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A Brief History Of Machine Learning

1962

Frank Rosenblatt, Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms

Perceptron can learn anything you can program it to do.

i -
5 —
REW
F- /




A Brief History Of Machine Learning

1969

Minsky & Papert, Perceptrons: An introduction to
computational geometry

There are many things a perceptron can’t in principle

learn to do
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A Brief History Of Machine Learning

1970-1985

Attempts to develop symbolic rule discovery algorithms

1986

Rumelhart, Hinton, & Williams, Back propagation
Overcame many of the Minsky & Papert objections

Neural nets popular in cog sci and Al
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A Brief History Of Machine Learning

1990-2005

Bayesian approaches

e take the best ideas from neural networks — statistical
computing, statistical learning

Support-Vector Machines
e convergence proofs (unlike neural nets)

A few old timers keep playing with neural nets
* Hinton, LeCun, Bengio

Neural nets banished from NIPS!



A Brief History Of Neural Networks

2005-2010

Attempts to resurrect neural nets with
e unsupervised pretraining
e probabilistic neural nets

 alternative learning rules



A Brief History Of Neural Networks

2010-present

Most of the alternative techniques discarded in favor of
1980’s style neural nets with ...

* lots more training data
* lots more computing cycles

* a few important tricks that improve training and
generalization (mostly from Hinton)

e rebranding: Deep Learning
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Brainlike Computers, Learning From Experience

Erin Lubin/The New York Times
Kwabena Boahen holding a biologically inspired processor attached to a robotic arm in a laboratory at Stanford University.

By JOHN MARKOFF

Published: December 28, 2013 117 Comments

PALO ALTO, Calif. — Computers have entered the age when they are able to
learn from their own mistakes, a development that is about to turn the digital
world on its head.

The first commercial version of the new
kind of computer chip is scheduled to be
released in 2014. Not only can it automate
tasks that now require painstaking
programming — for example, moving a
robot’s arm smoothly and efficiently — but
it can also sidestep and even tolerate errors
potentially making the term “computer
crash” obsolete.
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Readers’ Comments
The new computing approach, already in

use by some large technology companies, is

based on the biological nervous system,

specifically on how neurons react to stimuli and connect with other
neurons to interpret information. It allows computers to absorb
new information while carrying out a task, and adjust what they do
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based on the changing signals.

In coming years, the approach will make possible a new generation of artificial intelligence systems that
will perform some functions that humans do with ease: see, speak, listen, navigate, manipulate and
control. That can hold enormous consequences for tasks like facial and speech recognition, navigation
and planning, which are still in elementary stages and rely heavily on human programming.

Designers say the computing style can clear the way for robots that can safely walk and drive in the
physical world, though a thinking or conscious computer, a staple of science fiction, is still far off on the

http://www.nytimes.com/2013/12/29/science/brainlike-computers-1...

2013

“We’re moving from engineering computing systems to something that has many of the characteristics
of biological computing,” said Larry Smarr, an astrophysicist who directs the California Institute for
Telecommunications and Information Technology, one of many research centers devoted to developing
these new kinds of computer circuits.

Search All NYTimes.com

digital horizon.

Conventional computers are limited by what they have been programmed to do. Computer vision
systems, for example, only “recognize” objects that can be identified by the statistics-oriented
algorithms programmed into them. An algorithm is like a recipe, a set of step-by-step instructions to
perform a calculation.

But last year, Google researchers were able to get a machine-learning algorithm, known as a neural
network, to perform an identification task without supervision. The network scanned a database of 10
million images, and in doing so trained itself to recognize cats.

In June, the company said it had used those neural network techniques to develop a new search service
to help customers find specific photos more accurately.

The new approach, used in both hardware and software, is being driven by the explosion of scientific
knowledge about the brain. Kwabena Boahen, a computer scientist who leads Stanford’s Brains in
Silicon research program, said that is also its limitation, as scientists are far from fully understanding
how brains function.

“We have no clue,” he said. “I'm an engineer, and I build things. There are these highfalutin theories,
but give me one that will let me build something.”

Until now, the design of computers was dictated by ideas originated by the mathematician John von
Neumann about 65 years ago. Microprocessors perform operations at lightning speed, following
instructions programmed using long strings of 1s and os. They generally store that information
separately in what is known, colloquially, as memory, either in the processor itself, in adjacent storage
chips or in higher capacity magnetic disk drives.

The data — for instance, temperatures for a climate model or letters for word processing — are shuttled
in and out of the processor’s short-term memory while the computer carries out the programmed
action. The result is then moved to its main memory.

The new processors consist of electronic components that can be connected by wires that mimic
biological synapses. Because they are based on large groups of neuron-like elements, they are known as
neuromorphic processors, a term credited to the California Institute of Technology physicist Carver
Mead, who pioneered the concept in the late 1980s.

They are not “programmed.” Rather the connections between the circuits are “weighted” according to
correlations in data that the processor has already “learned.” Those weights are then altered as data
flows in to the chip, causing them to change their values and to “spike.” That generates a signal that
travels to other components and, in reaction, changes the neural network, in essence programming the
next actions much the same way that information alters human thoughts and actions.

“Instead of bringing data to computation as we do today, we can now bring computation to data,” said
Dharmendra Modha, an I.B.M. computer scientist who leads the company’s cognitive computing
research effort. “Sensors become the computer, and it opens up a new way to use computer chips that
can be everywhere.”

The new computers, which are still based on silicon chips, will not replace today’s computers, but will
augment them, at least for now. Many computer designers see them as coprocessors, meaning they can
work in tandem with other circuits that can be embedded in smartphones and in the giant centralized
computers that make up the cloud. Modern computers already consist of a variety of coprocessors that
perform specialized tasks, like producing graphics on your cellphone and converting visual, audio and
other data for your laptop.

One great advantage of the new approach is its ability to tolerate glitches. Traditional computers are
precise, but they cannot work around the failure of even a single transistor. With the biological designs,
the algorithms are ever changing, allowing the system to continuously adapt and work around failures
to complete tasks.

Traditional computers are also remarkably energy inefficient, especially when compared to actual
brains, which the new neurons are built to mimic.

1.B.M. announced last year that it had built a supercomputer simulation of the brain that encompassed
roughly 10 billion neurons — more than 10 percent of a human brain. It ran about 1,500 times more
slowly than an actual brain. Further, it required several megawatts of power, compared with just 20
watts of power used by the biological brain.

Running the program, known as Compass, which attempts to simulate a brain, at the speed of a human
brain would require a flow of electricity in a conventional computer that is equivalent to what is needed
to power both San Francisco and New York, Dr. Modha said.

1.B.M. and Qualcomm, as well as the Stanford research team, have already designed neuromorphic
processors, and Qualcomm has said that it is coming out in 2014 with a commercial version, which is
expected to be used largely for further development. Moreover, many universities are now focused on
this new style of computing. This fall the National Science Foundation financed the Center for Brains.
Minds and Machines, a new research center based at the Massachusetts Institute of Technology, with
Harvard and Cornell.

The largest class on campus this fall at Stanford was a graduate level machine-learning course covering
both statistical and biological approaches, taught by the computer scientist Andrew Ng. More than 760
students enrolled. “That reflects the zeitgeist,” said Terry Sejnowski, a computational neuroscientist at
the Salk Institute, who pioneered early biologically inspired algorithms. “Everyone knows there is
something big happening, and they’re trying find out what it is.”

A version of this article appears in print on December 29, 2013, on page A1 of the New York edition with the headline: Brainiike Computers,
Learning From Experience.
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Scientists See Promise in Deep-Learning Programs

By JOHN MARKOFF NOV. 23, 2012
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Using an artificial intelligence technique
inspired by theories about how the brain
recognizes patterns, technology companies are
reporting startling gains in fields as diverse as
computer vision, speech recognition and the
identification of promising new molecules for
designing drugs.

The advances have led to widespread
enthusiasm among researchers who design
software to perform human activities like seeing,
listening and thinking. They offer the promise of
machines that converse with humans and
perform tasks like driving cars and working in
factories, raising the specter of automated
robots that could replace human workers.

The technology, called deep learning, has

A voice recognition program translati
scientist, into Mandarin Chinese.

already been put to use in services like Apple’s Siri virtual personal
assistant, which is based on Nuance Communications’ speech recognition

service, and in Google's Street View, which uses machine vision to identify

specific addresses.

But what is new in recent months is the growing speed and accuracy of

deep-learning programs, often called artificial neural networks or just
“neural nets” for their resemblance to the neural connections in the brain.

very rare indeed.”

“There has been a number of stunning new
results with deep-learning methods,” said
Yann LeCun, a computer scientist at New
York University who did pioneering research
in handwriting recognition at Bell
Laboratories. “The kind of jump we are
seeing in the accuracy of these systems is

Artificial intelligence researchers are acutely
aware of the dangers of being overly
optimistic. Their field has long been plagued

A student team led by the by outbursts of misplaced enthusiasm
computer scientist Geoffrey E. followed by equally striking declines.

Hinton used deep-learning
technology to design software.
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The Believers

The hidden story behind the code that runs our lives

. Gougle

Michelle Siu

Geoffrey Hinto s time between the U. of Toronto and Google.

By Paul Voosen | FEBRUARY 23,2015

agic has entered our world. In the pockets of many Americans today are thin

black slabs that, somehow, understand and anticipate our desires. Linked to

the digital cloud and satellites beyond, churning through personal data, these

machines listen and assist, decoding our language, viewing and labeling reality
with their cameras. This summer, as | walked to an appointment at the University of
Toronto, stepping out of my downtown hotel into brisk hints of fall, my phone already had
directions at hand. | asked where to find coffee on the way. It told me. What did the machine
know? How did it learn? A gap broader than any we've known has opened between our use
of technology and our understanding of it. How did the machine work? As | would discover,
no one could say for certain. But as I walked with my coffee, | was on the way to meet the

man most qualified to bridge the gap between what the machine knows and what you know.

Geoffrey Hinton is a torchbearer, an academic computer scientist who has spent his career,
along with a small band of fellow travelers, devoted to an idea of artificial intelligence that
has been discarded multiple times over. A brilliant but peripheral figure. A believer. A
brusque coder who had to hide his ideas in obscure language to get them past peer review. A
devotee of the notion that, despite how little we understand the brain, even a toy model of it
could present more computational power and flexibility than the rigid logic or programmed
knowledge of traditional artificial intelligence. A man whose ideas and algorithms might

now help power nearly every aspect of our lives. A guru of the artificial neural network.

Such networks, which have been rebranded "deep learning,” have had an unparalleled

ascent over the past few years. They've hit the front page of The New York Times. Adept at

5/23/2015



Modeling Individual Neurons

flow of information



Modeling Individual Neurons
Activation function
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Computation With A Binary Threshold Unit

“And” gate

x1 | x2

0 0
0| 1
1] 0
1 1




Computation With A Binary Threshold Unit

“Exclusive or” gate

x1 | x2
0 0
0| 1
110
1 1
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Feedforward Architectures

i

flow of activity

Activation flows in one direction; no closed loops

Performs association from input pattern to output pattern

big, hairy, stinky =>
small, round, orange =>
big, round, soft =>
small, orange, hairy =>
stinky, yellow =>

Learning: adjust connections to achieve input-output
mapping



Recurrent Architectures

Achieves best interpretation of partial or noisy patterns, e.g.,
MAR--M-LLOW

State space dynamics Attractor dynamics

neuron 2 activity

neuron 1 activity

Learning: establishes new attractors and shifts attractor
basin boundaries



Let’s Get Serious...

Training data {(x',d"),(x*,d%),...(x",d")}
big, hairy, stinky =>

Network model y' = f(x%)

Objective function E=) Y (df —y7)
o k
E

A\

Learning rule AW. =——
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Linear
Activation
Function
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Gradient
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Batch Versus Online Training
(True Versus Stochastic Gradient Descent)
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Batch Versus Online Training
(True Versus Stochastic Gradient Descent)
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Extending LMS To Handle Nonlinear Activation
Functions And Multilayered Networks
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Logistic Activation Function
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Why Are Nonlinearities Necessary?

Prove

= A network with a linear hidden layer has no more
functionality than a network with no hidden layer
(i.e., direct connections from input to output)

" For example, a network with a linear hidden layer
cannot learn XOR

Vv
W
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Figure 6: The weights from the 24 input units that represent people to the 6 units in the secand layer that
learn distributed representations of people. White rectangies stand for excitatory weights, biack for in-
hibitory weights, and the area of the rectangie encodes the magnitude of the weight. The weights from
the 12 English people are in the top row of each unit. Beneath each of these weights is the weight from

the isomorphic Italian.
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Figure 7: The weights from the 12 input units that represent relationships to the 6 units in the second
layer that leam distributed representations of the relationships.




Changing Loss Function

squared error

1 2 oE
E—E;(dj—yj) a—yj_df_yf

cross entropy (= max likelihood)

Ez—Zdjlogyj+(1—dj)log(1—yj) —
j a)’j yj(l_yj)



Changing Loss Function

Back propagation

" Jogistic activation function

Z _ijl X yj: 1

1+exp(-z;)
" weight update ( E |
3y —y,(I=y;) for output unit
J
Aw ; = €0 x, 5, =+

[2 W0 jyj (I-y;) for hidden unit
k



Changing Activation Function 1

Back propagation
= softmax activation function for 1-of-N classification

_ exp(z;)
Z Zwﬂ A Z eXp(Zk)

" weight update
oF

N —y;(l=y)) for output unit

J

iji=85jxi 5.:<

(Zwkj(sk] y;(1=y;) for hidden unit
k

= gradient is the same when expressed in terms of y;



Changing Activation Function 2

Back propagation
= tanh activation function

$j = ZWﬂ Xi y; = tanh(z;) = 2logistic(z;)

" weight update

E
g (I+y)d-y;) for output unit
Y

(2 waSk)(l +y;)(1—y;) forhidden unit
k

" incompatible with cross entropy loss



