

Reduction to Classification

Jordan Boyd-Graber University of Colorado Boulder LECTURE 13

•

Administrivia

- How is the course going?
- What do you like?
- What don't you like?
- What should we do for an undergrad section?

Administrivia

- Boosting Due on Friday
- Midterm Next Week: 1.5 Hours
- Project Meetings

Defining a Code Book

- Want to decide whether a name is German, Argentine, or Chinese
- Using ECOC
- What do we need first?

Defining a Code Book

- Want to decide whether a name is German, Argentine, or Chinese
- Using ECOC
- What do we need first?

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

Training Data

German

Mann Goethe

Goethe Grass Chinese

Cao Xueqin

Lu Xun

Gao Xingjian

Argentine

Puig

Borges

Cortazar

Training Data

German

Mann

Goethe

Grass

Chinese

Cao Xueqin

Lu Xun

Gao Xingjian

Argentine

Puig

Borges

Cortazar

What are the training examples for each classifier?

Training Data

German

Mann Goethe Grass Chinese

Cao Xueqin Lu Xun

Gao Xingjian

Argentine

Puig Borges

Cortazar

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

What are the training examples for each classifier?

$$h_1$$
 h_2 h_3 h_4

Jordan Boyd-Graber | Boulder

	h_1	h_2	h_3	h_4
Mann	-	-	+	-
Goethe	-	-	+	-
Grass	_	-	+	-

	h_1	h_2	h_3	h_4
Mann	-	-	+	-
Goethe	-	-	+	-
Grass	-	-	+	-
Cao Xue	+	-	-	+
Lu Xun	+	-	-	+
Gao Xingjian	+	-	-	+

	h_1	h_2	h_3	h_4
Mann	-	-	+	-
Goethe	-	-	+	-
Grass	-	-	+	-
Cao Xue	+	-	-	+
Lu Xun	+	-	-	+
Gao Xingjian	+	-	-	+
Puig	+	+	+	-
Borges	+	+	+	-
Cortazar	+	+	+	-

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

$${\color{red}\bullet} \ (0,0,0,1) \rightarrow$$

Jordan Boyd-Graber Boulder Reduction to Classification

9 of 17

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

• $(0,0,0,1) \rightarrow \mathsf{German}$

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

- $\bullet \ (0,0,0,1) \to \mathsf{German}$
- $(0,1,0,1) \rightarrow$

Jordan Boyd-Graber 9 of 17

Class	b_1	b_2	b_3	b_4
Chinese	1	0	0	1
German	0	0	1	0
Argentine	1	1	1	0

- $\bullet \ (0,0,0,1) \to \mathsf{German}$
- $(0,1,0,1) \rightarrow \mathsf{Chinese}$

Jordan Boyd-Graber Boulder Reduction to Classification

9 of 17

Bottom Line

- Understand what your algorithm is doing when you ask it to multiclass
- Features and training imbalance matter more than ever
- Debugging is often easier if you binarize the problem

SVM Ranking

Jordan Boyd-Graber Boulder Reduction to Classification 11 of 17

Sets of five movies ranked by users

1: Year of the movie ($\mu = 1987$, var=266)

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

Sets of five movies ranked by users

2: Length of the movie ($\mu = 108$, var=569)

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

Sets of five movies ranked by users

3: Rating ($\mu = 6.4$, var=1.4)

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

4: Action (binary)

Sets of five movies ranked by users

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

5: Comedy (binary)

Sets of five movies ranked by users

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

6: Documentary (binary)

Sets of five movies ranked by users

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

7: Drama (binary)

Sets of five movies ranked by users

```
# Big Lebowski, The
1 qid:375 1:0.04 2:0.01 3:1.1 4:0.0 5:1.0 6:0.0 7:0.0
# School of Rock, The
2 qid:375 1:0.06 2:-0.00 3:0.7 4:0.0 5:1.0 6:0.0 7:0.0
# While You Were Sleeping
3 qid:375 1:0.03 2:-0.01 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Clockwise
4 qid:375 1:-0.01 2:-0.02 3:0.04 4:0.0 5:1.0 6:0.0 7:0.0
# Enchanted April
5 qid:375 1:0.02 2:-0.02 3:0.7 4:0.0 5:0.0 6:0.0 7:1.0
```

Fitting an SVM

- SVM-RANK
- Five support vectors
- Weight vector

$$w = \langle 0.02, 0.03, -1.82, -2.30, -0.05, 1.73, 1.84 \rangle \tag{1}$$

13 of 17

$$w = \langle 0.02, 0.03, -1.82, -2.30, -0.05, 1.73, 1.84 \rangle \tag{2}$$

```
# Paper Chase
1:-0.06 2:0.0 3:0.53 4:0.0 5:0.0 6:0.0 7:1.0
# Seconds
1:-0.08 2:-0.01 3:0.74 4:0.0 5:0.0 6:0.0 7:1.0
#Smokey and the Bandit II
1:-0.03 2:-0.02 3:-1.43 4:1.0 5:1.0 6:0.0 7:0.0
# CB4
1:0.02 2:-0.03 3:-0.73 4:0.0 5:1.0 6:0.0 7:0.0
#Sideways
1:0.06 2:0.03 3:1.09 4:0.0 5:1.0 6:0.0 7:1.0
```

• Paper Chase:

• Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds:

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II:

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II: $-0.01 \cdot -0.03 + 0.07 \cdot -0.02 + -1.95 \cdot -1.43 + -2.28 \cdot 1.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 0.44$

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II: $-0.01 \cdot -0.03 + 0.07 \cdot -0.02 + -1.95 \cdot -1.43 + -2.28 \cdot 1.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 0.44$

CB4:

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II: $-0.01 \cdot -0.03 + 0.07 \cdot -0.02 + -1.95 \cdot -1.43 + -2.28 \cdot 1.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 0.44$
- CB4: $0.01 \cdot 0.02 + 0.07 \cdot -0.03 + -1.95 \cdot -0.73 + -2.28 \cdot 0.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 1.35$

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II: $-0.01 \cdot -0.03 + 0.07 \cdot -0.02 + -1.95 \cdot -1.43 + -2.28 \cdot 1.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 0.44$
- CB4: $0.01 \cdot 0.02 + 0.07 \cdot -0.03 + -1.95 \cdot -0.73 + -2.28 \cdot 0.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 1.35$
- Sideways: $-0.01 \cdot 0.06 + 0.07 \cdot 0.03 + -1.95 \cdot 1.09 + -2.28 \cdot 0.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = -0.32$

- Paper Chase: $-0.01 \cdot -0.06 + 0.07 \cdot 0.00 + -1.95 \cdot 0.53 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.84$
- Seconds: $-0.01 \cdot -0.08 + 0.07 \cdot -0.01 + -1.95 \cdot 0.74 + -2.28 \cdot 0.00 + -0.07 \cdot 0.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = 0.43$
- Smokey and the Bandit II: $-0.01 \cdot -0.03 + 0.07 \cdot -0.02 + -1.95 \cdot -1.43 + -2.28 \cdot 1.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 0.44$
- CB4: $0.01 \cdot 0.02 + 0.07 \cdot -0.03 + -1.95 \cdot -0.73 + -2.28 \cdot 0.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 0.00 = 1.35$
- Sideways: $-0.01 \cdot 0.06 + 0.07 \cdot 0.03 + -1.95 \cdot 1.09 + -2.28 \cdot 0.00 + -0.07 \cdot 1.00 + 1.57 \cdot 0.00 + 1.87 \cdot 1.00 = -0.32$

What's the predicted ranking?

Ranking

Predicted Rank

- 1. Sideways
- 2. Seconds
- 3. Smokey and the Bandit II
- 4. The Paper Chase
- 5. CB4

Jordan Boyd-Graber Boulder Reduction to Classification

16 of 17

Ranking

Predicted Rank

- Sideways
- 2. Seconds
- 3. Smokey and the Bandit II
- 4. The Paper Chase
- 5. CB4

True Rank

- 1. Sideways
- 2. Smokey and the Bandit II

16 of 17

- 3. Seconds
- 4. The Paper Chase
- 5. CB4

Ranking

Predicted Rank

- Sideways
- 2. Seconds
- Smokey and the Bandit II
- 4. The Paper Chase
- 5. CB4 How many errors is this?

True Rank

- 1. Sideways
- 2. Smokey and the Bandit II

16 of 17

- 3. Seconds
- 4. The Paper Chase
- 5. CB4

Ranking to Regression

- Using SVMs to predict a value
- Ranking that value
- What if we care about actual value and not just relative order?

Regression!