
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Evidence Lower Bound (ELBO)

Apply Jensen’s inequality on log probability of data

log p(x) = log - /Z p(x, Z)}

= log /ZP(X’Z)C,Z;]
= log :Eq [”(X’z) ]

Take the numerator to create an expectation
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Evidence Lower Bound (ELBO)

Apply Jensen’s inequality on log probability of data

log p(x) = log /Z p(x, Z)}
=log p(X7Z)qZ;]

Apply Jensen's equality and use log difference
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Evidence Lower Bound (ELBO)

Apply Jensen's inequality on log probability of data

log p(x) =log /z P(XaZ)}
=log p(x, Z))]

sdslicon
( E

>Eq [logp

Fun side effect: Entropy
Maximizing the ELBO gives as tight a bound on on log probability
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Relation to KL Divergence

Conditional probability definition

p(z]x) = ==~
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Relation to KL Divergence

Conditional probability definition

p(z|x) =

Plug into KL divergence

KL(q(2) || p(z| x)) =E4 [Iog q(2) ]

p(z|x)
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Relation to KL Divergence

Conditional probability definition

plz]x) =

Plug into KL divergence

KL(q(2) || p(zx)) =Eq ['°g p(q()x)]

=Eq [log g(2)] — Eq [log p(z | x)]

Break quotient into difference
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Relation to KL Divergence

Conditional probability definition

p(z|x) ="

Plug into KL divergence
KL{a(z) | p(z 1)) —Eq [1og T2

=E, [log q(z)] — Eq [log p(z | x)]
=Eq [log q(2)] — Eq [log p(z, x)] + log p(x)

Apply definition of conditional probability
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Relation to KL Divergence

Conditional probability definition

p(z]x) = *

Plug into KL divergence
KL(a(a) | plz X)) =g flog 7).

=Eg [log q(z)] — Eq4 [log p(z | x)]
=Eq [log q(z)] — Eq [log p(z, x)] + log p(x)
= — (Eq[log p(z, )] — Eq [log q(2)]) + log p(x)

Reorganize terms
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Relation to KL Divergence

Conditional probability definition

p(z|x) =

Plug into KL divergence

q(2)
KL(a(a) | plz X)) =g Jlog 7).
=Eg [log q(z)] — Eq4 [log p(z | x)]
=Eq [log q(z)] — Eq [log p(z, x)] + log p(x)
= — (Eq[log p(2,x)] — Eq [log q(2)]) + log p(x)
Negative of ELBO (plus constant); minimizing KL divergence is
the same as maximizing ELBO
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Mean field variational inference

Assume that your variational distribution factorizes

m

q(Zla"'azm):Hq(zj) (6)
j=1
You may want to group some hidden variables together

Does not contain the true posterior because hidden variables are
dependent
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General Blueprint

Choose g
Derive ELBO
Coordinate ascent of each g;

Repeat until convergence
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Example: Latent Dirichlet Allocation

TOPIC 1 TOPIC2 TOPIC3

computer,
technology,
system,
service, site,
phone,
internet,
machine




Example: Latent Dirichlet Allocation

The three big Internet
portals begin to distinguish

among as
shopping malls

Stock Trades: A Better Deal
For Investors Isn't Simple

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

b

Forget the Bootleg, Just
Download the Movie Legally

TOPIC 1 TOPIC 2

Multiplex Heralded As
Linchpin To Growth

TOPIC 3

arning: Jordan Boyd-Graber



Example: Latent Dirichlet Allocation

computer,
sell, sale,
technology,
E store, product,
Y : business,
service, site, N
hone advertising,
P : market,
internet,
. consumer
machine

Hol@/ood stu@s are preparing to let people

dov\Qad and elec@io co()s of n@es over
the InOlet, much as re@d la@ now s@s for
99 s through AC)le ConOer‘s iTOs n@c s@
and other afilne se(" yes ...
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LDA Generative Model

N|m

For each topic k € {1,..., K}, a multinomial distribution Sx
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LDA Generative Model

),
)
OO N

For each topic k € {1,..., K}, a multinomial distribution Sx
For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «
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LDA Generative Model

),
)
OO N

For each topic k € {1,..., K}, a multinomial distribution Sx

For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «
For each word position n € {1,..., N}, select a hidden topic z,

from the multinomial distribution parameterized by 6.

Variational Inference | 13 of 29
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LDA Generative Model

),
)
OO N

For each topic k € {1,..., K}, a multinomial distribution Sx
For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «
For each word position n € {1,..., N}, select a hidden topic z,
from the multinomial distribution parameterized by 6.

Choose the observed word wj, from the distribution 3, .
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,w|a,B) = H p(bq] ) H P(Zd,n | ed)p(Wd,n | B, Zd,n) (7)

d
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Deriving Variational Inference for LDA

Joint distribution:

p(@, Z,w | «, 5) - H p(ﬁd | O‘) H p(zd,n

d

0a)p(Wa,n | B,2d,n)  (7)

Pl | ) = [P T, 055 " (Dirichlet)
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,w|a,B8) = [ p(0a| ) [ ] P(z4.n | 6a)P(Wen | B 2an)  (7)
d n

p(0d|05) r r(a Hk egkk ! (DIrIChIet)
p(zd,n|0d) = 04.z,,, (Draw from Multinomial)
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Deriving Variational Inference for LDA

Joint distribution:

p(0,z,wl|a,B) = H p(0q | ) H P(zd,n

d

0a)p(Wa,n | B, 2z4,0)  (7)

p(0a| o) = [ T 5% " (Dirichlet)
p(zd,n|0d) = 04,z,,, (Draw from Multinomial)

P(Wa.n|B,2dn) = Bz mwa.n (Draw from Multinomial)

rdan Boyd-Graber |  Boulder Variational Inference |

14 of 29




Deriving Variational Inference for LDA

Joint distribution:

p(0,z,w|a,B) = H p(04 | ) H p(zd,n

d

0a)p(Wa,n | B,2d,n)  (7)

Variational distribution:

q(0,2) = q(0]v)a(z[ ¢) (8)
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Deriving Variational Inference for LDA

Joint distribution:

p(.z,w|a,B) =[] p0al ) [ ] pzdn|ba)p(Wa,n | B, 2d,0)  (7)
d n

Variational distribution:

q(0,2) = q(0|v)a(z| ¢) (8)

ELBO:
L(~y, ¢; o, B) =Eq4 [log p(0 | &)] + Eq [log p(z | 8)] + Eq [log p(w | z, B)]
— Eq [log g(0)] — Eq [log q(2)] (9)
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What is the variational distribution?

q(@i 2) = Hq(ed |7d)Hq(Zd,n ‘ ¢d,n) (10)

d

Variational document distribution over topics v4
Vector of length K for each document
Non-negative
Doesn’t sum to 1.0
Variational token distribution over topic assignments ¢g ,

Vector of length K for every token
Non-negative, sums to 1.0
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Expectation of log Dirichlet

Most expectations are straightforward to compute
Dirichlet is harder

Egir llog p(0i | )] = Z a;j (11)
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Expectation 1

Eq [Iog p((_) ‘ a)] :Eq [Iog {’(Z:; H 0;’,-,1 }] (12)

(13)
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Expectation 1

(13)

Log of products becomes sum of logs.
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Expectation 1

HglalH (12)

Log of exponent becomes product, expectation of constant is
constant
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Expectation 1

Q

Eq [Iog p(9 | a)] = [|og { 1_([% a:)) H 90’ _1}‘| (12)
e[ ) ]

=log F(Z o) — Z log (i) + Eq Z(oz, —1)log 9,-]
=log F(Z ;) — Z log I'(«;)

peafeo ()

Expectation of log Dirichlet
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Expectation 2

Eq [log p(z|0)] = [IogHHé’ﬂ[z”_—'] (13)

(14)
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Expectation 2

E, [log p(z | 6)] [Iog I1 H 9“2"——']] (13)
—E, [Z S log 9}”2"“"]] (14)

Products to sums
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Expectation 2

E, [log p(z | 6)] [Iog I1 H 9“2""’]] (13)

PO B
_ Z Z E, [log 9“2"”’]} (15)

Linearity of expectation
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Expectation 2

Eq[log p(z|6)] [Iog H H 91[2"__']] (13)

s
sy ot g
:ZZQS,,,-Eq [log 0:] (16)

(17)

Independence of variational distribution, exponents become products
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Expectation 2

Ey llog p(z 0)] =Eq [Iog H I1 9,“2"“"]] (13)
[Z > log 9“2"’]] (14)

_ Z Z E, [Iog 9“2"“’]} (15)

= En: Z $niEq [log 0] (16)

ZZ%( ) (Z%)) (17)

Expectation of log Dirichlet
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Expectation 3

Eq [log p(w | z, B)] =Eq [log Bz, ,.we..] (18)
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Expectation 3

Eq [log p(w | z, 8)] =Eq [log Bz, ,.w..] (18)
v K ]l[v:wd7,,,zd7n:i]

—E, IogHHﬁi’v (19)

(20)
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Expectation 3

Eq llog p(w | z, 8)] =Eq [log Bz, ,.wi.] (18)

vV K )
—, |log [T 81~ (19)

vV K
= Z Z Eq[L[v = wqn, 24,0 = i]]log Bi,, (20)

(21)
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Expectation 3

Eq [log p(w | z, B)] =Eq [log Bz, ,.wi.] (18)

V K )
—E, |ogHHﬁ}fEV:W"’"’Z‘*":’] (19)

g[L[v = wWgn,2z4n = i]]log Bi, (20)

VvV K
IO
vV K
Z Z ¢f7,ch‘1/,n |Og Bi,v (21)

v
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Entropies

Entropy of Dirichlet

Holy] = —logl [ D> v | +D_logl()
Jj i

k
i)V -V [ Do
i =1
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Entropies

Entropy of Dirichlet

Holy] = —logl [ D> v | +D_logl()
Jj i

k
> G- (v -V >y
i j=1
Entropy of Multinomial

Hg [@dnl = = ¢d,ni 108 $an,i (22)
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Complete objective function

K k
L(y,0;00,B) =10gT (T}, ;) — X, logT(ow) + 3 (o6 — 1) (¥ () =¥ (T, v4))
i=1 i=1

N k
- E Eq}m' (\P{Y;, -V [:E-i‘ 1 Tj:]:]
n=1i=1
N

k¥
+ E E ¢ru']'"";; IOE ﬂa’j
1

n=1i=1 j:

1031"(2; 1Y +ElﬂgFLY4,—EfT—1J(‘Pm— (Zt 1'}'_."):]

Nk
- E Zq}n! ]-Dgt‘.lil'.-

n=1i=1

Note the entropy terms at the end (negative sign)
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Deriving the algorithm

Compute partial wrt to variable of interest
Set equal to zero

Solve for variable
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Update for ¢

Derivative of ELBO:

oL
8ani

=V () =W (D 7| +logBi,—logdni — 1+  (23)
J

Solution:

bni o Bivexp | W (7) ZVJ (24)
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Update for ~

Derivative of ELBO:

oL
i

=V (vi) (i + i — Vi)

— v Ej:w Z(aﬁzn:%j—w)

J
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Update for ~

Derivative of ELBO:

9L _yr (vi) (@i + éni — i)

i
A DA DRI
J n

J
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Update for ~

Derivative of ELBO:

oL
—— =V (i) (@i + @ni — i)

07
~V DY v Y (aﬁz%j—%)
7 7 n

Solution:

Vi = aj + Z Gni (25)
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Update for 3

Slightly more complicated (requires Lagrange parameter), but solution

is obvious: .
B o< D N baniw, (26)
d n
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Overall Algorithm

Randomly initialize variational parameters (can’t be uniform)
For each iteration:
For each document, update v and ¢
For corpus, update 8
Compute L for diagnostics
Return expectation of variational parameters for solution to latent
variables
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Relationship with Gibbs Sampling

Gibbs sampling: sample from the conditional distribution of all
other variables

Variational inference: each factor is set to the exponentiated log of
the conditional

Variational is easier to parallelize, Gibbs faster per step

Gibbs typically easier to implement

Variational Inference |
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Implementation Tips

Match derivation exactly at first
Randomize initialization, but specify seed

Use simple languages first
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Implementation Tips

Match derivation exactly at first
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Use simple languages first .. .then match implementation
Try to match variables with paper

Write unit tests for each atomic update

Monitor variational bound (with asserts)
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Implementation Tips

Match derivation exactly at first

Randomize initialization, but specify seed

Use simple languages first .. .then match implementation
Try to match variables with paper

Write unit tests for each atomic update

Monitor variational bound (with asserts)

Write the state (checkpointing and debugging)

Visualize variational parameters
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Implementation Tips

Match derivation exactly at first

Randomize initialization, but specify seed

Use simple languages first .. .then match implementation
Try to match variables with paper

Write unit tests for each atomic update

Monitor variational bound (with asserts)

Write the state (checkpointing and debugging)

Visualize variational parameters

Cache / memoize gamma / digamma functions

Variational Inference 28 of 29
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Next class

Example on toy LDA problem

Current research in variational inference
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