Neural Networks and Deep Learning Il

CSCI 5622
Fall 2015

Why Stop At One Hidden Layer?

E.g., vision hierarchy for recognizing handprinted text

Word output layer [m

Character hidden layer 3
Stroke hidden layer 2
Edge hidden layer 1

Pixel input layer

Why Deep Nets Fail 1:
Credit Assignment Problem

How is a neuron in layer 2 supposed to know what it
should output until all the neurons above it do
something sensible?

How is a supposed to know what it
should output until all the neurons below it do

something sensible? [m

Why Deep Nets Fail 2:
Vanishing Error Gradients

With logistic activation function,

E .
aa_ y;,(1=y,) for output unit
y .
Aw ; = €0 X, 0, =1]

(Z wkjék] y;(1-y;) for hidden unit
k

.

Error gradients get squashed as they are passed back
through a deep network

= y;(1-y,)=<0.25

Approach To Solving Both Problems
(2000-2012)

Traditional method of training

Random initial weights

Alternative

Do unsupervised learning layer by layer to get weights in
a sensible configuration for the statistics of the input.

If these initial weights are sensible, then
e credit assignment problem will be mitigated

 gradients should convey information all the way down

Autoencoder Networks

Self-supervised training procedure
Given a set of input vectors (no target outputs)

Map input back to itself via a hidden layer bottleneck

DQC?CK]

How to achieve bottleneck? D Q

= Fewer neurons

= Sparsity constraint

* Information transmission constraint (e.g., add noise to unit)

Autoencoder Combines
An Encoder And A Decoder

Decoder

Encoder

0#0
anIe
(JCICICS
OOOC

@@

Stacked Autoencoders

000
—
ME%]
%0

copy

deep network

Note that decoders can be stacked to produce a
generative model of the domain

From Ng’s group

3rd layer
“Objects”

2nd layer
“Object parts

n

1st layer
llEdgeS”

Pixels

Suskever, Martens, Hinton (2011)
Generating Text From A Deep Belief Net

Wikipedia

The meaning of life is the tradition of the ancient human reproduction: it is less favorable
to the good boy for when to remove her bigger. In the show’s agreement unanimously
resurfaced. The wild pasteured with consistent street forests were incorporated by the
15th century BE. In 1996 the primary rapford undergoes an effort that the reserve
conditioning, written into Jewish cities, sleepers to incorporate the .St Eurasia that
activates the population. Mar??a Nationale, Kelli, Zedlat-Dukastoe, Florendon, Ptu’s
thought is. To adapt in most parts of North America, the dynamic fairy Dan please
believes, the free speech are much related to the

NYT

while he was giving attention to the second advantage of school building a 2-for-2 stool
killed by the Cultures saddled with a half- suit defending the Bharatiya Fernall’s office .
Ms . Claire Parters will also have a history temple for him to raise jobs until naked
Prodiena to paint baseball partners, provided people to ride both of Manhattan in 1978,
but what was largely directed to China in 1946 , focusing on the trademark period is the
sailboat yesterday and comments on whom they obtain overheard within the 120th
anniversary , where many civil rights defined, officials said early that forms , ” said
Bernard J. Marco Jr. of Pennsylvania , was monitoring New York

Neural Net History

Until ~2012, most deep nets were built with
unsupervised pretraining

= Some researchers used back propagation
autoencoders

= Other researchers used stochastic neural nets
(restricted Boltzmann machines or RBMs)

Eventually, it was discovered that no need for this
approach is you combine a bunch of tricks...

Hinton Group Bag O’ Tricks For Deep Learning

Initialize weights to sensible values
Rectified linear units

Hard weight regularization

Drop out

Convolutional architectures

Weight Initialization

How to ensures gradients don’t vanish (or explode)?

" Pretrain if you have a lot of unlabeled data and not a lot of
labeled data (semisupervised learning)

= Echo State Network weight initialization procedure

= Various heuristics, e.g.,
Draw all weights feeding into neuron j (including bias) via
w ; ~ Normal(0,1)

If input activities lie in [-1, +1], then variance of input to unit j grows
with fan-in to j, f;

Normalize such that variance of input is equal to C?, i.e.,
C

Ji Ji
VT

If input activities lie in [-1, +1], most net inputs will be in [-2C, +2C(]

Rectified Linear Units

Version 1
dy 2
=log(1+¢° _
’ .) dz 1+¢€°
Version 2
y=max(0,z) ﬂ: 0 1fzgp
0z 1 otherwise

Raf, do we need to worry about z=0?

Produces sparse activity patterns

Any unit that is turned off (y=0) does not learn

Avoids vanishing gradient problem
Any unit that is on (y>0) has a gradient of 1
Possibility of exploding gradients!

In terms of implementation, V2 is much faster than logistic or V1

Rectified Linear Units

Hinton argues that this is a form of model averaging

A fast approximation

m/

N1

Ioglstlc(x+0.5-n) ~ log(l+e"
"- output = max(O input)

Source: Hinton Coursera slides

Regularization Techniques

Soft weight constraints

L2 weight decay
1 2 A
E= 52(% -;) +§2W12'i
j i.j

weight elimination
1 A wjz.i /wy

2
E=a 2w v X

J [, 0

L1 weight decay
1 2 A
k= 52(% —yj) +52‘sz'
j i

Aw ; = €0 ;x; — EAsign(w ;;)

weight elimination with w, = 1

weight penalty

Regularization Techniques

Hard weight constraint

Ensure that Zw <¢ for every unit

¢

If constraint is violated, rescale all weights: w; < w, Z
w ..
]l

My argument for why this works i

* With rectified linear units, rescaling weights simply rescales
outputs (no loss of information), but units are more pliable

* With logistic units, it does limit nonlinearity but it also keeps
the units more pliable

Dropout (Hinton, 2012)

During training

= As each training example is presented, randomly remove
a fraction k of all hidden units.

= Can also drop out input units, depending on the domain.
During testing
" Include all units in the network.

= Multiply output of each hidden (or input) unit by k

Note: this represents the expected value of the unit during the
training phase

More On Dropout

With H hidden units, each of which can be dropped, we
have 2" possible models

L N N

= each of these models needs to be able to perform the task

" no unit can depend on the presence of another unit

Each of the 2H1 models that include hidden unit h must

share the same weights for the units ; é

= serves as a form of regularization

* makes the models cooperate

More On Dropout

With one hidden layer and a logistic output,

" Including all hidden units at test with a scaling of k is
exactly equivalent to computing the geometric mean
of all 2" models

With multiple hidden layers,

= “pretty good approximation” according to Geoff

Convolutional Architectures

Consider domains with structured or latticed input

= Spatial structure

E.g., images

" Temporal structure

E.g, speech, music

= Sequential structure

E.g., language, video, DNA m

A convolutional neural net (ConvNet) takes advantage
of this structure through a specialized architecture.

Recognizing An Image

Input is 5x5 pixel array

B

Simple back propagation net like you used in
Assignment 3

output

4
hidden

4

Recognizing An Object
With Unknown Location

Object can appear either in the left image or in the right
image

output

4 4
hidden hidden

4 4

Output indicates presence of object regardless of position

What do we know about the weights?

Generalizing To Many Locations

Each possible location the object can appear in has its
own set of hidden units

! output {
4
hidden hidden hidden

4 4 4

Each set detects the same features except in a different
location

Locations can overlap

Convolutional Neural Net

Each patch of the image is processed by a different set of hidden
units (‘detectors’, ‘features’)

But mapping from patch to hidden is the same everywhere

output {
4
hidden hidden hidden

4 4 4

Can bein 2D as well as 1D

Achieves translation invariant recognition

The Input Layer

Input layer typically represents pixels present

= at a given (x,y) location

: |=======25|

= of a particular color (R, G, B)
I=======5]
I=======2=5|

3D lattice

= height X width X # channels

S

The Hidden Layer

Each hidden unit (i) is replicated | output {
across lattice _ _4 .
hidden hidden hidden
4 A 4

Instead of drawing pools of hidden,

draw one (x,y) lattice for each hidden
unit type (i)

= Hidden uniti at (x,y) gets input from

a cylinder of activity from its corresponding

input patch

= Each hidden unit in a map has the same
incoming weights

Jargon

Each hidden unit lattice

= also called map, feature, feature type, dimension, channel
Weights for each channel

= also called kernels

Input patch to a hidden unit at

= also called receptive field

Pooling / Subsampling

If all the hidden units are detecting the same features,
and we simply want to determine whether the object
appeared in any location, we can combine hidden

representations

output
4
sum of

Tdden
hidden hidden hidden

4 4 4

Sum pooling vs. max pooling

Transformation types

Each layer in a convolutional net has a 3D lattice structure

= width X height X feature type

Two types of transformations between layers

= convolution + activation function

= pooling / subsampling

Full blown convolutional net performs these transformations
repeatedly -> Deep net

O1: feat Caf, maps16@10x1&'
- {eature maps 1. maps 16@5x5
8@28x28 -y

S2:f. maps
6@14x14

INPUT
32x32

|
| Full connection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Videos And Demos

ImageNet

ImageNet

= > 15M high resolution images

= over 22K categories

= |Jabeled by Mechanical Turk workers

ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC)

= 2010-2015

2010 ImageNet Competition

1.2 M training images, 1000 categories (general and
specific)

200K test images

output a list of 5 object categories in descending order of
confidence

two error rates: top-1 and top-5

Krizhevsky, Sutskever, & Hinton (2012)

AN \ B Fol) AN
1IN £ I | o
) \ 152 192 128 2048 204g \dense
\ ; ¢ n. ;128 I o gl
\" AN 13
224 Q’ g% B £ q ' [\ . =304 3 Joe A
'@{"\ 57 3 e\ "’ 3|~_ _ 13 dense dense
. i \ —; "
0N 192 192 128 Max |
244 Mfrrig Max 128 Max pooling 20%8 2048
Jof 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253.440-186,624-64,896-64,896-43.,264-
4096-4096-1000.

5 convolutional layers, split across two GPUs

3 fully connected layers

1000-way softmax output layer

650k units, 60M parameters, 630M connections

Trained on 2 GPUs for about a week with stochastic gradient descent

Key Ideas

RelLU instead of logistic or tanh units
Training on multiple GPUs

= cross talk only in certain layers

= balance speed vs. connectivity

Data set augmentation

= Vary image intensity, color

" Translate images

= Horizontal reflections

@ 054 \

- ~

-

g ~

@ =~ —

g' ~— -

E = - —
-

Epochs

Figure 1: A four-layer convolutional neural
network with ReLLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

" Increases size of training set by a factor of 2048

Figure 3: 96 convolutional kernels of size
11x 11 x 3 learned by the first convolutional
layer on the 224 x 224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

mlie

motor scooter

mite ip motor scooter leopard
black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
»

W
grilie mushroom cherry adagascar cat
vertible agaric | monkey
grille mushroom grape spider monkey
pickup Jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man’'s-fingers currant howler monkey

2010 Results

Team Score

SuperVision 0.15315
S| 0.26172
OXFORD_VGG 0.26979
XRCE/INRIA 0.27058
University of Amsterdam 0.29576
LEAR-XRCE 0.34464

2013: Down to 11% error

Image Captioning: The Latest Fad

Deep Visual-Semantic Alighments for Generating
Image Descriptions

= Karpathy & Fei-Fei (Stanford)

Show and Tell: A Neural Image Caption Generator
= Vinyals, Toshev, Bengio, Erhan (Google)

Deep Captioning with Multimodal Recurrent Nets
" Mao, Xu, Yang, Wang, Yuille (UCLA, Baidu)

Four more at end of class...

Below are some examples of the generated sentences from Microsoft COCO dataset. It is generated by sampling the maximum likelihood word. It seems that in this dataset, "a" is
the most common first word in the sentence, so all the generated sentences begin with "a“. The results are expected to be further improved by using beam search.

. e
, 4 a train traveling down a train track next to >
a cat sitting on a bench in front of a a man riding a snowboard down a snow a forest a laptop computer sitting on top of a
window covered slope table

a clock tower with a clock on top of it a person on skis is skiing down a hill a pizza sitting on top of a table next to a
box of pizza

—
L “TT
. —

a train traveling down a bridge over a a man riding a surfboard on top of a wave
river

a bus is driving down the street in front of

a red fire hydrant sitting in the middle of a a building

forest

a person is holding a skateboard on a a close up of a bow! of food on a table a bunch of oranges are on a table

street

a group of planes flying in the sky
a cat laying on a bed with a stuffed
animal

city

a giraffe standing in a field with trees in
the background

a young girl brushing his teeth with a a group of people flying kites in a field a man is doing a trick on a skateboard
toothbrush

Failures

a kitchen with a stove , stove , and a
refrigerator

a zebra standing on a dirt road next to a
a woman standing in front of a table a bird sitting on top of a tree branch tree
with a cake

food

a person holding a remote control in a
hand

a man in a baseball uniform is holding a a man is playing tennis on a tennis court

hanaball bhad

END

Conditioning The Input Vectors

If m, is the mean activity of input unit i over the
training set and s, is the std dev over the training set

For each input (in both training and test sets),
normalize by

a —
X, =X,
x; ’

S.

l

= where X, is the training set mean activity and s,
is the std deviation of the training set activities

Conditioning The Hidden Units

If you're using logistic units, then replace logistic output
with function scaled from -1 to +1

2 v 1
1 y _ 1 _
et N 2(1+y)(1 y)

y_1+e

= With net=0, y=0

= Will tend to cause biases to be closer to zero and more on
the same scale as other weights in network

= Will also satisfy assumption | make to condition initial
weights and weight updates for the units in the next layer

= tanh function

Setting Learning Rates |

Initial guess for learning rate

= |f error doesn’t drop consistently, lower initial learning rate and try again
= |If error falls reliably but slowly, increase learning rate.

Toward end of training

= Error will often jitter, at which point you can lower the learning rate down to
0 gradually to clean up weights

Remember, plateaus in error often look like minima
= be patient

= have some idea a priori how well you expect your network to be doing, and
print statistics during training that tell you how well it’s doing

= plot epochwise error as a function of epoch, even if you’re doing minibatches
Z(t(x . ya)2
PHGEIIS

NormalizedError =

Setting Learning Rates li

Momentum
OE

Aw
- ow,

=0Aw, —(1-0)¢

t+1

Adaptive and neuron-specific learning rates
" Observe error on epoch t-1 and epoch t

" |f decreasing, then increase global learning rate, € by

an additive constant

global?

" |f increasing, decrease global learning rate by a
multiplicative constant

" If fan-in of neuron jis f;, then ¢; = 8g10ba1/\/7j

Setting Learning Rates lli

Mike’s hack

Initialization
epsilon = .01

inc = epsilon / 10
if (batch_mode_training)

scale = .5
else
scale = .9

Update

if (current_epoch_error < previous_epoch_error)
epsilon = epsilon + 1inc
saved_weights = weights
else
epsilon = epsilon * scale
inc = epsilon / 10
if (batch_mode_training)
weights = saved_weights

Setting Learning Rates IV

rmsprop
= Hinton lecture

Exploit optimization methods using curvature

" Requires computation of Hessian

- R O f f 7
aﬂ?% afCl 81?2 axl axn
*f Pf ’f
H(f) _ dIQ d$1 ()172 dl"? ()xn _
*f - f >f
| Ox, Oxy Ox, 0Ty dx?

When To Stop Training

1. Train n epochs; lower learning rate; train m epochs
" bad idea: can’t assume one-size-fits-all approach

2. Error-change criterion

= stop when error isn’t dropping

= My recommendation: criterion based on % drop over a
window of, say, 10 epochs

1 epoch is too noisy

absolute error criterion is too problem dependent

= Karl’s idea: train for a fixed number of epochs after
criterion is reached (possibly with lower learning rate)

When To Stop Training

3. Weight-change criterion

= Compare weights at epochs t-10 and t and test:
Wi — wf‘m‘ <6

max
=" Don’t base on length of overall weight change vector
= Possibly express as a percentage of the weight

= Be cautious: small weight changes at critical points
can result in rapid drop in error

